A CLASS OF FUNCTION ALGEBRAS

F. W. ANDERSON

Introduction. A problem which has generated considerable interest during
the past couple of decades is that of characterizing abstractly systems of real-
valued continuous functions with various algebraic or topological-algebraic
structures. With few exceptions known characterizations are of systems of
bounded continuous functions on compact or locally compact spaces. Only
recently have characterizations been given of the systems C(X) of all real-
valued continuous functions on an arbitrary completely regular space X (1).
One of the main objects of this paper is to provide, by using certain special
techniques, a characterization of C(X) for a particular class of (not necessarily
compact) completely regular spaces.

Generally speaking, one of the primary difficulties in characterizing all of
C(X) is that of obtaining conditions which insure that a subsystem is, in fact,
all of C(X). Sets of conditions of two different types have evolved. The first,
for X compact, uses the completeness of C(X) in its usual norm and the
Stone-Weierstrass Theorem. (For example, see (10) and (13).) The second
uses the fact that C(X) is, in a sense, maximal in a certain class of algebraic
systems (cf. (1, 6). The first of these appears to be applicable only in situa-
tions where C(X) possesses a norm or a suitable family of pseudo-norms. The
second, although it applies in more general situations and is algebraic in
nature, has the slight drawback of the “‘external’’ character of the maximality
condition.

In this paper we characterize C(X) as a vector lattice, as an /-ring, and as
an algebra' for the case in which X is a P-space (7). A feature of special
interest in these characterizations is that we appeal to neither of the afore-
mentioned methods for obtaining all of C(X); rather we use, for X a P-space,
a simple property of certain ‘‘fixed” subsets of C(X). En route to obtaining
these results we also characterize M (X, 8), the set of all real-valued measurable
functions on a total measurable space, as a vector lattice and as an /-ring.

In two recent papers, Brainerd ((4) and (5)) has also given characterizations
of C(X), X a P-space, and M (X, B) as l-algebras. The characterizations of
C(X) by Brainerd as an [-algebra and by us as an [-ring, although obtained
independently, use essentially the same techniques.

Received April 5, 1958. Presented to the American Mathematical Society June 20, 1958.

For the theory of vector lattices and /-rings see Birkhoff (2), Birkhoff and Pierce (3), and
Nakano (11). Our notation will be that of (2) except that vV and A will be used to denote
lattice join and meet, respectively. By an algebra we shall always mean an algebra over the
real field.

353

https://doi.org/10.4153/CJM-1960-029-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1960-029-3

354 F. W. ANDERSON

1. Preliminaries. If X is a set, denote by F(X) the set of all real-valued
functions on X. If B is a Boolean s-algebra of subsets of X, then we say
that the pair (X, B) is a total measurable space and denote by M (X, B) the
set of all f € F(X) measurable 8. If T is a base for a topology on X, then we
denote by C(X, ), or in unambiguous cases simply C(X), the set of all
f € F(X) continuous with respect to T.

For each f € F(X) set Z(f) = {x € X;f(x) = 0}. A subset ZC X is a
measurable zero set in case Z € B, or equivalently, in case Z = Z(f) for some
f€ M(X, B). A subset Z C X is a continuous zero set in case Z = Z(f) for
some f € C(X).

A subset I C F(X) is fixed in case M {Z(f);f € I}, also written M Z(I),
is non-empty. Let 4 C F(X). A set I C A4 is a maximal fixed subset of 1 if
andonly if I = {f € 4;f(x) = 0} for some x € X. In general, different points
in X do not give rise to different maximal fixed subsets of 4; if, however, .1
separates points (that is, x ¥ y in X implies 0 = f(x) = f(y) for some f < 1),
then the mapping I — M Z(I) is one-one from the maximal fixed subsets of
A onto X.

Let 4 € F(X). Then for each I C 4, set

all) = {fe 4; X =N Z(I) S Z(NH)}.

