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Abstract

Modal relationism is the view that our best physical theories can dispense with substantival
space or spacetime in favor of possible configurations of particles. Kenneth Manders argues
that the substantivalist conception is equivalent to this Leibnizian conception of space. To do
so, Manders provides a translation f from the Newtonian theory TN into the Leibnizian modal
relationist account TL. In this article, we show that the translation does not establish
equivalence because there is no translation g : TL 7!TN that preserves theoremhood. This
seems to show that the modal relationist theory TL is less parsimonious than its
substantivalist rival.

Thus it appears that any tenable relationalism must incorporate a powerful,
primitive notion of geometric modality. Manders (1982) provides the most
promising route to such a relationalism. (Belot 2000, 578)

1. Introduction
In this journal, Kenneth Manders has argued that the Newtonian conception of space,
which postulates spatial points and treats them as fundamental, is theoretically
equivalent to the Leibnizian modal conception, which treats spatial points as logically
constructed from actual particles and possible configurations thereof (Manders 1982).
To demonstrate the equivalence between the substantival and the modal relationist
metaphysics, Manders provides a translation from the language of the Newtonian
theory of space TN into the language of Leibnizian modal relationism.1 He suggests
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1 The notion of translation at play here is the notion of a generalized translation between first-order
theories that one can find in van Benthem and Pearce (1984) and Halvorson (2019). The notion of Morita
equivalence, defined in Barrett and Halvorson (2016), is equivalent to the notion of intertranslatability
presupposed here (see Halvorson 2019).
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that an adequate relationist theory TL can be found, namely, the translation of the
Newtonian theory TN (Manders 1982, 589). However, the existence of a translation
does not amount to a proof of equivalence under reasonable standards of formal
equivalence. Although Manders defines a translation f : TN 7!TL, he does not show
that there is a translation g: TL 7! TN such that TN � φ $ g f φ� �� � for all formulae φ of
TN (see Halvorson 2019, 27). In fact, we show that there is no interpretation from TL to
TN (a translation that sends theorems into theorems).

This result seems to show that the modal relationist introduces redundant
structure, absent in the substantivalist theory. We substantiate this claim by using a
criterion for comparing amounts of structure. The one we employ is inspired by a
criterion for the equality of structure attributable to Barrett (2022).

The philosophical conclusion of the article is that modal relationism ought to be
abandoned on parsimony grounds. We base this recommendation on another
principle of parsimony, whose most precise formulation is again attributable to
Barrett (2022), namely, that all else being equal, we should favor theories that posit less
structure. We think that this principle is an improved form of Ockham’s razor and is
both intrinsically plausible and exemplified by famous cases of theory choice. This
combination of our structure-counting criterion and the parsimony principle of
Barrett (2022) is in tension with the requirement of Belot (2011) that a relationist
theory should state truth conditions for all statements about space. If a systematic
paraphrase is a translation function f , then theories of the form f Tsubst� �. cannot be
superior on parsimony grounds.

2. The theories TN and TL

Let us begin by describing the two systems TN and TL. We follow Manders by
identifying TN with Tarski’s formalization of Euclidean geometry (see Tarski 1959).
The ontology of TN consists of spatial points.2 The primitive extralogical predicates of
the substantivalist language LN are the following:

(a) A three-place predicate “Between v1v2v3” that holds of the points v1, v2, and v3
when v2 stands between v1 and v3 on the segment connecting them

(b) A four-place predicate “Congruence v1v2v3v4” that holds of four points
v1; v2; v3, and v4 when the segment v1v2 is as long as v3v4

The language LL of the relationist theory TL contains two types of variables. The
variables x1; x2; . . . ; xn range over point particles. The variables c1; c2; . . . ; cn range
over a new type of entity: possible configurations of point particles. Manders (1982)
does not clarify whether the ontology of TL includes only actual particles or both
actual and merely possible particles. But as Field (1984, 57) has pointed out, a “possible
point particle” appears to behave in the relationist theory exactly like a space or a
spacetime point. Because there is no distinction between particles and points, we
cannot distinguish the merely possible particles from spatial points in terms of
location. These “possible particles” seem to stand in exactly the same relations and

2 By ontology, we mean the range of the variables in unabbreviated notation.
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satisfy exactly the same principles as points of space.3 If quantification over merely
possible point particles is admitted, modal relationism appears to collapse
immediately into substantivalism. Even if one could distinguish possible particles
from spatial points, on philosophical grounds, merely possible point particles raise
the same epistemological and parsimony objections as space or spacetime points. For
this reason, we suppose that the particles that TL quantifies over are only the actually
existing ones. Possible configurations of particles will be described better later in the
article, when we come to the predicates that apply to them. But they correspond
roughly to possible worlds, or scenarios in which the particles are arranged in some
fashion.

