
X

The N−1
c expansion

The N−1
c expansion is an attempt to create a perturbative framework for QCD

where none exists otherwise. One extrapolates from the physical value for the
number of colors, Nc = 3, to the limit Nc → ∞ while scaling the QCD cou-
pling constant so that g2

3Nc is kept fixed [’tH 74]. The amplitudes in the theory are
then analyzed in powers of N−1

c . The hope is that the Nc → ∞ world bears suffi-
cient resemblance to the real world to yield significant dynamical insights. There
is no magical process which makes the Nc → ∞ theory analytically trivial; non-
linearities of the nonabelian gauge interactions are present, and the theory is still
not solvable. However any consistent approximation scheme for QCD is welcome,
and the large Nc expansion is especially useful for organizing one’s thoughts in the
analysis of hadronic processes.

X–1 The nature of the large Nc limit

In passing from SU(3) to SU(Nc), the quark and gluon representations, originally
3 and 8, become Nc and N2

c − 1 respectively. The analysis of Feynman graphs at
large Nc is simplified by modifying the notation used to describe gluons. As usual,
quarks carry a color label j , with j = 1, 2, . . . , Nc. Gluons can be described by
two such labels, i.e.

A a
μ → A k

μj (A
j

μj = 0), (1.1)

where a = 1, . . . , N2
c − 1 and j, k = 1, . . . , Nc. In doing so, no approximation

is being made. The new notation is simply an embodiment of the group product
Nc × Nc → (N2

c − 1)⊕ 1. The quark–gluon coupling is then written

g3ψ̄
jγ μψkA

k
μj , (1.2)
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(a) (b) (c)

(d) (e)

Fig. X–1 Double-line notation: (a) quark and (b) gluon propagators, (c) quark–
gluon, (d) three-gluon, and (e) four-gluon vertices.

and the gluon propagator is∫
d4x eiq·x〈0 ∣∣T (A i

μj (x)A
k
νl(0)

)∣∣ 0〉 = (δil δkj −N−1
c δij δ

k
l

)
iDμν(q). (1.3)

The term proportional to N−1
c must be present to ensure that the color singlet com-

bination vanishes, A j

μj = 0. However, as long as we avoid the color-singlet chan-
nel, this term will be suppressed in the large Nc limit and may be dropped when
working to leading order.

Using this new notation, the Feynman diagrams for propagators and vertices are
displayed in Fig. X–1. A solid line is drawn for each color index, and each gluon
is treated as if it were a quark–antiquark pair (as far as color is concerned). In this
double-line notation, certain rules which are obeyed by amplitudes to leading order
in 1/Nc emerge in an obvious manner. Although general topological arguments
exist, we shall review these rules by examining the behavior of specific graphs. The
power of Feynman diagrams to build intuition is rather compelling in this case.

We consider first the familiar quark and gluon propagators. The quark propaga-
tor, unadorned by higher-order corrections, is O(1) in theNc →∞ limit. Fig. X–2
depicts two radiative corrections. Fig. X–2(a), the one-gluon loop, is O(1) in pow-
ers of Nc because the suppression from the squared coupling g2

3 is compensated
for by the single closed loop, which corresponds to a sum over a free color index
and thus contributes a factor of Nc. The graph then is of order g2

3Nc, which is taken
to be constant. The graph Fig. X–2(b) with overlapping gluon loops is O(N−2

c )

because, with no free color loops, it is of order g4
3 =

(
g2

3Nc

)2
N−2
c ∼ N−2

c . The
terms planar and nonplanar are used, respectively, to describe Figs. X–2(a),(b),
because the latter cannot be drawn in the plane without at least some internal lines
crossing each other.