Thus f € a(I) if and only if for every x € X and every g € I, f(x)g(x) = 0.
We say that I C A4 is Z-convex (in 4) provided that

I={fed;NZ(I) < Z(f)}.

It is clear then that for each I € A4, if I = a(a({)), then I is Z-convex. The
converse in general is false; for example, every maximal fixed subset I of .1
is Z-convex, but it need not satisfy I = a(a([)). If -7"is the collection ofmaximal
fixed subsets of A4, then it is clear that I € A4 is Z-convex if and only if
I=N{NecSTCN}.

A topological space X (= (X, Z)) is a P-space (7) provided that X is
completely regular and that every Gs-set in X is open. In such a space X the
family of continuous zero sets of X is an open base for the topology, is a
Boolean o-algebra of subsets of X, and coincides with the family of closed-open
subsets of X. Conversely, if (X, ¥B) is a total measurable space which separates
points of X (that is, x £ vy in X implies x € E and y ¢ E for some E £ 9B),
then 8 is an open base for a topology on X relative to which X is a P-space.
Moreover, it is clear that in this case M (X, 8) C C(X, 8B). We now prove
a test for equality.?

LemMa 1.1. Let X be a P-space, let B, a Boolean o-algebra of subsets of X, be
an open base for the topology of X, and let -7 be the set of maximal fixed subsets
of M(X,®B). Then M(X,B) = C(X, B) if and only if for every Z-convex set
IC M(X,9),if N L implies I T N or a(I) ¢ N, then I = a(f) for some
fe MX, D).

2See also (5, Theorem 1) for a variation of this result.
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Proof. Let I € M(X, B) be Z-zoncvx. We shall prove first that the two
conditions

() IZ Nora(I) @ N forall N ¢ %

(2) M Z(I) is a continuous zero set;
are equivalent. Assume (1). Then F, = NZ({I) and F, = N Z(a(l)) are
disjoint. For let x € X and let

Ny = {f € M(X, 8);f(x) = 0}.

Since N, is Z-convex, we have x € Fy if and only if I C N, and x € F, if
and only if a(I) € N,. Thus, by (1), F1 N\ F; = ¢.Since M (X, B) C C(X, B),
we conclude that F; and F, are closed. Since 9 is an open base, if x € X, then
{x} = N Z(N,). Therefore if x § Frand if f € M(X, 9B), then {x} = N Z(N,)
C X — F, C Z(f) implies f € N,. That is, a() € N,, so that x € Fs. Hence
X = F1\JU Fs. We have then that F; is both closed and open, and therefore
F, = M Z(I) is a continuous zero set. Conversely, assume (2). Then since X
is a P-space, F = M Z(I) is closed and open. Since B is an open base, if
x € F, then there is an f € M (X, 8) such that f(x) # 0and X — F C Z(f);
that is, f € a(I) and f ¢ N,. Hence I C N, implies a(I) Z N,. Thus (1) and
(2) are equivalent.

We now easily prove the “only if”’” portion of the lemma. For suppose that
M(X,8) = C(X, B) and that I C M (X, B) satisfies (1). Then F = N Z(I)
is closed and open so that the characteristic function f of Fis in M (X, 8). It
is evident then that 7 = a(l — f).

Conversely, let ¢ € C(X, B) and let « be a real number. Set Z = {x € X;
g(x) = a}. Then Z = Z((a — g) V 0) is a continuous zero set. Let

I=|{fc M(X,9);ZZ Z(f)}.

Then I is Z-convex and M Z(I) = Z. Therefore I satisfies (2) and hence
(1). Thus, if M (X, ®) satisfies the condition of the lemma, I = a(f) for some
f€ M(X,8B). We claim that Z = X — Z(f). Certainly X — Z(f) C Z. Sup-
pose then that x € Z(f). Since f € M(X, B) € C(X, 8B), Z(f) is a continuous
zero set, and therefore, since X is a P-space, Z(f) is open. Now B is an open
base, so there is an # € M (X, B) such that k(x) # 0 and X — Z(f) C Z(h).
Then 2 € T and Z = N Z(I) € Z(k). Hence x § Z, and we have the desired
reverse inclusion X — Z(f) D Z. Now Z(f) is measurable since f € M (X, B),
and therefore its complement Z is measurable. Consequently, since a was
arbitrary, we conclude that g is measurable B and hence that ¢ € M (X, 8).
Thus M (X, B) = C(X, B) and the lemma is proved.

