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Introduction. A problem which has generated considerable interest during 
the past couple of decades is that of characterizing abstractly systems of real-
valued continuous functions with various algebraic or topological-algebraic 
structures. With few exceptions known characterizations are of systems of 
bounded continuous functions on compact or locally compact spaces. Only 
recently have characterizations been given of the systems C{X) of all real-
valued continuous functions on an arbitrary completely regular space X (1). 
One of the main objects of this paper is to provide, by using certain special 
techniques, a characterization of C(X) for a particular class of (not necessarily 
compact) completely regular spaces. 

Generally speaking, one of the primary difficulties in characterizing all of 
C(X) is that of obtaining conditions which insure that a subsystem is, in fact, 
all of C(X). Sets of conditions of two different types have evolved. The first, 
for X compact, uses the completeness of C(X) in its usual norm and the 
Stone-Weierstrass Theorem. (For example, see (10) and (13).) The second 
uses the fact that C(X) is, in a sense, maximal in a certain class of algebraic 
systems (cf. (1, 6). The first of these appears to be applicable only in situa­
tions where C(X) possesses a norm or a suitable family of pseudo-norms. The 
second, although it applies in more general situations and is algebraic in 
nature, has the slight drawback of the ' 'external" character of the maximality 
condition. 

In this paper we characterize C(X) as a vector lattice, as an /-ring, and as 
an algebra1 for the case in which X is a P-space (7). A feature of special 
interest in these characterizations is that we appeal to neither of the afore­
mentioned methods for obtaining all of C(X) ; rather we use, for X a P-space, 
a simple property of certain "fixed" subsets of C{X). En route to obtaining 
these results we also characterize M(X, S3), the set of all real-valued measurable 
functions on a total measurable space, as a vector lattice and as an /-ring. 

In two recent papers, Brainerd ((4) and (5)) has also given characterizations 
of C(X), X a P-space, and M{X, 33) as /-algebras. The characterizations of 
C(X) by Brainerd as an /-algebra and by us as an /-ring, although obtained 
independently, use essentially the same techniques. 

Received April 5, 1958. Presented to the American Mathematical Society June 20, 1958. 
1For the theory of vector lattices and /-rings see Birkhoff (2), Birkhoff and Pierce (3), and 

Nakano (11). Our notation will be that of (2) except that V and A will be used to denote 
lattice join and meet, respectively. By an algebra we shall always mean an algebra over the 
real field. 
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1. P r e l i m i n a r i e s . If X is a set, denote by F(X) the set of all real-valued 
functions on X . If 33 is a Boolean c-algebra of subsets of X, then we say 
t h a t the pair (X, 93) is a total measurable space and denote by M(X, 93) the 
set of a l l / £ F(X) measurable 93. If £ is a base for a topology on X, then we 
denote by C(X, X), or in unambiguous cases simply C(X) , the set of all 
/ Ç F(X) cont inuous with respect to X. 

For each / Ç F(X) set Z(f) = {x 6 X;f(x) = 0}. A subset Z Ç I i s a 
measurable zero set in case Z G S3, or equivalently, in case Z = Z ( / ) for some 
/ £ Af(X, 93). A subset Z Ç X is a continuous zero set in case Z = Z ( / ) for 
s o m e / G C(X) . 

A subset 7 Ç F(X) is jîxed in case Pi { Z ( / ) ; / £ 7}, also wri t ten H Z(7 ) , 
is non-empty. Let A Ç F(X). A set I Q A is a maximal fixed subset of .4 if 
and only if 7 = {/ Ç A ; / (x ) = 0} for some x (E X . In general, different points 
in X do not give rise to different maximal fixed subsets of A ; if, however, A 
separates points ( tha t is, x 9e y in X implies 0 = f(x) 9^ f(y) for s o m e / e .4), 
then the mapping 7 —» P\ Z(7) is one-one from the maximal fixed subsets of 
A onto X . 

Let .4 Ç F(X). Then for each J Ç 4 , set 

a(7) = { / Ç . 4 ; X - n Z ( 7 ) Ç Z ( / ) î . 

T h u s / £ a(7) if and only if for every x G X and every g Ç 7, f(x)g{x) = 0. 
We say t h a t 7 Ç 4̂ is Z-convex (in vl) provided t h a t 

7 = {/<E 4 ; n Z ( J ) C Z ( / ) ) . 