Four distinct contributions to the gluon propagator are exhibited in Fig. X–3.
Figs. X–3(a),(b) depict in double line notation the quark–antiquark and two-gluon

(a) (b)

Fig. X–2 Radiative corrections to the quark propagator: (a) planar, (b) nonplanar.
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(a) (b) (c) (d)

Fig. X–3 Various radiative corrections to the gluon propagator.

loop contributions. It should be obvious from the above discussion that these are
respectively O(N−1

c ) and O(1). A new diagram, involving the three-gluon cou-
pling, appears in Fig. X–3(c). With three color loops and six vertices, it is of order(
g2

3Nc

)3 = O(1). Figure X–3(d) is a nonplanar process with six vertices and one
color sum, and is thus O(N−2

c ).
The discussion of the gluon propagator indicates why we constrain g2

3Nc to be
fixed when taking the large Nc limit. The beta function of QCD is determined to
leading order by Figs. X–3(a),(b). If g2

3 were held fixed, the beta function would
become infinite in the large Nc limit, leading to the immediate onset of asymptotic
freedom. The choice g2

3Nc ∼ constant leads to a running coupling constant and is
compatible with the behavior for the realistic case of Nc = 3.

To summarize, there are several rules which can be abstracted from examples
such as these: (i) the leading-order contributions are planar diagrams containing
the minimum number of quark loops; (ii) each internal quark loop is suppressed
by a factor of N−1

c ; and (iii) nonplanar diagrams are suppressed by factors of N−2
c .

The suppressions in rules (ii), (iii) are combinatorial in origin. Quark loops and
nonplanarities each limit the number of color-bearing intermediate states, and con-
sequently cost factors of N−1

c .

X–2 Spectroscopy in the large Nc limit

In order for the large Nc limit to be relevant to the real world, it must be assumed
that confinement of color-singlet states continues to hold. In this case, we expect
the particle spectrum to continue to be divided into mesons and baryons. Let us
treat the mesons first.

One can form color-singlet meson contributions fromQQ̄ pairs. To form a color
singlet, one must sum over the quark colors. In order to produce a properly nor-
malized QQ̄ state one must therefore include a normalization factor of N−1/2

c into
each QQ̄ meson wavefunction, such that∣∣Q(α)Q̄(β)〉 color

singlet
∼ 1√

Nc

b
(α)†
i d

(β)†
i |0〉, (2.1)

where α, β are flavor labels, i = 1, . . . , Nc is the color label, and b† (d†) are
the quark (antiquark) creation operators. Meson propagators, as represented in
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M M

(a) (b)

M MXXXX

Fig. X–4 Mesons in the double line notation.

Fig. X–4(a), are then O(1) in Nc since the factors of (N−1/2
c )2 from the normaliza-

tion of the wavefunction are compensated by a factor of Nc from the quark loop.
This leads to the prediction that meson masses are of O(1) in the large Nc limit,
i.e., they remain close to their physical values. Multiquark intermediate states, as in
Fig. X–4(b), are suppressed by 1/Nc, indicating a suppression of mixing between
QQ̄ and Q2Q̄2 sectors. That is, large Nc plus confinement implies the existence of
QQ̄ mesons which contain an arbitrary amount of glue in their wavefunction, but
which do not mix with Q2Q̄2 states.

The quark content of a given hadron remains an issue of some theoretical and
phenomenological interest. Several examples are given in Sect. XIII–4 of hadron
states which are thought to be ‘nonconventional’. One such is the σ hadron, which
is the lightest resonance found in ππ scattering. Analysis has yielded insight as to
the Nc dependence of the σ mass (cf. Eq. (XIII–4.7)). We reserve further comment
on this interesting topic to Chap. XIII.

What about the decay widths of QQ̄ mesons? The decay amplitude is pictured
in Fig. X–5 (other possibilities involve the suppressed quark loops). This diagram
contains three meson wavefunctions and one quark loop and hence is of order
(N

−1/2
c )3Nc = N

−1/2
c in amplitude or N−1

c in rate. The large Nc limit thus involves
narrow resonances, i.e., �/M → 0, where � is the meson decay width and M is
the meson mass. This is reasonably similar to the real world, where most of the
observed resonances have �/M ∼ 0.1–0.2 [RPP 12].