2. Vector lattices of functions. In this section we characterize M (X, B)
and C(X, ¥) abstractly as vector lattices where (X, 8) is a total measurable
space and (X, T) is a P-space.

Let 4 be a vector lattice. For f, g € 4 we write f L gin case |f]| Alg| = 0. A
countable set {f,} of elements of 4 is a gt-set in case f, 20 (n=1,2..))
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and for each n # m, f, L f,.. We say that 4 is ol-complete in case every
ot-set {f,} in 4 has a least upper bound, V,f,, in 4.3

LEMMA 2.1. Let A be a vector sublattice of F(X) which separates points of X
and conlains the constant function 1. Then A = M (X, B) for some point separat-
ing a-algebra B of subsets of X if and only if A is a*-complete and a-complete.

Proof. The necessity of these conditions follows readily from the fact that
if 4 = M(X, 9B), then the desired countable spurema are simply the “point-
wise”’ suprema.

Conversely, let 4 satisfy the stated conditions. If {f,} € A4 withf = V,f,€4,
then we claim that f(x) = V,[f.(x)] for each x € X. For suppose, on the
contrary, that there is an x € X with f(x) > V,[f.(x)]. Without loss of
generality, we may assume that, for all z, 0 < f, < f,s1 < 1 and f,(x) = 0,

and that f(x) = 1. Now define sequences {g,}, {£,}, and {e,} in 4 by

g1=2f1 A1l and g, =2(fuV gu—1) N1 for n > 1;

by = (2¢0 — gur1) ™5
and
ey = hy, es = 2hs, and e, = n(h, — h,_s) for n > 2.
Also, for each n, set
V, =1y € X;g@) =1}

Then one easily shows that, for each #, 0 < &, < h,11

h(X — Y,y1) = 0. From these it follows that 0
e, (Y, — Y,-1) = n, and

<1, h,(Y,) =1, and
Se, =n, el(x) =0,

X — Z(en) g Yn+1 - Yn—?»

where V_; = ¥V, = ¢. This implies that if [m — n| > 2, then e, L e,; hence
each of the sets {es,}, {es,_1}, and {es,_2} is a ot-set in 4. Therefore, since .1
is ot-complete,
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is in 4. Now if f,(y) > 0, then 2,(y) = 1 for some k; therefore, since
g (y) 2 2. A1 =1,
we have y € Y,y That is, if
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then
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30ther, possibly less descriptive, terminology for this notion includes o-full (2) and complete

(11).
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Thus we have that e =2 1 on P, and consequently, that f < ¢ on X. Hence

there is an integer & = 2 such that e(x) < & — 1. Set

k-1
e = ( \Y kei>Ve.
i=1

Thene' (y) = kforally € Pandeé' (x) < e(x) < k. Therefore (¢/ — & + 1)t=1
on P and, as a result, f £ (¢/ — &k + 1)*. This is a contradiction since
(¢ — &k + 1)*(x) = 0. We conclude then that f(x) = 0, and therefore count-
able suprema in 4, when defined, are defined pointwise.