I t is clear then t h a t for each 7 Ç ^4, if 7 = a (a (7)), then 7 is Z-convex. The 
converse in general is false; for example, every maximal fixed subset 7 of A 
is Z-convex, b u t it need not satisfy 7 = a (a (7)). If J^ i s the collection of maximal 
fixed subsets of A, then it is clear t h a t 7 Ç 4̂ is Z-convex if and only if 

A topological space X ( = (X, X)) is a P-space (7) provided tha t X is 
completely regular and t h a t every G^-set in X is open. In such a space X the 
family of continuous zero sets of X is an open base for the topology, is a 
Boolean o--algebra of subsets of X , and coincides with the family of closed-open 
subsets of X . Conversely, if (X, 93) is a to ta l measurable space which separates 
points of X ( tha t is, x 9^ y in X implies x G E and y (jf E for some £ r 93), 
then 93 is an open base for a topology on X relative to which X is a P-space. 
Moreover, it is clear t h a t in this case M(X, 93) ^ C(X, 93). We now prove 
a test for equali ty.2 

L E M M A 1.1. Let X be a F-space, let 93, a Boolean a-algebra of subsets of X, be 
an open base for the topology of X , and let ff he the set of maximal fixed subsets 
of il7(X, 93). Then M(X, 93) = C(X, 93) if and only if for every Z-convex set 
I Ç M(X, 93), if N £ y implies I Çj_ N or a(I) (J_ N, then I = a(f) for some 
f € M(X, S8). 

2See also (5, Theorem 1) for a variation of this result. 
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Proof. Let 7 Ç M(X, 33) be Z-zoncvx. We shall prove first that the two 
conditions 

(1) I (Z N or a(I) (t N for all N G &\ 
(2) C\Z(I) is a continuous zero set; 

are equivalent. Assume (1). Then 7\ = C\ Z(I) and F2 = P\Z(ct(7)) are 
disjoint. For let x G X and let 

#* = {/G M(X, « ) ; / (* ) = 0 } . 

Since TVa: is Z-convex, we have x G 7\ if and only if 7 Ç Nx, and x G P2 if 
and only if a (J) Ç #*. Thus, by (1), F1C\F2 = 0. Since M(X, 33) Ç C(X, 33), 
we conclude that Fi and F2 are closed. Since 33 is an open base, if x G X, then 
{x} = H Z(Ag. Therefore if x $ 7\ and if/ G M(X, 33), then {x} = C\ Z(NX) 
<^X - FxQZif) implies/ G iV*. That is, a (7) Q NXJ so that x G F2. Hence 
X = Fi \J F2. We have then that 7\ is both closed and open, and therefore 
Fi = Pi Z(7) is a continuous zero set. Conversely, assume (2). Then since X 
is a P-space, F = C\ Z(I) is closed and open. Since 33 is an open base, if 
x G F, then there is a n / G M(X} 33) such t h a t / 0 ) ^ 0 and X - FQZ(f); 
that is, / G a (7) and / $ Nx. Hence 7 Ç Nx implies a (7) <£ #*. Thus (1) and 
(2) are equivalent. 

We now easily prove the "only if" portion of the lemma. For suppose that 
M(X, 33) = C(X, 33) and that 7 C M(X, 33) satisfies (1). Then F = H Z(7) 
is closed and open so that the characteristic function/ of F is in M(X, 33). It 
is evident then that 7 = a(l — / ) . 

Conversely, let g G C(X, 33) and let a be a real number. Set Z = {x G X; 
g(x) ^ a}. Then Z = Z ( ( a - g ) V 0 ) is a continuous zero set. Let 

/ = {/É M ( X , S ) ; Z Ç Z ( / ) } . 

Then 7 is Z-convex and C\ Z(I) = Z. Therefore 7 satisfies (2) and hence 
(1). Thus, if M(X, 33) satisfies the condition of the lemma, 7 = ct(f) for some 

/ G il7(X, 33). We claim that Z = X - Z(J). Certainly X - Z(f) Ç Z. Sup­
pose then that x G Z(/) . Since/ G Af(X, 33) Ç C(X, 33), Z(/) is a continuous 
zero set, and therefore, since X is a P-space, Z(/) is open. Now 33 is an open 
base, so there is an h G M{X, 33) such that hix) ^ 0 and X - Z(J) ÇI Z(h). 
Then h G 7 and Z = C\ Z(J) Q Z(h). Hence x (£ Z, and we have the desired 
reverse inclusion X — Z(f) 2 Z. Now Z(/) is measurable since/ G M(X, 33), 
and therefore its complement Z is measurable. Consequently, since a was 
arbitrary, we conclude that g is measurable 33 and hence that g G M(X, 33). 
Thus M(X, 33) = C(X, 33) and the lemma is proved. 