Color-singlet gluonic states, called glueballs, may also exist. The normalization
of a glueball state can be fixed by means of the following argument. Suppose, as
will be defined in a gauge-invariant manner in Sect. XIII–4, that a neutral meson
can be created from two gluons. Then in normalizing this configuration, one must
sum over the N2

c gluon color labels. As a consequence, a normalization factor N−1
c

is associated with each glueball state. Glueball propagators also emerge as being
O(1). There is no physical distinction between two-gluon states, three-gluon states,

M1

M2

M3X

X

X

Fig. X–5 Strong interaction decay of a QQ̄ meson.
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M1

M3

M2 M1
M3

M4

(b)

M2M4

XX

X X X

X

X

X

(a)

Fig. X–6 Meson–meson scattering.

etc., because all are mixed with each other by the strong interaction. As a result,
there need not be any simple association between a specific physical state and
gluon number, and thus the concept of a ‘constituent gluon’ need not be inferred.
In glueball decays, however, one must distinguish between glueballs decaying to
other glueballs, and those decaying to QQ̄ mesons. Where kinematically allowed,
the decay of glueballs to glueballs is O(1), while that to QQ̄ states is O (1/Nc).
The lowest-lying glueball(s) will then be narrow, while those above the threshold
for decay into two glueballs will be of standard, nonsuppressed width.

Meson–meson scattering amplitudes are also restricted by large Nc counting
rules. Consider the diagrams of Fig. X–6. That of Fig. X–6(a) is of order (N−1/2

c )4

Nc ∼ N−1
c , whereas Fig. X–6(b) is O(N−2

c ) because of the extra quark loop. The
scattering amplitudes thus vanish in the large Nc limit, and the leading contribu-
tions are connected, planar diagrams.

The large Nc limit also predicts that neutral mesons (i.e., Q(α)Q̄(β) composites
with α = β) do not mix with each other. The possible mixing diagram is given
in Fig. X–7, and includes any number of gluons. However, because of the extra
quark loop, it is of order N−1

c , and thus vanishes in the infinite color limit. This
means that uū states do not mix with dd̄ or s̄s, nor do the latter two mix. The large
Nc spectrum thus displays a nonet structure with the uū and dd̄ states degenerate
(to the extent that electromagnetism and the mass difference between the u and d
quarks are neglected) and the ss̄ states somewhat heavier. This pattern is reflected
in Nature, except that the uu and dd configurations now appear as states of definite
isospin, uu ± dd. For example, let us consider the JPC = 1−−, 2++ mesons.
For the former, ρ(770) and ω(783) are interpreted as uū, dd̄ isospin I = 1 and
I = 0 combinations, while ϕ(1020) is the ss̄ member of the nonet. Including the
K∗(892) doublet as the ūs, d̄s combinations, a simple additivity in the quark mass
would imply

M MXX

Fig. X–7 Meson–meson mixing.
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mϕ(1020) −mρ(770) = 2
(
mK∗(892) −mρ(770)

)
, (2.2)

which works well. A similar treatment of the 2++ mesons, identifying a2(1320)
and f2(1270) as the corresponding uū, dd̄ states and f ′2(1525) as an ss̄ composite,
predicts

mf ′2(1525) −ma2(1320) = 2
(
mK∗2 (1430) −ma2(1320)

)
, (2.3)

which is also approximately satisfied. The fact that ρ(770), ω(783), f2(1270) and
a2(1320) decay primarily to pions, and ϕ(1020) and f ′2(1525) decay primarily to
kaons, reinforces this interpretation.

The world of baryons in the large Nc limit is quite different from that of mesons
and glueballs [DaJM 94, Je 98]. In order to form a color singlet, one needs to
combine not three quarks but rather Nc quarks in a totally color-antisymmetric
fashion. This forces the baryon mass to grow asNc, i.e., to become infinitely heavy
in the Nc → ∞ limit. In an attempt to model this behavior, it has been suggested
that baryons can be associated with the soliton solution, called the Skyrmion, of a
certain chiral lagrangian [Sk 61, Wi 83b]. We shall discuss this idea in Sect. XI–4
in the context of a model with SU(2)L × SU(2)R symmetry.