For each f € 4, set ¢, = V,, (|nf] A 1); then, by the result of the preceding
paragraph, e; is the characteristic function of X — Z(f). Thus 4 contains
e;and 1 — ¢, the characteristic functions of X — Z(f) and Z(J), respectively.
Now let B = {Z(f);f € A}. Then ¥ is an algebra of subsets of X; for
Z(fHH)\ v Z(g = Z(f| Ng|) and X — Z(f) = Z(1 — ¢;). Since 4 is point
separating, it is clear that B also is point separating. Moreover, 8 is a o-
algebra; for, using the result of the first paragraph and the o-completeness
of 4, we have

r\n Z(fn) = nn Z<efn) = Z(\/nefn) € B.
We show next that 4 C M (X, B). Let f € 4 and let « be real. Then
v € X;f(x) 2 af = Z((a —f)F) € B,

so that f € M (X, B). On the other hand, 4 contains all measurable charac-
teristic functions, and so, since 4 is ¢-complete, 4 contains all bounded
fe M(X,9B). (Cf. (8 Theorem 20.B).) To complete the proof we need only
show that 4 contains all non-negative f € M (X, 8). Solet f =2 0in M (X, B).
For each n = 1,2,..., set

E,={x€cX;n—1Zf(x) <n}

and let f, € F(X) be defined by f, = f on E, and f, = 0 on X — E,. Then
obviously f, € M(X, B) and is bounded; hence f, € 4 for all n. But {f,} is
a ot-set, so that f = V,f, € 4. Thus the proof of the lemma is complete.
It is interesting to note that neither ot-completeness nor o-completeness
alone is adequate to insure that 4 = M (X, B). For example, if X is uncount-
able, then the set of all f € F(X) with f(X) countable is a vector sublattice
of F(X) which is gt-complete but not o-complete. Next let X be the Stone-
Cech compactification of an infinite discrete space and let 4 = C(X). Then 4
is a vector sublattice of F(X) which is s-complete but not st-complete; in
fact, there exist bounded sequences {f,} in 4 such that Z(V,f,) # M.Z(f.).
Let 4 be a vector lattice. An element e € 4 is a weak order unit in case
for all f € 4, |[f| Ale] = 0 implies f = 0. A subset I C A4 is an ideal of 4 in
case [ is a linear subspace such that f € I and |g| =< |f| implies that g € I.

THEOREM 2.2. A wvector lattice A is isomorphic to the vector lattice M (X, B) for
some total measurable space (X, B) if and only if A is ot-complete, a-complete,
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has a weak order unit, and NS = 0 where & is the set of maximal ideals of A.
In fact, when A satisfies the stated conditions, A is isomorphic to M (7, B),
where B is a point separating o-algebra of subsets of S

Proof. Since the family # of fixed maximal ideals (= maximal fixed ideals)
of M(X, B) satisfies N\ F = 0, the necessity of the conditions is obvious.

Conversely, let 4 satisfy the stated conditions. Let e € 4 be a weak order
unit for 4; we may assume that e = 0. We claim that if I = {N € f/;'
ed N}, then N7 =0. For if f€ N Z, then, for every N € 7 either
f€ Nore€c N. Thus ([f| Ae) € NS so that |f| Ae = 0. Since e is a weak
order unit, this implies f = 0. That is, N\ 7 = 0. By a familiar technique
(1) we can define an isomorphism of 4 onto a point-separating vector sub-
lattice A4* of F(-7") such that e is mapped onto the constant function 1. Appeal-
ing to Lemma 2.1 we have that 4* = M(-7, B) for some o-algebra B of
subsets of 7.

To complete the proof it will suffice to show that -¥ = .7, and for this
it will suffice to show that if (X, B) is a total measurable space, then no
maximal ideal of M (X, B) contains 1. Suppose, on the contrary, that N is
a maximal ideal of M (X, B) and that 1 € N. Then since N is proper, there
is an f = 0 with f ¢ N. Since V' is maximal and since f2 > fis in M (X, 9),
there is a real number « such that f> — af € N. Let 8 = ¥(a + 1)% Since
1 € N, it follows that 8, and hence f? — of 4+ B, belongs to N. But

froof+B=[—2@+DP+f2]

contrary to f ¢ N. Thus the assumption 1 € N is untenable and the proof is
complete.

