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Let / = f{x1, x2, • • •, xn) be an indefinite «-ary quadratic form of
signature s and let m+(f), m_(J) denote the infimum of the non-negative
values taken by / and —/ respectively for integral («lf xlt • • •, xn) ^
(0, 0, • • •, 0). Furthermore let / satisfy the condition m+{f) ^ 0 and let

for some integer k. Then Segre" [3] has shown that, for n = 2, / must have
determinant det(/) satisfying

|det(/) | ^ (»+(/))«(

with equality if and only if / is equivalent under an integral unimodular
transformation (denoted ~ ) to a multiple of the form ft(x, y) =
aP—kxy—ky2, while Oppenheim [2] has shown that, for n ^ 3,

|det(/)l

( + ( )
is of the order of k2n~2.

In this paper the results of Tornheim [4] are used to extend Segrd's result
above, and this extension is used to find a bound, of the order of A2"~2, such
that there are only finitely many non-equivalent indefinite ternary quad-
ratic forms / which attain the value tn+{f) = 1 and which have d(f) =
|det(/)| less than this bound. The following are the theorems proved.

THEOREM 1. For integral k ^ 2 there exists a positive constant c(k) such
that whenever an indefinite binary quadratic form q = q(x, y) satisfies

for some c with 0 :£ c < c(k) it may be concluded that either

(i) q~ m+(q)(x2—kxy—ky2) and A(q) = k, or
(ii) d(q) ^ [m+te)]*(l—c)«(
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THEOREM 2. Let k 5; 2 be integral and define

t(S) =

dx= (K2+12K)/64:,

d2 = max(min{2(S), 9(S+\/5)2/64}),

where the maximum is taken over all positive integers S, and let S* denote the
S at which the maximum is attained. For positive integers r and s let
^(/, s; y, z) denote the indefinite binary quadratic form

s(r+2) r+2
yz z2y yz

rs+r+s rs+r+s
and for integral I, 0 5̂  I < s, let f(r, s, I; x, y, z) denote the indefinite ternary
quadratic form

(* + j y + j *) - \{k2 + ±k)q(r, s; y, z).

Let f = f{x, y, z) be an indefinite ternary quadratic form of signature 1
with d(f) = d such that

(i) *n+(f) = 1 and this value is attained by f, and
(ii) m_(/) ^ k.

Then either
(a) d ^ min (dlt dz), or
(b) m_(f) = k and f ~ f(r, s, I; x, y, z) for some r and s such that

r ^ s ^ S*.
Theorem 1 may be used to obtain information about indefinite binary

quadratic forms q that have asymmetry A (q) slightly below an integer k.
It is clear from the statement of the theorem that if q is an indefinite bin-
ary quadratic form with

k(l-c{k)) <A(q) <k

then setting c = I—A(q)\k yields that

d(q) ^ [w_(?)]
2(^+6A+l)/4yfe2.

In addition, the following corollary to theorem 1 should be noted.

COROLLARY TO THEOREM 1. / / k 22 2 is integral and if q = q(x, y) is
an indefinite binary quadratic form with m+(q) = 1 and m_(q) ^tk-\-l where
I > 0, then

d{q) ^ i (

It should be noted that the condition that / should attain the value
m+(f) = 1 can be removed to make theorem 2 apply to all forms / with
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[3] Minimum determinant of asymmetrie quadratic forms 179

m+(f) = 1 and m_(f) 2> k. This can be done modifying the argument given
in this paper to allow for the fact that m+(f) may not be attained.

It should also be noticed that not all forms f(r, s, I; x, y, z) have
m+(f) = 1 and tn_(f) = k. In fact it appears to be the exception rather
than the rule that a form shall satisfy this condition. Calculations performed
on the C.S.I.R.O.'s C.D.C. "3200" computer in Adelaide have shown that
for k = 7, 10, 11 and 12 not one of the forms has m+(f) = 1, m_(f) = k
and d(f) < m i n ^ , d2), while for k = 2, 3, 4, 5, 6, 8 and 9 the forms listed
in table 1 were found to be the only ones satisfying these constraints (note:
for simplicity in the table the transformation x -> x— [k/2]y has been
performed, where [k/2] denotes the integer part of k/2).