X–3 Goldstone bosons and the axial anomaly

As stated in the previous section, it must be assumed that color confinement con-
tinues to hold in the large Nc limit. Given this behavior, it can be proven under
reasonable conditions that chiral symmetry is spontaneously broken [CoW 80]. In
this circumstance, the large Nc limit turns out to imply a fascinating unity between
the η′(960) meson and the octet of Goldstone bosons in massless QCD [Wi 79].
The Nc = ∞ analog of η′(960) is also a Goldstone boson if quarks are massless.

In order to see this, let us first consider the pseudoscalar decay constants. Because
the axial-current matrix elements〈

Pj(q)
∣∣Aμk (0)∣∣ 0〉 = −iFjqμδjk (3.1)

involve one meson normalization factor and one quark loop, they are of order
(N

−1/2
c )Nc ∼ N

1/2
c , which then implies Fj = O(N1/2

c ). Now consider the cur-
rent divergence in the limit of massless quarks. In general, we have〈

Pj(q)
∣∣∂μAμk (0)∣∣ 0〉 = Fjm

2
j δjk. (3.2)

For the octet of currents, the divergence vanishes for zero quark mass, and as usual
leads to the identification of π ,K , η8 as Goldstone bosons. However, for the singlet
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current the anomaly is present. Even in the limit of vanishing quark mass, the
current divergence has nonzero matrix elements, in particular,〈

η0(q)
∣∣∂μAμ0 (0)∣∣ 0〉 = Fη0m2

η0 =
〈
η0(q)

∣∣∣∣ 3g2
3

32π2
Fa
μνF̃

aμν

∣∣∣∣ 0〉 . (3.3)

If one repeats the calculation of the anomalous triangle diagram as in Sect. III–3 but
now allows Nc to be arbitrary, one sees that it is proportional to Tr

(
λaλb

) = 2δab

and is therefore independent of Nc. However, by using large Nc-counting rules, the
matrix element in Eq. (3.3) is seen to be of order g2

3N
1/2
c ∼N−1/2

c .1 This implies
that the gluonic contribution to the axial anomaly vanishes in the large Nc limit.
When we take into account the behavior of Fη′ , we conclude that m2

η′ ∼ 1/Nc→ 0.
The η′ is thus massless in the large Nc limit, and we end up with a nonet of
Goldstone bosons.

To illustrate what happens when the number of colors is treated perturbatively,
let us consider the 1/Nc corrections to the meson spectrum together with the effects
of quark masses. If we first add quark masses, we have, in analogy with the results
of Sect. VII–1, the mass matrix

m2
ij =

〈
Pi
∣∣m̂(ūu+ d̄d)+mss̄s

∣∣Pj 〉 , (3.4)

where we have taken mu = md = m̂. This leads to a squared-mass matrix

m2 = B0

⎛⎜⎜⎜⎜⎜⎝
2m̂ 0 0 0

0 ms + m̂ 0 0

0 0 2
3(2ms + m̂) 2

√
2

3 (m̂−ms)

0 0 2
√

2
3 (m̂−ms)

2
3(ms + 2m̂)

⎞⎟⎟⎟⎟⎟⎠ (3.5)

in the basis (π,K, η8, η0). If this were diagonalized, one would find an isoscalar
state degenerate with the pion. This is a manifestation of the U(1) problem, which
arises when there is no anomaly. However, at the next order in large Nc, the matrix
picks up an extra contribution in the SU(3)-singlet channel due to the anomaly,
yielding

m2 = B0

⎛⎜⎜⎜⎜⎜⎜⎝
2m̂ 0 0 0

0 ms + m̂ 0 0

0 0 2
3(2ms + m̂) 2

√
2

3 (m̂−ms)

0 0 2
√

2
3 (m̂−ms)

2
3(ms + 2m̂)+ ε

NcB0

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.6)

1 This result depends on the assumption that topologically nontrivial aspects of vacuum structure are smooth in
the Nc →∞ limit.
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where ε = O(N0
c ). This mass matrix yields an interesting prediction. The quanti-

ties B0m̂ and B0ms are fixed as usual by using the π and K masses. Also the trace
of the full matrix must yieldm2

π+m2
K+m2

η+m2
η′ , which fixes ε = 2.16 GeV2. The

remaining diagonalization then predicts mη′ = 0.98 GeV, mη = 0.50 GeV with a
mixing angle of 18◦. This is a remarkably accurate representation of the situation
in the real world. Although ε/Nc is suppressed in a technical sense, note how large
it actually is. One is hard pressed to imagine any sense in which the physical η′

mass can be taken as a small parameter.