2. Vector lattices of functions. In this section we characterize M(X, 33) 
and C(X, X) abstractly as vector lattices where (X, 33) is a total measurable 
space and (X, £) is a P-space. 

Let A be a vector lattice. For/ , g Ç i we wri te / _L g in case |/| A |g| = 0. A 
countable set {fn} of elements of A is a o^-seJ in case fn ^ 0 (« = 1 ,2 . . . ) 
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and for each n ^ ni, fn _L fm. We say that A is a±-complete in case every 
(71-set {fn} in .4 has a least upper bound, Vw/W, in A.z 

LEMMA 2.1. Let A be a vector sublattice of F(X) which separates points of X 
and contains the constant function 1. Then A = M(X, 33) for some point separat­
ing (j-algebra 33 of subsets of X if and only if A is a^-complete and a-cornplete. 

Proof. The necessity of these conditions follows readily from the fact that 
if A = M(X, 33), then the desired countable spurema are simply the "point-
wise" suprema. 

Conversely, let A satisfy the stated conditions. If \fn] Ç A wi th / = Vw/nG A , 
then we claim that f(x) = Vn[fn(x)] for each x ^ I . For suppose, on the 
contrary, that there is an x G X with f(x) > Wn[fn(x)]. Without loss of 
generality, we may assume that, for all n, 0 < fn S fn+i < 1 a n d fn{pc) = 0, 
and tha t / (x ) = 1. Now define sequences {gn}, {hn}, and {en\ in A by 

g! = 2 / i M and gn = 2( / n V gn-i) A 1 for n > 1; 

*n = (2gn - ^n+l) + ; 
and 

£i = ^i, 2̂ = 2h2, and en = w(Aw — Aw_2) for n > 2. 

Also, for each «, set 

Yn = {y £ X;ga(y) = 1}. 

Then one easily shows that, for each n, 0 ^ hn S hn+i ^ 1, hn(Yn) = 1, and 
hn(X — Yn+i) = 0. From these it follows that 0 S en S n, en{x) = 0, 
*W(FW - 7w_i) = «, and 

X - Z{en) ç Fn + 1 - Fn_2, 

where F_i = F0 = 0. This implies that if \m — n\ > 2, then em J_ e„; hence 
each of the sets {ezn}, {e3w_i}, and {^-2} is a cr-L-set in ^4. Therefore, since A 
is o-^-complete, 

2 / » \ » 

e = V I V 03n-i J = V ŵ 
î = 0 \ w = l / 72 = 1 

is in A. Now if/w(;y) > 0, then 2%(y) ^ 1 for some k; therefore, since 

gn+*(y) ^ [2%(y)] A 1 = 1, 

we have y £ Yn+k. That is, if 
CO 

P={J (X - Z(fn)), 

then 
PQ U 7 » = U ( F „ - F_! ) . 

w = l w=0 

3Other, possibly less descriptive, terminology for this notion includes cr-full (2) and complete 
(11). 
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T h u s we have t h a t e ^ 1 on P, and consequently, t ha t / ^ e on X. Hence 
there is an integer k ^ 2 such t h a t e(x) S k — 1. Set 

e' = y V itejve. 

Then e'(3/) ^ fe for all y G P a n d e ' ( x ) g e(x) g &. Therefore 0 ' - & + 1 ) + ^ 1 
on P and, as a result, / ^ (ef — k + 1)+ . This is a contradict ion since 
(e' — k + l ) + ( x ) = 0. We conclude then t h a t / ( x ) = 0, and therefore count­
able suprema in A, when defined, are defined pointwise. 