For comparison with the determinants of the forms listed in table 1,
!, d2) is listed in table 2.

TABLE 1

form r, s, I, d(f)

2 (x+fry-Ztf-yz-lzi) 4, 4, 2, 4£
2 (x+^)2_3(ya-^-^) 2,2, 1, 6|

2 *2-3(y2-fyz-iz2) 1,4,0, 7
3 (*+&/)2-¥(2/2-fF-f22) 2,4,0, 16|
4 x2—8(y2-yz-%z2) 8, 8, 0, 24

5 (x+b/+¥)2-^-(y2-h/z-Tsz2) 3. 1 8. 9> 5 4

6 (a;+^)2-15(t/2-^-^2) 20, 20, 10,

6 (x+$z)*~15(y*-yz-$z*) 6, 6, 3, 93f

6 X*-15(^-1^-^) 3, 18,0, 96

8 xz-24:(y2-yz-%z2) 9, 9, 0, 208
9 (z+^+i^-H^-Tf^-inrZ2) 9, 42, 21, 270

k

minK

2

7.5..

3

17.5

4

33.7..

TABLE

5

59.3 ..

2

6

96.7..

7

149.3..

8

220.5..

9

314.1..

We shall now prove theorems 1 and 2 and the corollary to theorem 1.

PROOF OF THE COROLLARY TO THEOREM 1. Taking c — 0 in theorem
1 we find that d = d(q) ^ (A2+6/fe+l)/4. Suppose that d < %(k2+6k+l)+L
Thena.sm+(q) — 1 we may write for arbitrarily small d S: 0
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1

1-d

and so by choosing x such that

we obtain a value of q which for sufficiently small d lies in the open interval
(—k—I, 1). This contradicts either tn+ = 1 or m_ ^ k+l.

PROOF OF THEOREM 1. The proof of this theorem depends upon the
work of Tornheim [4]. We let

Qi*. y) = ?(*. y)l2VI^),
so that Q is an indefinite binary quadratic form with discriminant A* = 1.
We define

M = m+(q),

N = m_(q),

A = max (1/M, k/N),

Ax =

Aa=

c*(k) = 1-A1/Ai > 0.

Then Tornheim has shown that either

(a) A = Ax and N = kM, in which case Q <^>M{xi—kxy—ky%), or
(b) A ^ Vk*+6k+l, or
(c) M ^ 1/^! and N ^ A/42.

Consider firstly the third alternative. This implies that

N/kM ^
and so

Hence if we set c(k) = c*(k) we have, for 0 ^ c < c{k), that

< (l-cjw+fe),

which contradicts the given. It remains to show that, with c(k) = c*(k),
the conclusions (i) and (ii) of the theorem follow from the alternatives (a)
and (b) above. Since (a) clearly implies (i) we need only show that (b) im-
plies (ii).

From (b) we have that

max (1/M, k/N) ^ Vk2+6k+l,
and so
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[5] Minimum determinant of asymmetrie quadratic forms 181

^ Vk2+6k+l min(m+{q), m_

Using the given it follows that

d(q) ^ i [ «
as required.

In order to prove theorem 2 we need the following lemma on indefinite
binary quadratic forms.

LEMMA 1. Let q(x, y) be an indefinite binary quadratic form with A = 1
and let [g4] be the chain of positive integers associated with the chain of
reduced forms equivalent to q. 1

Suppose that the elements gu of the chain are bounded above by the integer
S, and let

C(S) =

Let M,N denote m+(q), m_(q) respectively. Let k 5? 2 be integral and let
cx and c2 be small positive numbers with ct < C(S) such that for each negative
value —n taken by q either

n]N ^
or

Then either

(i) 1/2V ^ 2, or
(ii) 1/JV ^ Vl+4/S[(Aa+6£+l)/(A2+4£)-c2], or
(iii) There exist integers r and s, both at most S, such that for all integers i,

1 = s-

PROOF. If gii+1 ^ 2 for any i, then q takes the value — n where

Hence Ijn ^ 2, and as n ^ N it follows that 1/N ^ 2.
We now suppose that gi{+1 = 1 for all i, and in addition that the chain

is not of the form given in the third alternative. Clearly the proof of the
lemma will be complete when we show that alternative (ii) must hold.