X–4 The OZI rule

In the 1960s, an empirical property, called the Okubo–Zweig–Iizuka (OZI) rule
[Ok 63, Zw 65, Ii 66], was developed for mesonic coupling constants. Its usual
statement is that flavor-disconnected processes are suppressed compared to those
in which quark lines are connected. In the language which we are using here, fla-
vor disconnected processes are those with an extra quark loop. Unfortunately, the
phenomenological and theoretical status of this so-called rule is ambiguous. We
briefly describe it here because it is part of the common lore of particle physics.

The empirical motivation for the OZI rule is best formulated in the decays of
mesons. Let us accept that ϕ(1020) and f ′2(1525) are primarily states with content
s̄s whereas ω(783) and f2(1270) have content

(
ūu+ d̄d) /√2. Mixing between

the s̄s and nonstrange components can take place with a small mixing angle, such
that

Amp (s̄s)

Amp
(
[ūu+ d̄d]/√2

) ≡ tan θ, (4.1)

with θ = θV for the vector mesons and θ = θT for the tensor mesons. In both
cases, θ is small. Experimentally, the ϕ and f ′2 decay dominantly into strange par-
ticles even though phase space (abbreviated as ‘p.s.’ below) considerations would
strongly favor nonstrange modes,

�ϕ→3π+ρπ
�ϕ→KK̄

� 0.18,
�ϕ→3π+ρπ
�ω→3π

� 0.09,

�f ′2→ππ

�f ′2→KK̄

= 0.012± 0.002
�f ′2→ππ

�f2→ππ

= 0.004± 0.001

� 0.003× p.s., � 0.002× p.s.

(4.2)

This suggests the hypothesis ‘s̄s states do not decay into final states not containing
strange quarks’. Diagrammatically this leads to a pictorial representation of the
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Fig. X–8 OZI (a) allowed, (b) forbidden amplitudes.

OZI rule, viz., the dominance of Fig. X–8(a) over Fig. X–8(b). Some scattering
processes also show such a suppression. For example, we have

σπ−p→ϕn

σπ−p→ωn

� 0.03, (4.3)

which can be interpreted as an OZI suppression. A stronger version of the OZI
rule would have the ϕ/ω and f ′2/f2 ratios equal to a universal factor of tan2 θ

(cf. Eq. (4.1)) once kinematic phase space factors are extracted.
The narrow widths of the J/ψ and ϒ states are also cited as evidence for the

OZI rule, since these hadronic decays involve the annihilation of the cc̄ or bb̄ con-
stituents. This can be correct almost as a matter of definition, but it is not very
enlightening. Indeed, the small widths of heavy-quark states can be understood
within the framework of perturbative QCD without invoking any extra dynamical
assumptions. However, perturbative QCD certainly cannot explain the OZI rule in
light mesons. It must have a different explanation for these states.

There actually exist several empirical indications counter to the OZI rule [Li 84,
ElGK 89, RPP 12]. Among the more dramatic examples of OZI-forbidden reac-
tions, expressed as ratios, are

�J/ψ→ϕπ+π−

�J/ψ→ϕK+K−
= 1.2± 0.5,

σγp→pϕπ+π−

σγp→pωK+K−
= 2.0± 0.7,

σπ−p→f ′2n

σπ−p→f2 n

= 0.23+0.14
−0.13,

σγp→pϕπ+π−

σγp→pϕK+K−
≥ 5 (90% C.L.).