Language of TL: For every geometrical predicate Rn of the Newtonian theory TN , the
language LL has a predicate Rn�1 for point particles with an extra place for
configurations. Because LN contains two geometrical predicates of betweenness and
congruence, TL contains the following two predicates:

(1) A four-place predicate “Between0 c1x1x2x3,” which holds of a configuration and
three particles when the particle x2 is between the particles x1 and x3 in the
configuration c1

(2) A five-place predicate “Congruence0 c1x1x2x3x4,” which holds a configuration c1
and four particles x1x2x3x4 when the distance between x1 and x2 is the same as
the distance between x3 and x4 in c1

Moreover, the theory TL contains two other predicates:

(3) A four-place predicate “c1x1 � c2x2,” which holds two point particles and two
configurations when the point particle x1 as it occurs in c1 is in the same place
of x2 as it occurs in c2. We call this the same-place-as relation.

(4) A two-place predicate of membership “x1 2 c1,” which holds of a point particle
and a configuration when the former is an element of the latter

The same-place-as relation is crucial for the claim that TL is adequate to physics,
and it is also the most unfamiliar. It requires, therefore, a more detailed explanation
than the others. Manders (1982, 579–82) introduces it by drawing on intuitions about
absolute space. Two particles in two respective configurations satisfy this relation if
they stand in the same point of absolute space. However, this reference to absolute
space is syncategorematic and does not require quantification over space, regions, or
points. Configurations, in this sense of the word, are like possible assignments of the
particles to absolute locations, rather than simply networks of relative distances. We
can contrast this approach with another natural primitive: transworld congruence
(Field 1989, 72). Four particles in two configurations are transworld congruent if they

3 One might hold that the spatial points have their relations of betweenness and congruence
necessarily (Maudlin 1988), whereas those of the merely possible point particles can be freely
recombined inside different possible configurations. Although the former view strikes us as arbitrary, it
does distinguish the two types of entities. But then, the point is that a theory of merely possible point
particles is as parsimonious as a substantivalist theory.
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stand at the same distance in their respective configurations. In terms of transworld
congruence, it is possible to define a weaker same-place relation: two particles y and
y0 stand in the same place in two configurations c and c0 if they have the same number
of particles and there is a one-to-one map that preserves congruence and maps y to
y0 (fig. 1).

In TL, particles stand in the same place independently of what other particles in the
configurations are doing. The theory TL is consistent with the claim that there exist
two isomorphic configurations, in the previous sense, with the particles in different
places of absolute space. For example, there could be a configuration c with three
collinear particles, x; y; z, equally spaced, and also a configuration c0 where the three
particles are shifted by 5 cm to the left.4

This same-place relation will pay its dividends when we come to motion and
inertia. For an instant, let us add variables ranging over times t1; . . . tn and a binary
relation R t; c� � between times and the configuration realized at time t. The theory
with transworld congruence does not seem to be able to define what it means for a
symmetrical object to rotate around an axis. The contemplated extension of TL can. It
can state, for example, that x remains in the same place at t2 as it was at t1 but that y
and z have moved (fig. 2). It can also quantify the angle of rotation by contemplating a
merely possible and unactualized configuration c in which some particles y0 and z0 are
located at t2 where y and z were in t1. Therein lies the promise of physical adequacy.

Ultimately, it is the axioms that fix the interpretation of the same-place relation.
Manders states in the appendix that the postulates of TL are simply the translation of
the axioms of TN , together with three axioms stating that the same-place-as relation
is an equivalence relation on configurations (Manders 1982, 589). Therefore, in order
to specify the axioms, or postulates, of TL, we need to specify the Mandersian

Figure 1. c, y, c0 , and y0 need not stand in the
same-place-as relation.

Figure 2. Rotation.