Let 4 be a vector lattice and let I € A. We set
It ={fc A;f L g forall g€ I}.

Then clearly, I C I+, If -/ is a family of ideals of 4, then an ideal I of A
is -Ycomplemented in case I = I*+, and for each N € .7 either I Z N or
I-Z N.

THEOREM 2.3. Let A be a vector lattice and let -/ be the set of all maximal
ideals of A. Then A is isomorphic to the vector lattice C(X) for some completely
regular P-space X if and only if A is ot-complete, o-complete, N\ S = 0, and
for each Fcomplemented ideal I of A, I = {f}+ for some f € A.

Proof. To prove the necessity we may assume that X is a Q-space (9); for
if X is a P-space, then so is vX, and, of course, C(X) and C(vX) are iso-
morphic. With this assumption the maximal ideals of C(X) coincide with the
maximal fixed subsets of C(X). Moreover, if I C C(X), then I+ coincides
with the set a (/) defined in § 1. These observations combine with Lemma 1.1
and Theorem 2.2 to establish the necessity of the conditions in the present
theorem.
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Conversely, let 4 satisfy the stated conditions. Since the zero ideal of 4
is clearly Scomplemented, it follows that A has a weak order unit. Therefore,
by Theorem 2.2, 4 is isomorphic to M(X, B) for some total measurable
space (X, B) where, in fact, the maximal ideals -7 correspond to the maximal
fixed ideals of M (X, B). A Z-convex set I* of M (X, B) is then the image of
some [ = N {N ¢ %I C N} in 4, and therefore is an ideal of M (X, B).
Since we clearly have a(I*) = (I*)%, it follows from Lemma 1.1 that
M(X, 8) = C(X, 8B), and the proof is complete.

3. f-rings of functions. In this section we characterize M (X, B) and
C(X,3), (X, B) and (X, T) as before, as f-rings. Although these characteriza-
tions still require s-completeness, we are able to dispense with the full force
of the ot-completeness requirement. In its place we use ring regularity and a
condition of countbable character on certain ideals. These characterizations
are slightly sharpened versions of those given in (4 and 5).

Recall that an f-ring (3) is a lattice-ordered ring 4 with the property that
for all f,g,h € A, f Ng =0 and & = 0 together imply 4f ANg = fh Ng = 0.
Clearly M (X, B) and C(X, ) are f-rings.

A ring A is regular (12) in case for each f € A4, there is an f' € 4 such
that ff’f = f. It is known (7) that a completely regular space X is a P-space
if and only if C(X), as a ring, is regular. Concerning regular f-rings we prove
the following result which may be of independent interest.

LEMMA 3.1. Let A be a regular f-ring. Then
(1) Forall f,g € A, |fl Nlg| = 0 if and only if fg = 0.
(2) If 4 has a weak order unit, A has an identity.

Proof. Since 4 has no non-zero nilpotent elements, the /-radical of 4 is
zero (3). Therefore (1) follows from (3, Corollary 1, p. 57) and (3, Corollary
2, p. 63). Next let ¢ = 0 be a weak order unit for 4 and let ee'e = e. Then,
by (1), f A ee’ = 0 implies fee'e = fe = 0 which implies |f| A e = 0 and thus
f = 0. That is, the idempotent ¢’ = e¢’ is also a weak order unit. Let f € 4;
then (f¢’ — f)e’ = 0 implies |fe’’ — f| A ¢’ = 0. Therefore, since ¢’ is a weak
order unit, fe’” = f. Similarly, ¢'’f = f, which establishes (2).

An ideal I of a ring 4 is o-closed in case for every countable set {f,} C I
there is an f € A with ff, = f.f = f, for all n.

THEOREM 3.2. Let A be an f-ring and let 7 be the set of o-closed maximal
ring ideals of A. Then A is isomorphic to the f-ring M (X, B) for some total
measurable space (X, B) if and only if A is regular, o-complete, has a weak order
unit, and N\ S = 0. Moreover, if A satisfies these conditions, the space (X, B)
and the isomorphism of A onto M(X, B) may be so chosen that the set S is
mapped one-ome onto the maximal fixed subsets of M (X, B).