(4.4)

The universal-mixing model is incorrect more often than not, with counterexamples
being

�J/ψ→ϕπ+π−

�J/ψ→ωπ+π−
= 0.11± 0.02,

σγp→pϕπ+π−

σγp→pωπ+π−
= 0.10± 0.02,

σp̄p→f ′2π+π−

σp̄p→f2π
+π−

= 0.029+0.011
−0.007,

(4.5)

instead of the values 0.03, 0.03, and 0.006 expected from the previous ratios. The
empirical η–η′ mixing angle θη−η′ � −20◦ also violates the OZI rule, which would
require a mixing angle of −35◦.
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There is also an intrinsic logical flaw with the simplest formulation of the OZI
rule. This is because OZI-forbidden processes can take place as the product of
two OZI-allowed processes. For example, each of the following transitions is OZI-
allowed:

f ′2 → KK̄, KK̄ → ππ,

f ′2 → ηη, ηη→ ππ.
(4.6)

Hence the OZI-forbidden reaction f ′2 → ππ can take place by the chains

f ′2 → KK̄ → ππ, f ′2 → ηη→ ππ. (4.7)

These two-step processes are in fact required by unitarity to the extent that the
individual scattering amplitudes are nonzero.

The large Nc limit provides the only known dynamical explanation of the OZI
rule at low energies. Although the gluonic coupling constant is not small at these
scales and suppressed diagrams have ample energy to proceed, they are predicted
to be of order 1/N2

c in rate because of the extra quark loop. Yet large Nc arguments
need not suggest a universal suppression factor of tan2 θ , because there is no need
for the 1/Nc corrections to be universal. Note that the large Nc framework also
forbids the mixing of η and η′ and, more generally, the scattering of mesons.

Thus, the OZI rule in light-meson systems remains somewhat heuristic. It has
a partial justification in large Nc counting rules, but it also has known violations.
It is not possible to predict with certainty whether it will work in any given new
application.

X–5 Chiral lagrangians

The large Nc limit places restrictions on the structure of chiral lagrangians
[GaL 85a]. To describe these, we must first allow for an enlarged number Nf > 3
of quark flavors. The three-flavor O(E4) lagrangian is expanded as

L4 =
10∑
i=1

LiOi, (5.1)

where the {Oi} can be read off from Eq. (VII–2.7). Recall that in constructing L4,
we removed the O(E4) operator

O0 ≡ Tr
(
DμUDνU

†DμUDνU †
)
, (5.2)

because for Nf = 3 it is expressible (cf. Eq. (VII–2.3)) as a linear combination of
O1,2,3. However, if the number of flavors exceeds three, one must append O0 to the
lagrangian of Eq. (5.1),
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L4 =
10∑
i=1

LiOi −→
Nf>3

3∑
i=0

BiOi +
10∑
i=4

LiOi. (5.3)

In view of the linear dependence of O0 on O1,2,3, note that we have needed to
modify the coefficients L1,2,3 → B1,2,3. Upon returning to three flavors, we regain
the original coefficients,

L1 = B0

2
+ B1, L2 = B0 + B2, L3 = −2B0 + B3. (5.4)

We can now study the largeNc behavior of the extended O(E4) chiral lagrangian.
The distinguishing feature is the number of traces in a given O(E4) operator. Each
such trace is taken over flavor indices and amounts to a sum over the quark flavors,
which in turn can arise only in a quark loop. In particular, those operators with two
flavor traces (O1,2,4,6,7) will require at least two quark loops, while those with one
flavor trace need only one quark loop. However, our study of the large Nc limit
has taught us that every quark loop leads to a 1/Nc suppression. Thus, the O(E4)

chiral contributions having two traces will be suppressed relative to those with one
trace by a power of 1/Nc, and provided B3 �= 0 we can write2

B1

B3
= B2

B3
= L4

L3
= L6

B3
−→
Nc→∞

0. (5.5a)

Alternatively, this Nc-counting rule implies (provided B0/B3 �= 1/2) for the {Bi}
coefficients of flavor SU(3),

2L1 − L2

L3
= L4

L3
= L6

L3
= O(N−1

c ). (5.5b)