4 In the figure, a circle represents a configuration. A point represents a particle. Two particles are part
of the same configuration if they are part of the same circle.
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translation first. In general, we can specify the axioms of a relationist theory by giving
a translation and then taking the translation of the axioms of some substantivalist
physical theory. Let us state explicitly the three equivalence relation axioms for the
same-place-as relation:

• ψ1 is the formula 8c18x1�x1 2 c1 ! x1c1 � c1x1).
• ψ2 is the formula 8x18c18x28c2 c1x1 � c2x2 ! c2x2 � c1x1� �.
• ψ3 is 8x18c18x28c28x38c3 c1x1 � c2x2 ^ c2x2 � c3x3 ! c1x1 � c3x3� �:

Then, TL is the following theory:

TL � f φ� �; TNj � φf g [ ψ1;ψ2;ψ3f g:
The intuitive interpretation of the same-place-as relation may already raise

suspicions that the resulting theory is “substantivalist” in some sense. However, it is
important to note that the theory TL satisfies the classical definition of a relationist
theory, as laid out in Field (1984, 33): the theory does not postulate space or spacetime
points, except as logical constructions out of aggregates of matter. If the theory is to
be ruled substantivalist rather than relationist, the debate must be redefined. We will
return to this point in the conclusion.

3. The translation from TN to TL

Manders sets out a translation from the Newtonian, or geometric, language LN into the
Leibnizian language LL of point particles and their possible configurations. A translation
or interpretation f of TN into TL is entirely determined by a specification of the
translation of the atomic formulae of LN . Let us begin with the identity relation. Because
the same-place-as relation is an equivalence relation, we can identify spatial points with
the equivalence classes of pairs x; c� � of a particle and a configuration under the same-
place-as relation. After all, a particle in a configuration does indicate a position in
absolute space. This suggests that the translation f should map the identity between
points (i.e., formulae such as vi � vj) into the same-place-as relation �:5

Equivalently, in a Morita extension LN0 of LN , new variables for spatial points may
be introduced as equivalence classes of pairs of point particles and configurations
under the same-place-as relation �.

Definition of f for the identity between points.

vi � vj 7!f cixi � cjxj

5 We will use the symbol 7!f to indicate the translation function f . The notion of a generalized
translation at play here allows us to map a formula of one language and the sequence of its free variables
to a formula of the other language and a sequence of sequences containing all the free variables in that
formula. For example, the identity relation� and the sequence of its two free variables vi; vj

� �
is mapped

to the same-place-as relation � and a sequence of pairs of a point particle variable and a configuration
variable ci; xi ;	 
cj; xj

� �� �
.
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There are two other atomic formulae of the substantivalist theory TN : the two
geometrical primitives of betweenness and congruence. If φ vj1 ; vj2 ; vj3

� �
is “Between

vj1vj2vj3 ,” then its translation f φ� � states that there is a configuration c0 in which the
three points vj1 ; vj2 ; vj3 are occupied by particles, and the three particles located at
these points satisfy the betweenness predicate in c0.

Explanation: The formula says that a point vj2 is between two points vj1 and vj3 if and
only if (iff) there is a configuration c0 and three particles x10; x20, and x30, such that (i) x20 is
between x10 and x30 in c0, and (ii) the pairs of particles and configurations that
correspond to the points vj1 ; vj2 , and vj3 are the same points as—that is, they stand,
respectively, in the same-place relation to—the pairs x01c0, x02c0, and x03c0 (see fig. 3).

Congruence: The translation f is defined in a similar way when vj1 ; vj2 ; vj3 ; vj4
� �

is
“Congruencevj1vj2vj3vj4 .” There is a configuration c0 in which the four points
vj1 ; vj2 ; vj3 ; vj4 are occupied, and the four particles located at these points satisfy the
congruence predicate in c0.

Figure 3. Betweenness in TL.

Definition of f for the predicate of Congruence.

Congruence vj1vj2vj3vj4 7!f 9c09x109x20 9x309x40�cj1xj1 � c0x10

^ cj2xj2 � c0x20 ^ cj3xj3 � c0x30

^ cj4xj4 � c0x40 ^ Congruence0c0x10x20x30x40�

Definition of f for the predicate of Betweenness.

Between vj1vj2vj3 7!f 9c09x109x209x30�cj1xj1 � c0x10 ^ cj2xj2 � c0x20

^ cj3xj3 � c0x30 ^ Between0 c0x10x20x30�
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The translation is extended, in the usual way, to complex formulae:

Manders has given us a conservative translation f from TN into TL. Trivially, for
any formula φ of the language of TN , if φ is a theorem of TN , then f φ� � is a theorem of
TL. However, he has not shown how to translate the formulae of LL back into LN .
In other words, he has not shown that TN and TL are in fact theoretically equivalent.
It is not difficult to see that there is in fact no reverse translation f �1 from the
language LL to the language LN that maps theorems into theorems.6 The reason is that
the function f is not essentially surjective:

Definition 1. Let f : T ! T0 be a translation between theories. f is essentially
surjective iff for each sentence ψ of LT0 , there is a sentence φ of LT such that
T0 ‘ ψ $ f φ� � (Halvorson 2019, 120; Barrett and Halvorson 2022, 7).