For each / G A, set ef = Vn (\nf\ A 1) ; then, by the result of the preceding 
paragraph, ef is the characteristic function of X — Z{f). T h u s A contains 
ef and 1 — ez the characteristic functions of X — Z(f) and Z(f), respectively. 
Now let 33 = {Z(f)\f G A}. Then 33 is an algebra of subsets of X; for 
Z(f) U Z(g) = Z ( | / | A |g|) and X - Z(f) = Z ( l - e,). Since 4 is^ point 
separating, it is clear t h a t 33 also is point separating. Moreover, 33 is a a-
algebra; for, using the result of the first paragraph and the (^-completeness 
of A, we have 

r\nz(jn) = r\nz(efn) = z(vnefn) G 33. 
We show next t h a t A C M(X, 33). Let / G 4̂ and let a be real. Then 

{xtX;f(x) ^a] = Z ( ( * - / ) + ) G 33, 

so t h a t / G M(Xj 33). On the other hand, 4̂ contains all measurable charac­
teristic functions, and so, since A is c-complete, A contains all bounded 
/ G M ( X , 33). (Cf. (8, Theorem 20.B).) T o complete the proof we need only 
show t h a t A contains all non-nega t ive / G M(X, 33). So l e t / ^ 0 in M(X, S3). 
For each w = 1, 2, . . . , set 

En = {x G X; n - 1 g / ( x ) < »} 

and let /w G PC^O be denned by fn = f on P„ and fn = 0 on X — En. Then 
obviously fn G Af(X, 33) and is bounded; hence fn G A for all w. Bu t \fn) is 
a o-L-set, so t h a t / = Vw/W G ^4. T h u s the proof of the lemma is complete. 

I t is interesting to note t ha t neither o^-completeness nor cr-completeness 
alone is adequate to insure t h a t A = M(X, 33). For example, if X is uncount­
able, then the set of all / G F(X) with f(X) countable is a vector sublatt ice 
of F(X) which is o-^-complete bu t not o--complete. Next let X be the Stone-
Cech compactification of an infinite discrete space and let A = C(X). Then A 
is a vector sublatt ice of F(X) which is a-complete bu t not a -'--complete ; in 
fact, there exist bounded sequences {fn} in A such t h a t Z(\/nfn) ^ r\nZ{fn). 

Let A be a vector lattice. An element e G A is a weak order unit in case 
for all / G A, | / | A \e\ = 0 implies / = 0. A subset I ÇZ A is an ideal of A in 
case / is a linear subspace such t h a t / G / and |g| S \f\ implies t h a t g G L 

T H E O R E M 2.2. 4̂ sector lattice A is isomorphic to the vector lattice M(X, 33) for 
some total measurable space (X, 33) ^/ am/ ow/3; if A is a^complete, a-complete, 
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has a weak order unit, and C\^ — 0 where ^ is the set of maximal ideals of A. 
In fact, when A satisfies the stated conditions, A is isomorphic to Af(^33) , 
where 33 is a point separating a-algebra of subsets of ^ 

Proof. Since the family *S of fixed maximal ideals ( = maximal fixed ideals) 
of M(X, 33) satisfies C\ S = 0, the necessity of the conditions is obvious. 

Conversely, let A satisfy the stated conditions. Let e Ç A be a weak order 
unit for A; we may assume that e ^ 0. We claim that if ^~ = {N £ */\ 
e i N\, then H ^ = 0. For if / Ç H ^ then, for every N Ç ^ either 
/ Ç N or e G xV. Thus (|/| A ^ H ^ s o that |/| A e = 0. Since g is a weak 
order unit, this implies / = 0. That is, Pi ^ = 0. By a familiar technique 
(1) we can define an isomorphism of A onto a point-separating vector sub-
lattice A* of F( ^ ) such that e is mapped onto the constant function 1. Appeal­
ing to Lemma 2.1 we have that A* = M(^, 33) for some (r-algebra 33 of 
subsets of y. 

To complete the proof it will suffice to show that £f = ^, and for this 
it will suffice to show that if (X, 33) is a total measurable space, then no 
maximal ideal of M(X, 33) contains 1. Suppose, on the contrary, that N is 
a maximal ideal of M(X, 33) and that 1 G N. Then since N is proper, there 
is an / è 0 with / $ N. Since N is maximal and since f2 > f is in M{X, 33), 
there is a real number a such that f2 — af G iV\ Let 0 = \{a + l)2 . Since 
1 £ X, it follows that /3, and hence f2 — of + /3, belongs to Ar. But 

/2 - af + (I = [/ - è(* + l)]2 + / è /, 

contrary to / $ xY. Thus the assumption 1 £ .¥ is untenable and the proof is 
complete. 