The overall power of Nc for the remaining terms can be found by noting that the
ππ scattering amplitude should be of order N−1

c , implying L1,2,3 = O(Nc).
The only exception to the above counting behavior is the operator with coef-

ficient L7. This exception occurs because the operator can be generated by an η′

pole, and the η′ mass-squared is O (1/Nc). In particular, the coefficient of this term
is absolutely predicted in the largeNc limit. This follows if we include the largeNc

result for mixing between η and η′ shown in Eq. (3.6) as a chiral lagrangian

Lηη′ = Fπ

2
√

6
η0 Tr

(
χ†U − U †χ

)
, (5.6)

which when expanded to order η0η8 will yield the off-diagonal term in the mass
mixing matrix of Eq. (3.6). Integrating out the η0 ∼ η′ leads to the effective
lagrangian

2 The operator O7 presents a special case and is discussed below.
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Leff = − 1

48

F 2
π

m2
η′

[
Tr
(
χ†U − U †χ

)]2
. (5.7)

It is the factor of m−2
η′ which overcomes the counting rules. Although the dou-

ble trace suggests that this operator is suppressed in the large Nc limit, we have
m−2
η′ ∝ Nc. Thus, at least formally, an extra enhancement would be predicted.
The large Nc limit then predicts the following ordering of the chiral coefficients

in L4:

L7 = O(N2
c ),

L1, L2, L3, L5, L8, L9, L10 = O(Nc),

2L1 − L2, L4, L6 = O (1) . (5.8)

An existing empirical test involves the occurrence of 2L1 − L2 in K → ππeν̄e

decays [Bi 90, RiGDH 91], and the prediction works quite well. The large Nc

enhancement of L7 is probably just a curiosity in that the physical value of the η′

mass is not small compared to other masses in the theory, and hence the technical
advantage of m2

η′ ∝ N−1
c is probably not useful phenomenologically.

Problems

(1) The large Nc weak hamiltonian

Retrace the calculation of the QCD renormalization of the weak nonleptonic
hamiltonian described in Sect. VIII–3, but now in the limit Nc → ∞ with
g2

3Nc fixed. Show that the penguin operators do not enter and that all short-
distance effects are of orderN−1

c , with the operator-product coefficients c1= 1,
c2 = 1/5, c3 = 2/15, c4 = 2/3, c5 = c6 = 0.

(2) The strong CP problem in the large Nc limit

In the large Nc limit, the η0 can be united with the Goldstone octet in the
effective lagrangian. Generalizing the chiral matrix to nine fields we write
L = L0 + LN−1

c
, where

L0 = F 2

4
Tr
(
∂μŨ∂

μŨ †
)
+ F 2

4
B0 Tr

(
m(Ũ + Ũ †)

)
,

LN−1
c
= ε

Nc

F 2

24

[
Tr (ln Ũ − ln Ũ †)

]2
,

Ũ = exp (iλ · ϕ/F ) exp

(
i

√
2

3

ϕ0

F

)
.
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c expansion

(a) Confirm that this reproduces the mixing matrix of Eq. (3.6).
(b) Another way to obtain this result is to employ an auxiliary pseudoscalar

field q(x) (with no kinetic energy term) to rewrite LN−1
c

as

LN−1
c
= Nc

4ε
q2(x)+ i F

2
√

6
q(x)Tr (ln Ũ − ln Ũ †).

Identify the SU(3)-singlet axial current and calculate its divergence to
show that q(x) plays the same role as FF̃ , i.e., q(x) ∼ αF F̃ /8π .
Integrate out q(x) to show that this is equivalent to the form of part (a).

(c) Several authors [RoST 80, DiV 80] suggest adding the θ term through

L = L0 + LN−1
c
− θq(x).

From this starting point, integrate out q(x) and show that a chiral rotation
can transfer θ to arg(det m). However, in the sense described in
Sect. IX–4, this theory is unstable about Ũ = 1. The stable vacuum corre-
sponds to Ũjk = δjk exp(iβj ). For small θ , solve for βj in terms of θ .

(d) Using Ũ = eiβ/2Ueiβ/2, define the fields about the correct vacuum to find
the CP-violating terms of the form

LCP = iθ
[
a Tr (U − U †)+ b Tr (lnU − lnU †)

]
,

identifying a and b and showing they vanish if any quark mass vanishes.
Calculate the CP-violating amplitude for η→ π+π−.
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