Proof. The necessity of the conditions is easily proved; we omit the details.
Conversely, let 4 satisfy the stated conditions. Then, by Lemma 3.1, 4 has
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a ring identity e. Moreover, since 4 is o-complete, it is Archimedean (2, p.
229), and therefore 4 is commutative (3, Theorem 13). Since the regular
o-complete subring of 4 generated by e is isomorphic to the ordered field R
of real numbers, we may regard A as a regular f-algebra over R (that is, 4
is a regular F-ring in the sense of (4)). Now let N € ¢/ and {f,} € X such
that V,f, € 4. Since N is o-closed, there is an f € 4 with ff, = f, for all n.
By the regularity of 4 we may assume that f is idempotent. Then (11,
Theorem 25.1), V.fy = Vuffu = f(Vafa) € N. Therefore A satisfies the
conditions required in Brainerd’s characterization (4, p. 682). Thus there
exist a total measurable space (X, B) and an isomorphism of 4 onto M (X, B)
with the desired properties.

Let 4 be a ring. For I C A4, set a(l) = {f € 4;fg =0 for all g € I}. In
general a(/) is a left ideal of 4 ;if A4 is commutative or if 4 is a regular f-ring,
then a(7) is a two-sided ideal.* A left ideal I of 4 is a-principal in case I = a(f)
for some f € 4.

If ./ is a family of ideals of a ring 4, then an ideal I of A is Fcomplemented
in case I = a(a(I)) and for each N € & either I Z N or a(I) Z N.

THEOREM 3.3. Let A be an f-ring and let S be the set of o-closed maximal
ring ideals of A. Then A is isomorphic to the f-ring C(X) for some P-space X
if and only if A is regular, o-complete, M S =0, and every Fcomplemented
ideal of A is a-principal.

Proof. To prove the necessity, we may assume that X is a Q-space. Then
an application of Theorem 3.2 and Lemma 1.1 completes this portion of the
proof.

Conversely, since the zero ideal of 4 is »%)complemented, it is a-principal.
But from {0} = a(f) and Lemma 3.1 we conclude that |f| is a weak order
unit for A. Therefore, by Theorem 3.2 and Lemma 1.1, we have that - is
isomorphic to M (X, 8B) and that M(X, B) = C(X, B) where (X, B) is a
P-space.

4. The algebra C(X). With no assumptions concerning order properties
it seems to be difficult to obtain a reasonably simple characterization of the
algebras M (X, ¥). It is possible, however, to characterize the algebra C(X),
X a P-space, and it is the object of this section to present such a characteriza-
tion.

Let 4 be a ring and let %" be a family of ideals of 4. A set {f.} € .1 is a
discrete Fcover in case a # B implies fofs = 0 and the set {f,} is contained
in no member of ¥/ We say that 4 is Fregular in case for each discrete
Feover {f,} in A there is an f € A such that f,ffx = fa for all c.

The condition of -%regularity provides the means by which we avoid order
assumptions in the characterizations of C(X). In general, however, it is not

4If A is a subring of F(X), then a(I) as defined here coincides with a(I) as defined in §1.
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suitable for a characterization of M (X, 8). For example, let X be uncountable
and let B be the algebra of countable sets and their complements. If 7 is
the set of maximal fixed ideals of the algebra M (X, 9B), then M (X, ¥B) is not
Hregular. In fact, there is no algebra M (X, B) C 4 C F(X) other than
F(X) itself which is Zregular relative to its set <7’ of maximal fixed ideals.

THEOREM 4.1. Let A be an algebra and let 7 be the family of a-closed real
ideals® of A. Then A is isomorphic to the algebra C(X) for some P-space X if and
only if A is Sregular, NS = 0, and each Fcomplemented ideal of A is
a-principal.