Let A be a vector lattice and let / Ç ^4. We set 

I±= {fZA;f±g for all g € I} . 

Then clearly, / ç /J-1-. If - ^ is a family of ideals of A, then an ideal I of 4̂ 
is -^-complemented in case / = 7±J-, and for each iY Ç <£f either / (^ iY or 
/^ (Z A7. 

THEOREM 2.3. Let A be a vector lattice and let ^ be the set of all maximal 
ideals of A. Then A is isomorphic to the vector lattice C(X) for some completely 
regular P-space X if and only if A is a^-complete, a-complete, P\ ^ = 0, and 
for each ^complemented ideal I of A, I = {/}L for some f Ç A. 

Proof. To prove the necessity we may assume that X is a <2-space (9); for 
if X is a P-space, then so is vX, and, of course, C(X) and C(vX) are iso­
morphic. With this assumption the maximal ideals of C(X) coincide with the 
maximal fixed subsets of C(X). Moreover, if / ÇZ C(X), then I1- coincides 
with the set a (I) defined in § 1. These observations combine with Lemma 1.1 
and Theorem 2.2 to establish the necessity of the conditions in the present 
theorem. 
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Conversely, let A satisfy the s ta ted conditions. Since the zero ideal of A 
is clearly ^ c o m p l e m e n t e d , it follows t h a t A has a weak order unit . Therefore, 
by Theorem 2.2, A is isomorphic to M{X, 33) for some total measurable 
space {X, 33) where, in fact, the maximal ideals ^ c o r r e s p o n d to the maximal 
fixed ideals of M{X, 33). A Z-convex set I* of M(X, 33) is then the image of 
some I = H [N £ &, I Q N} in A, and therefore is an ideal of M{X, 33). 
Since we clearly have a( /*) = ( /*) x , it follows from Lemma 1.1 t h a t 
M{X, 33) = C{X, 33), and the proof is complete. 

3. / - r i n g s of f u n c t i o n s . In this section we characterize M{X, 93) and 
C{X, X), {X, 93) and {X, X) as before, as / - r ings . Although these characteriza­
tions still require ^-completeness, we are able to dispense with the full force 
of the cr-'--completeness requirement. In its place we use ring regularity and a 
condition of countbable character on certain ideals. These characterizations 
are slightly sharpened versions of those given in (4 and 5) . 

Recall t h a t a n / - r i n g (3) is a lattice-ordered ring A with the property t h a t 
for all / , g, h G A, f A g = 0 and A ^ 0 together imply hf A g = fh A g == 0. 
Clearly M{X, 33) and C{X, X) are /-r ings. 

A ring A is regular (12) in case for each f £ A, there is an f £ A such 
t h a t / / ' / = / . I t is known (7) t h a t a completely regular space X is a P-space 
if and only if C{X), as a ring, is regular. Concerning regular / - r ings we prove 
the following result which may be of independent interest. 

L E M M A 3.1. Let A be a regular f-ring. Then 
(1) For all f,g£ A, \f\ A \g\ = 0 if and only if fg = 0. 
(2) If A has a weak order unit, A has an identity. 

Proof. Since A has no non-zero nilpotent elements, the /-radical of A is 
zero (3). Therefore (1) follows from (3, Corollary 1, p. 57) and (3, Corollary 
2, p. 63). Next let e ^ 0 be a weak order unit for A and let ee' e = e. Then , 
by (1), / A ee' = 0 implies fee'e = fe = 0 which implies | / | A e = 0 and thus 
/ = 0. T h a t is, the idempotent e" = ee' is also a weak order unit . L e t / € A ; 
then {fe" — f)e" = 0 implies \fe" — / [ A e" = 0. Therefore, since e" is a weak 
order unit, fe" = f. Similarly, e"f = / , which establishes (2). 

An ideal I of a ring A is c-closed in case for every countable set {fn\ C I 
there is an / Ç A with ffn = fnf = fn for all n. 

T H E O R E M 3.2. Let A be an f-ring and let ^ be the set of a-closed maximal 
ring ideals of A. Then A is isomorphic to the f-ring M{X, 33) for some total 
measurable space (X, 33) if and only if A is regular, a-complete, has a weak order 
unit, and C\ &* = 0. Moreover, if A satisfies these conditions, the space {X, 33) 
and the isomorphism of A onto M{X, 33) may be so chosen that the set S is 
mapped one-one onto the maximal fixed subsets of M{X, 33). 