TL talks about point particles and configurations, whereas TN has no resources to
talk about either point particles or their configurations. TL is designed to describe
relative distances between physical bodies, whereas TN is a purely geometrical theory
and lacks any physical content. We can sketch a rigorous argument to see that f is not
essentially surjective and therefore that there cannot be such a reverse translation
from TL into TN . This follows from the fact that TN is complete but TL is incomplete.7

We will from now on omit the essentially identical arguments for extensions of these
theories.

Lemma 1. The Leibnizian theory TL is incomplete.

Proof. We show that there is a formula φ of the language of TL and two models M and
M0 of TL such that φ is true in M0 and :φ is true in M00. The particles of M consist of
the set 1f g. The particles of M00 consist of the set 1; 2f g. We take the configurations
to be the functions from particles to R3. The interpretations of the geometrical and

Definition of f for complex formulae.

:φ7!f:f φ� �

φ ^ ψ 7!f f φ� � ^ f ψ� �

9vjφ 7!f 9cj9xj xj 2 cj ^ f φ� �� �

6 Technically, the definitions of conservativity and essential surjectivity in Halvorson (2019) apply to
ordinary translations, also in the case of formulae with free variables. The definitions are more
complicated for generalized translations, when free variables are present, because a generalized
translation can send formulae to formulae with a different number of variables. For now, we restrict
them to closed formulae or sentences. This suffices for the present purposes.

7 A theory T is incomplete iff for some formula φ of the language of T, some model of T verifies φ and
some model of T falsifies φ. It is possible, of course, to interpret an incomplete theory T in a complete
theory T0 . However, a complete and an incomplete theory cannot be equivalent.
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same-place relations of TL are the obvious ones. We easily verify that the axioms of TL
hold in both M and M0. Let φ be the formula that says “there is exactly one particle.” φ
is true in M, but it is false in M0.

Proposition 1. The translation f is not essentially surjective.

Proof. TN is complete (see Schwabhäuser et al. 1983, 218 ff.). Because TL is incomplete,
take a sentence ψ that TL does not decide. Assume that f is essentially surjective so
that there is a formula φ of LT such that TL ‘ ψ $ f φ� �. By completeness, either
TN ‘ φ, or TN ‘ :φ. Therefore, by definition of TL and f , either TL ‘ f φ� �, or
T0 ‘ :f φ� �. By logic and the assumption, either T0 ‘ ψ, or T0 ‘ :ψ. Contradiction.

□

Let us now state what we mean when we say that g is an inverse to f :

Definition 2. If f : T ! T0 is a translation and g : T0 ! T is a translation, then g is an
inverse of f iff for every closed formula φ of LT and for every closed formula of LT0 we
have that T ‘ φ $ g f φ� �� � and T0 ‘ ψ $ f g ψ� �� �

.

Corollary 1. There is no translation f �1 that is an inverse to f from the language of
TL to the language of TN that preserves logical form and such that theorems of TL are
mapped to theorems of TN .

Proof. Assume an inverse f �1 exists. Let ψ be a formula. Then TL ‘ f �f �1 f ψ� �� � $ ψ.
Therefore, f is essentially surjective. Contradiction.

4. Conclusion
In this last part of the article, we will argue that the theory TL is a worse theory than
TN and therefore ought to have been rejected in favor of substantivalism, even if
classical mechanics had turned out to be empirically adequate.

Because the only other modal relationist approach that is known to us—namely,
the theory based on transworld congruence—is incapable of defining rotation and
acceleration, this result casts doubt on modal relationism in general.

We will argue that TL is inferior on the grounds of parsimony. We have in mind a
principle of theory choice like the following:

Structural parsimony. All other things equal, we should prefer theories that posit
less structure (Barrett 2022, 296).

This principle explains, for instance, the fact that relativistic electrodynamics is
better than Lorentz’s electrodynamics that posits the luminiferous aether, or an
undetectable foliation of spacetime (Bradley 2021, 1055). Intuitively, a theory is more
parsimonious than another if everything in the first theory is definable in the less
parsimonious theory, but not the other way around (Barrett 2022, 307). The counting
of structure at play has been rationally reconstructed in terms of category theory

182 Joshua Babic and Lorenzo Cocco

https://doi.org/10.1017/psa.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.64


(Barrett 2022, 305), but this is equivalent to a condition in terms of translations
(Barrett 2022, 310):

Equal structure. A theory T posits the same amount of structure as a theory T0 iff
there is an essentially surjective translation g : T 7!T0.