Proof. Let X be a P-space. Again we may assume that X is also a Q-space;
hence every real ideal of C(X) is fixed. As before one easily proves that each
such ideal is o-closed. Thus, clearly, N\ < = 0. If {f,} € C(X) is a discrete
Hecover, then the family {X — Z(f.)} is a disjoint open cover of X; hence
f = Zafeisin C(X). Since C(X) is regular, there is an f' ¢ C(X) with f'f? = f.
Now an obvious pointwise argument shows that f’f,2 = f, for each «; therefore
C(X) is Fregular. That C(X) satisfies the final condition follows from
Lemma 1.1.

Conversely, let 4 satisfy the stated conditions. Then, as a subdirect sum
of fields, 4 is commutative. Since the zero ideal of 4 is f'/-)complemented,
there is an f € A such that {0} = a(f). If f € N for some N € % then, since
N is g-closed, thereisa g € N withfg = f.Leth € 4;then f(h — gh) = 0. But
{0} = a(f),so we have h = gh € N;thatis, 4 = N. This contradiction shows
that {f} is a discrete “cover. Then since 4 is “regular, f'f> = f for some
f' € A. Thus {0} = a(e) for some idempotent e (= ff) in 4; in fact, e is easily
seen to be an identity for 4. Therefore (cf. (1)) we may assume that 4 is
(isomorphic to) a subalgebra of C(X) for some completely regular space X
and that (i) the maximal fixed subsets of 4 are the members of -7 and (ii) for
each x € X and each neighbourhood U of x, there is an f € 4 such that
fx) =0 and f(y) = 1 for all y ¢ U. It therefore remains to prove that X is
a P-space and that 4 = C(X). So let U = M, U, be a Gs-set in X, let x € U,
and let

Ny =1{f€4d;flx) =0} € &

By (ii), there is, for each #, an f, € N, such that f,(y) = 1 for all y ¢ U,.
Since N, is o-closed, there is an f € N, such that ff, = f, for all n. It is clear
that f(x) = 0 and that f(y) = 1 for all y ¢ U. Consequently U is a neigh-
bourhood of x. This establishes that X is a P-space.

Now let Z C X be a continuous zero set; that is, Z is closed and open
in X. For each x € X — Z, there is an f € N, such that f(Z) = 1. Therefore
g=1—f€ Aandg(x) = land g(Z) = 0. We have from thisthat I = {f € 4;
Z C Z(f)} is Z-convex and M Z(I) = Z. Then with essentially the same argu-

5An ideal N of 4 is real if A/N is isomorphic to the real field.
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ment as that used in the proof of Lemma 1.1, we conclude that I is -“com-
plemented. Therefore I = a(f) for some f € A4; thus, using the fact that X
is a P-space, it follows that Z = Z(f) for some f € 4. Since X — Z is also a
continuous zero set, X — Z = Z(g) for some g € 4. This clearly implies that
{f, g} is a discrete £cover; hence f'g? = g for some ' € 4. Thus (f'g)(Z) = 1
and (f'g) (X — Z) = 0. We have proved then that 4 contains the characteristic
function of each continuous zero set of X.

To complete the proof it will suffice to prove that 4 contains every strictly
positive function in C(X), forif f € C(X), thenf = [(fVO0) +1] — [-(fA0)
+ 1]. So let f € C(X) be strictly positive and for each positive real number
a, set Z, = {x € X;f(x) = a}. Then each Z, is a continuous zero set; let
e« € 4 be the characteristic function of Z,. Since {Z,} is a disjoint cover of
X, it follows that {ae,) is a discrete -#cover in 4. Therefore there is an
f" € A such that (ae.)?’ = ae, for each a. Then for each x € Z,,

fx) = ot = [flx)]"
Since {Z,} covers X, it follows that {f'} is a discrete -“cover in 1. Thus

there is an " € 4 with (f)¥"" = f'. Clearly then f" = (f')"! = fand f = 4
as desired.
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