Proof. T h e necessity of the conditions is easily proved; we omit the details. 
Conversely, let A satisfy the s ta ted conditions. Then , by Lemma 3.1, A has 
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a ring identity e. Moreover, since A is or-complete, it is Archimedean (2, p. 
229), and therefore A is commutative (3, Theorem 13). Since the regular 
a--complete subring of A generated by e is isomorphic to the ordered field R 
of real numbers, we may regard A as a regular /-algebra over R (that is, A 
is a regular F-r'mg in the sense of (4)). Now let A7 £ ^ and {fn} CZ A7 such 
that Vnfn G A. Since A7 is cr-closed, there is an / £ A with /fw = fn for all w. 
By the regularity of A we may assume that / is idempotent. Then (11, 
Theorem 25.1), \Znfn = Vnffn =/(V re/W) G A7. Therefore /I satisfies the 
conditions required in Brainerd's characterization (4, p. 682). Thus there 
exist a total measurable space (X, 93) and an isomorphism of A onto M(X, 33) 
with the desired properties. 

Let i b e a ring. For I Q A, set a (I) = {/ G A;fg = 0 for all g £ / } . In 
general a(7) is a left ideal of A ; if 4̂ is commutative or if A is a regular/-ring, 
then a (I) is a two-sided ideal.4 A left ideal / of A is a-principal in case I = a{f) 
for some f £ A. 

If ^ i s a family of ideals of a ring A, then an ideal / of A is ^-complemented 
in case J = a (a (7)) and for each N 6 «̂ f either J (£ A7 or a (7) (2 A7. 

THEOREM 3.3. Le/ 4̂ &e a^ f-ring and let ^ be the set of a-closed maximal 
ring ideals of A. Then A is isomorphic to the f-ring C(X) for some P-space X 
if and only if A is regular, a-complete, C\ ^ = 0, and every -^-complemented 
ideal of A is a-principal. 

Proof. To prove the necessity, we may assume that X is a Q-space. Then 
an application of Theorem 3.2 and Lemma 1.1 completes this portion of the 
proof. 

Conversely, since the zero ideal of A is ^complemented, it is a-principal. 
But from {0} = a (J) and Lemma 3.1 we conclude that |/| is a weak order 
unit for A. Therefore, by Theorem 3.2 and Lemma 1.1, we have that A is 
isomorphic to M(X, 93) and that M(X, 93) = C(X, 33) where (X, 93) is a 
P-space. 

4. The algebra C(X). With no assumptions concerning order properties 
it seems to be difficult to obtain a reasonably simple characterization of the 
algebras M(X, 93). It is possible, however, to characterize the algebra C(X), 
X a P-space, and it is the object of this section to present such a characteriza­
tion. 

Let A be a ring and let £f be a family of ideals of A. A set {/«} Ç A is a 
discrete ^-cover in case a ^ 13 implies fafp = 0 and the set {/«} is contained 
in no member of *$f We say that A is ^regular in case for each discrete 
«5-cover {fa} in A there is an / G A such that faff a = fa for all a. 

The condition of ^-regularity provides the means by which we avoid order 
assumptions in the characterizations of C(X). In general, however, it is not 

4If A is a subring of F(X), then Ct(7) as denned here coincides with Ct(J) as denned in §1. 
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suitable for a characterization of M(X, 33). For example, let X be uncountable 
and let 33 be the algebra of countable sets and their complements. If ^ is 
the set of maximal fixed ideals of the algebra M(X, 33), then M(X, 33) is not 
^ r e g u l a r . In fact, there is no algebra M(X, 33) Ç A C F(X) other than 
F{X) itself which is ^ r e g u l a r relative to its set ^ o f maximal fixed ideals. 

T H E O R E M 4.1 . Let A be an algebra and let ^ be the family of a-closed real 
ideals5 of A. Then A is isomorphic to the algebra C(X) for some P-space X if and 
only if A is -^-regular, C\ Sf = 0, and each ^-complemented ideal of A is 
^-principal. 