As the chain is not of the form in alternative (iii) there must exist an
t for which gu ^ g2i+l. Let

1 It is assumed that the reader is familiar with the theory of reduced binary quadratic
forms and the continued fractions associated with these forms. I use the notation of Dickson
[1] with the exception that A1 and not D* is used to denote the discriminant.
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182 R. T. Worley [6]

s = max {g2i,g2i+i),
t = min(g2i,g2i+i), and

Let
l/« = ( l , r , 1 , « , 1 , . . •) + ( O . s . l , •••)

= ( l . r , l,A) + (O,/a)
and

= ( l . r . l . s , 1, •••) + (<>,<. 1, •••)

where the • • • indicates the continuation of the chain in the expected
manner, so that — n and —nt are values taken by q. Consider the function

/(*) = {0,r.x)-x

— xl(l+rx)—x.

Then the derivative f'(x) of f(x) is given by

/'(*) = 1 / ( 1 + ^ ) ^ - 1 ,

and so /'(*) < —f for r ^ 1 and x > 1. Now by the mean value theorem
of calculus, as f(x) is continuous and differentiable for r ^ 1 and x > 1, we
have for r ^ 1 and 1 < x2 < a;x that

for some a with x2 < a < xx. Substituting xx = (1, A) and x2 = (1, /*) and
simplifying, noting that /'(a) < —f, gives that

(1) \\n-\\*i<-

Now

and Â < (5+1)2 as A and /* are each at most S-\-1. Hence

l/A-i/ / M>

Using this in (1) yields that

l / n - 1 / % < - f

* A bar over portion of a continued fraction indicates that this portion is repeated
indefinitely.
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Now as 1/iV ̂  1/% it follows that

n/N—1 > 3w/8(S+l)2,

from which, as l/« ^ (1, T) + (0, T) = -y/5, we can deduce that

njN > 1+3-^5/40(5+1)2 = 1+C(S) > 1 + q .

Hence, using the given conditions, we must have

Now

and so we can conclude that

which is alternative (ii) as required.

PROOF OF THEOREM 2. Let / be an indefinite ternary quadratic form of
signature 1 such that tn+(f) = 1, m_(f)^k, and let / attain the value 1.
By passing to a suitable equivalent form we may assume / to be given in
the form

(2) / = (x+ly+fiz)*+q(y, z),

where q is an indefinite binary quadratic form. Let e denote tn_(q), so that
for arbitrarily small p S; 0 we may write

—e d(\
) ~ qP{y, *) = ; —i—p

where dp depends on p and satisfies l^l ^ \. Then for arbitrarily small
p 5:0 there exists a form fp such that

where Xp and /xp depend on p .
Consider the section

p

of fp. Clearly
m+(t) = 1, m_{t) ^ m_{f) ^ A.

Hence we may apply theorem 1, with <5 = 0, to t to conclude that either

(i) t ~ x2—kxy—ky2, or

(ii) d(t) ̂  (
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Now one of these possibilities must be true for arbitrarily small p.
If the second possibility holds for arbitrarily small p, we have that

for arb. small p and so e ^K/4. Now q cannot take any value in the open
interval (0, -f), else by choosing x suitably we could obtain a value of /
contradicting tn+(f) = 1. Hence as tn_(q) = e, q can take no values in the
open interval (—e, f) . Then by the result of Segre"

d(q) 2>

i.e. d^

We now consider the case that the first possibility above, namely
t <~~> x2—kxy—ky2, occurs for arbitrarily small p. This implies that

d(t) = el(l-P) =

for arb. small p. Hence our "arb. small p" must be p = 0, and so

t = £
As this is equivalent to xi—kxy—kyi, a form with integral coefficients,
we must have AQ = k/2 (mod 1).