This principle deals only with the case in which the two theories posit the same
amount of structure. What we need is a similar criterion for when the structure
posited by one theory is a proper part of the structure posited by the other. In such a
situation, it is natural to assume that there is a translation f : T 7!T0, but there is
no essentially surjective translation. This is equivalent to the following condition
(by lemma 1 in Barrett and Halvorson [2022, 8]):

Less structure. A theory T posits less structure than a theory T0 iff there is an
interpretation f : T 7!T0 but there is no interpretation g : T0 7!T.8

We will also assume this syntactical structure-counting criterion for many-sorted
theories and employ generalized translations as well.

Barrett (2023) has applied his parsimony principle to choose between nominalistic
and Platonistic physical theories. He analyzes the requirement of Putnam (1971) that
a nominalistic physical theory must interpret standard Platonistic theories. He rejects
it as unreasonable because it commits the nominalist to just as much structure as the
Platonist. We will return to this point shortly.

The principle similarly indicts the theory TL of (Manders 1982). TL posits more
structure without any compensating explanatory gain, and therefore there is no
reason to prefer it to the substantivalist theory TN .

The relationist may insist that “not all else is equal,” but it is unclear what
compensating advantages TL in Manders (1982) could have. The syntactical
complexity of its axioms is clearly similar to that of the theory TN . The translation
f preserves logical structure. Manders (1982, 576) says that modal theories have a
prima facie epistemological advantage. But it is unclear why because in order to code
the physics, we need to add a functor a t� � for the actual configuration at a time. We
can then translate statements such as “the sun is at absolute rest” and “the sun is
moving at 17,000 km/h” in the relationist language, and the translations will be
similarly underdetermined by the evidence. Even if we adopt a Galilean invariant
primitive of collinearity on an inertial line, for example, we will be left with what
Dasgupta (2015, 620–21) calls self-locational uncertainty and inexpressible ignorance about
which of the infinitely many isometric configurations is the actual one. Finally, the
complexity introduced by the possible ways of locating particles in space (Belot 2000,
576) is matched by the redundancy in distinct configurations with the same particles
and the same relative distances (see fig. 1).

The requirement of Putnam (1971) that a nominalistic theory must translate a
Platonistic theory has its relationist counterpart in the methodology of Belot (2011,
35–37), which requires a relationist theory to give truth conditions to all the

8 An interpretation is just a conservative translation that maps theorems into theorems. We should
add the usual proviso that the translation should preserve observational vocabulary and that the two
theories agree on prediction reports.
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geometric statements that its substantivalist counterpart can express. Is this
requirement of interpreting the substantivalist theory reasonable or not?

The matter is partly a verbal dispute about the definition of relationism. It seems
to us that there are two varieties of relationism. The first can be called eliminativism,
and it simply denies the existence of space and time. In this view, the only entities
that exist are material objects, and spacetime is banished from the ontology, together
with the aether, quintessence, caloric, ghosts, and the like.

The second variety can be called reductive relationism, and it admits the existence of
a substantial spacetime but treats it as ontologically derivative from matter. In this
view, facts about spacetime regions are grounded on facts about material objects.
Hartry Field (1984) suggests that the relationist may view spacetime regions as logical
constructions out of matter. A materialist might think in the same way that mental
states are grounded on physical brain states. If one has this second view, then it makes
sense to ask for a relational truthmaker for all or at least many basic facts about space
or spacetime.

Gordon Belot (2011, appendix A; 2012, 81) calls the first variety of relationism
antirealism and reserves the term relationism for what we call reductive relationism.
In this context, it makes sense to ask for a translation function f from the standard
formulation of mechanics into a reformulation that only quantifies over material
objects. The goal is not to provide a rival theory but a more metaphysically
perspicuous formulation of the same theory.

However, none of these considerations saves the theory of Manders (1982) or
modal relationism. If one wants to pursue the second strategy, one has to provide a
theory that is genuinely equivalent to the standard version. The novel presentation
should be a description of the same facts but show how some of them reduce to facts
of a simpler sort. It should not introduce additional structure or posit additional facts.
In other words, there should be a reverse translation f �1 from modal relationist facts
to substantival facts. This is precisely what we have shown to fail in the case of the
theory TL of Manders (1982). Therefore, it does not matter whether one is an
eliminativist or a reductionist relationist. Modal relationism is not the way to go.
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