Proof. Let X be a P-space. Again we may assume t h a t X is also a Q-space; 
hence every real ideal of C(X) is fixed. As before one easily proves t h a t each 
such ideal is cr-closed. Thus , clearly, C\ ^ = 0. If {fa} Ç C{X) is a discrete 
^ c o v e r , then the family {X — Z(fa)\ is a disjoint open cover of X; hence 
/ = Zafa is in C{X). Since C(X) is regular, there is a n / ' G C(X) w i t h / 7 2 = / . 
Now an obvious pointwise a rgument shows t h a t / % 2 = fa for each a; therefore 
C(X) is ^ r e g u l a r . T h a t C(X) satisfies the final condition follows from 
Lemma 1.1. 

Conversely, let A satisfy the s tated conditions. Then, as a subdirect sum 
of fields, A is commuta t ive . Since the zero ideal of A is ^ c o m p l e m e n t e d , 
there is a n / G A such t ha t {0} = a (J). If / £ N for some N £ ^ then, since 
A7 is cr-closed, there is a g £ N with/'g = / . Let h G A ; then / (A - gh) = 0. Bu t 
{0} = a ( / ) , so we have h = gh Ç N\ t h a t is, A = N. This contradiction shows 
t h a t {/} is a discrete ^-cover. Then since A is ^ r e g u l a r , ff2 = f for some 
/ ' £ A. T h u s {0} = a(e) for some idempotent e (= ff) in A ; in fact, e is easily 
seen to be an identi ty for A. Therefore (cf. (1)) we may assume t h a t A is 
(isomorphic to) a subalgebra of C(X) for some completely regular space X 
and t h a t (i) the maximal fixed subsets of A are the members of '<>f and (ii) for 
each x £ X and each neighbourhood U of x, there is an / G -4 such t h a t 
/ ( x ) = 0 and /(;y) ^ 1 for all y $ [/. I t therefore remains to prove t h a t X is 
a P-space and t h a t A = C(X). So let U = r\nUn be a Gg-set in X , let x £ [/, 
and let 

A^ = {/<E 4 ; / ( * ) = 0 } G X 

By (ii), there is, for each n, an /w £ A^ such t h a t / n (y) è 1 for all 3; $ £4. 
Since A7^ is a-closed, there is a n / G Nx such that/fw = /w for all n. I t is clear 
t h a t f(x) = 0 and t ha t f(y) = 1 for all y (£ U. Consequently U is a neigh­
bourhood of x. This establishes t h a t X is a P-space. 

Now let Z Ç J be a continuous zero set; t h a t is, Z is closed and open 
in X. For each x £ X — Z, there is an / Ç A^ such t h a t / ( Z ) = 1. Therefore 
g = 1 - / £ A and g(x) = 1 and g(Z) = 0. We have from this t h a t / = {/ £ A ; 
^ ^ Z( / )} is Z-convex and C\ Z(I) = Z. Then with essentially the same argu-

5An ideal N of A is real if ^4/iV is isomorphic to the real field. 
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ment as that used in the proof of Lemma 1.1, we conclude that I is ^-com­
plemented. Therefore I = a(J) for some f G A * thus, using the fact that X 
is a P-space, it follows that Z = Z(f) for some / G A. Since X — Z is also a 
continuous zero set, X — Z = Z(g) for some g (z A. This clearly implies that 
{/, g} is a discrete ^cover ; hence fg2 = g for some/ ' Ç ^4. Thus (fg) (Z) = 1 
and (fg) {X — Z) = 0. We have proved then that A contains the characteristic 
function of each continuous zero set of X. 

To complete the proof it will suffice to prove that A contains every strictly 
positive function in C(X), for if/ G C{X), t h en / = [( /V 0) + 1] - [ - (/A 0) 
+ 1]. So l e t / £ C(X) be strictly positive and for each positive real number 
a, set Za = {x G X;f(x) = a}. Then each Za is a continuous zero set; let 
ea Ç A be the characteristic function of Za. Since {Za} is a disjoint cover of 
X, it follows that {aea} is a discrete ^cover in ,4. Therefore there is an 
/ ' Ç A such that (aea)

2f = aea for each a. Then for each x £ Za, 

/ ' (*) = a - i = [/(x)]-*. 

Since {Za} covers X, it follows that {/'} is a discrete ^cover in A. Thus 
there is a n / " G ^ with (/ ,)2/ , / = / r . Clearly then / " - ( f ) " 1 = / and / G .4 
as desired. 
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