Suppose that q0 takes a value in the open interval

say at the point (y, z) = (Y, Z). Then choosing x such that (X
lies in the closed interval

would give a value of /0 lying in the open interval (—k, 1), which, as / ~ /„,
contradicts either tn+(f) = 1 or m_(f) 5: k. Hence q0 can take no values in
the interval I.

Suppose for the moment that the integers g2i of the chain [g,] as-
sociated with q0 (as in lemma 1) are bounded above by S*. Then by ap-
plying lemma 1 to the form

taking cx = %C(S*) and c2 arbitrarily small, we may conclude that one of
the following holds:

(a) 2 V ^ j / m _ ( ? 0 ) = 2Vd/e ^ 2,
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(c) There exist integers r and s, both at most S*, such that for all i,

!. Zu = r> Su+2 = s-

If however, g2( > S* for at least one *, then either (a) above holds if
gf ^ 2 for at least one odd /, or g, = 1 for all odd j and Qo takes a value tnt

where

This latter implies that

and so

Thus if the possibility (c) above does not hold, either
(i) 2y/d ^ 2e, or
(ii)

for arbitrarily small c2, or
(iii) fyd^m+(q0)(S
From these we conclude that either
(i') d^e*, or
(ii') d ^ ^2(l+4/S*)/64, or
(iii') d ^ 9(S*+-v/5)a/64.

We shall now show that in each of these cases d^d2. Clearly it is
only necessary to show that e2 ^ d%. For k = 2, numerical evaluation shows
that S* = 6 and that

A — Q -̂ . £ • 2 8 9 — /7« — w -> 3 64 — a 2 -

As (̂5) (and hence 5*) is increasing with k it follows that S* ^ 6 for
k^.2, and so

Now for k ^ 3 it is a simple matter to verify that

and hence e2 > d% as required.
Thus, summarising, we have proved so far that if / satisfies the condi-

tions of theorem 2 then either d 2: min (dlt d2) or / is equivalent to the
form

/o =
where
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Ao = \k (mod 1),

m_(q0) = e = (&2+4£)/4,

% = -e{y+doz)*+dz*le,

and the chain of integers [g,] associated with q0 has the property that
there exist integers r and s, both at most 5*, such that g2t+1 = 1, git = r,
and gii+2 = s for all integers i. Clearly, to complete the proof of theorem 2,
we need only show that /„, with the above properties, must be equivalent
to f(r, s, 1; x, y, z) for some I < s, and that m_(f) = k.

If q0 has the above properties then

, > f „ s(H-2) r + 2
[ rs+r+s, / y z p

rs+r+s rs+r+s/ ( + ) s+2 ,
— e {y2 yz z-

\ rs+r+s rs+r+s

Hence by passing to an equivalent form if necessary we may take /0 to be
of the form

(x+Xy+fiz)2—eq(r, s; y, z)

where we may assume without loss of generality that r 5S s ^ S*. The
congruence

X = \k (mod 1)

may be deduced in the same way that AQ = \k was deduced. Hence / is
equivalent to the form

f* = {x+\ky+pz)*-\{k*+±k)q{r, s; y, z)

which takes the value — k at (x, y, z) = (0, 1, 0). Thus as m_(f) ^ k is
given we must have tn_(J) = k. It now remains, to complete the proof of
the theorem, to show that fi = l/s (mod 1).

We have
/*(*, 1, - s ) =

and so by choosing x such that

\{k+\) ^ la+^-^i ^

we obtain a value of /* contradicting either m+(f) = 1 or >»_(/) 3: & unless

£6— /w = \k (mod 1).

That is, /i == //s for some Z with 0 ^ / < s. Hence

/ ~ / * ~ (a;+i%+Z^/s)1!—i(*«+4ft)?(r, s; y, z)

as required. This completes the proof of theorem 2.
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Further information about the relationship between r, s and / for those
forms f(r, s, I; x, y, z) which do in fact have m_(f) = k and tn+(f) = 1 may
be obtained by applying various automorphs of q(r, s; y, z) and by applying
various x—y transformations. The following theorem gives some of these
relationships.

THEOREM 3. Let k ^ 2 be integral and let dx,d%, S* and f =

f(r, s, I; x, y, z) be defined as in theorem 2. Let

B = s(r+2)l(rs+r+s),
e = (&2+4A)/4,

E = fl(l+l*)+2J/s, and
F = (//s)«

Then if d(f) < min (d1, d2) and if m+(f) = 1 and m_(f) = k the following
conditions must be satisfied:

(i) r{k/2+lls) SB 0 (mod 1),
(ii) The fraction seB, when reduced to its lowest form, has denominator

at most S*,
(iii) There exist positive integers r' and s', both at most S*, and an in-

teger b such that
E = 2b±B'

and
-F = -b*±bB'+B'ls',

where B' denotes the fraction

and (iv) For this r' and s',

PROOF, (i) Considering the section

f(x,r+l,r) = (as

in the same way that the section f*(x, 1, — s) was considered in the proof
of theorem 2 yields that

ik(r+l)+rl/s = \k (mod 1).

This clearly implies that

r(kj2+lls) = 0 (mod 1).
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(ii) Applying the transformation

(x, y, z) -> (X, X-Y, Z)

to / yields the equivalent form

(3) {X+$kY+DZ)*-e{Y*+EYZ+FZ2),

where

(4) 2D = l{k+2)/s+eB.

Repeating the argument of theorem 2 we find that

Y*+EYZ+FZ* ~ q(r', s'; y, z)

for some r' and s' satisfying r' %s! ^ S*. We now proceed to find out
further information about the transformations yielding this equivalence.

Let A be an integer such that

0 ^ \E+2h\ ^ 1,

and consider the transformation

Y-^y+hz
( 5 ) Z->z.

This sends the form Y2+EYZ+FZ2 into the form

By changing the sign of jy if necessary we may assume £x to be non-negative.
Let d denote d(q) = d(qj). Then as s ^ r we have B S: 1, and so

Hence as E\ ^ 1 we find that Fx > 0. We shall now show that q^, z) is
either q(r', s'; y, z) or q{s', r'; y, z).

Suppose that

(6) F^

Then d = E\li+F1 ^ \/d, and so d ̂  1. However this leads to a contradic-
tion as follows:

(a) If s ^ 2, then

_ 3r2s2—4rs+4rs2—8s+4sr2—8r
r(rs-{-r-{-s)2

which contradicts d ̂  1.
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(b) If r = s = 1, the only other possibility, d = £ and E, F and thus
i7! are integral. However £ = d ^ Fx ^ y'f, and this is clearly insoluble
in integers Ft.

From the above considerations it follows that Ft < -\/d, and so, from
a theorem of Lagrange, — Fx occurs as a coefficient in one of the reduced
forms equivalent to qt (and hence q(r', s';y, z)). From the nature of the
chain of integers [g,] associated with qx it follows that either

F1 =

or

Upon calculating Ex from d in terms of r' and s', it immediately becomes
clear that qx is either q(r', s'; y, z) or q(s', r'; y, z). By dropping the assump-
tion that r' ^ s' we may assume that

?i = ilr'. s'; y, z).

Applying the transformation (5) to the form (3) yields the equivalent form

{X+&g+{D+lkh)*)*-eq(r'. s'; $, z).

Considering this form as in theorem 2 yields that

D+^kh = I'Is' (mod 1).
Hence

2D = l{k+2)ls+eB s 2/'/s' (mod 1)
and so

2sD = eBs = 2sl'ls' (mod 1).

Thus the denominator of the reduced form of the fraction seB divides s'
and hence is at most S*.

(iii) As qx = q(r', s'; y, z) it follows upon sorting out the relations
between h, E, F, Ex and Fx that

B' = E1=±(E+2h)
and

B'ls' = FX= -{h*+Eh+F).

The required integer b is then given by b — —A.
(iv) Equating the determinants of q and qx yields that

B^li+Bjs = (B')2/4:+B'ls'.

It should be noticed that condition (iv) of theorem 3 is highly restrictive.
Calculations performed on the C.S.I.R.O.'s C.D.C. "3200" computer in
Adelaide have shown that for S* 5S 200, the couple (r', s') must be either
(r, s) or (s, r).
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