@ CrossMark

© Cambridge University Press 2016
ISSN 1466-2523

Animal Health Research Reviews 17(2); 92—-109
doi:10.1017/51466252316000062

Review

The pathogenesis of bornaviral diseases
in mammals

lan Tizard*, Judith Ball, George Stoica and Susan Payne

Department of Veterinary Pathobiology and the Schubot Exotic Bird Health Center, Texas A&M
University, College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
77843, USA

Received 1 February 2016; Accepted 21 April 2016;
First published online 23 May 2016

Abstract

Natural bornavirus infections and their resulting diseases are largely restricted to horses and sheep in
Central Europe. The disease also occurs naturally in cats, and can be induced experimentally in laboratory
rodents and numerous other mammals. Borna disease virus-1 (BoDV-1), the cause of most cases of
mammalian Borna disease, is a negative-stranded RNA virus that replicates within the nucleus of target
cells. It causes severe, often lethal, encephalitis in susceptible species. Recent events, especially the discov-
ery of numerous new species of bornaviruses in birds and a report of an acute, lethal bornaviral encepha-
litis in humans, appatently acquired from squirrels, have revived interest in this remarkable family of
viruses. The clinical manifestations of the bornaviral diseases are highly variable. Thus, in addition to
acute lethal encephalitis, they can cause persistent neurologic disease associated with diverse behavioral
changes. They also cause a severe retinitis resulting in blindness. In this review, we discuss both the patho-
logical lesions observed in mammalian bornaviral disease and the complex pathogenesis of the neurologic
disease. Thus infected neurons may be destroyed by T-cell-mediated cytotoxicity. They may die as a result
of excessive inflammatory cytokine release from microglia. They may also die as a result of a ‘glutaminer-
gic storm’ due to a failure of infected astrocytes to regulate brain glutamate levels.
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Introduction

Bornaviruses have long been known to cause meningoencepha-
litis in horses and sheep in parts of Central Europe (Metzler
et al., 1976; Durrwald and Ludwig, 1997; Richt ez a/, 2000).
Subsequent studies have demonstrated that they induce a similar
disease in experimentally infected laboratory rats and mice
(Narayan e al., 1983a, b; Kao ¢t al, 1984). The course of the
rodent disease is however dependent upon age, such that
adult rats develop an acute encephalitis while newborns develop
multiple neurodevelopmental disorders. Other bornavirus-
infected rodents such as gerbils fail to show these age-related
differences. Additionally, a bornavirus from vatiegated squirrels
(Variegated squirrel bornavirus, VSBV-1) can cause an acute
lethal encephalitis in humans (Hoffmann e a/, 2015). More
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significantly, it was believed for many years that bornaviruses
contributed to human mental illness (Bode and Ludwig,
2003). This concept has been largely discredited. In contrast,
avian bornaviral infection of parrots and waterbirds results
in proventricular dilatation disease as well as encephalitis
(Honkavuoti et al, 2008; Kistler e al, 2008; Rubbenstroth
et al, 2014). An uncharacterized bornavirus also appears to
cause a naturally occurring acute paralytic syndrome in ostriches
(Malkinson ez al., 1993; Ashash ez al., 1996). The goal of this
review is to provide an overview of the pathogenesis of borna-
virus-mediated neurologic disease in mammals in light of these
recent findings.

Bornaviruses

Bornaviruses (order Mononegavirales family Bornaviridae,)) ate
enveloped non-segmented, single stranded, negative sense
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RNA viruses whose prototype member is Borna disease virus 1
(BoDV-1) (Lipkin ez al., 2011). BoDV-1 primarily infects mam-
mals but has been detected in birds (Malkinson ez a/., 1993; Berg
et al., 2001). Bornaviruses have a unique genome organization
among the Mononegavirales. The 8.9 kb genome contains six
open reading frames that encode six viral proteins, N, P, M,
G and L plus a small X protein that overlaps the P reading
frame. To maximize the use of the genome, BoDV-1 employs
the RNA splicing machinery for gene expression (Cubitt ez 4/,
1994; Schneider e al, 1994). Three transcription start sites
and four termination sites have been identified as well as the
use of splicing to generate additional mRNAs (Schneemann
et al., 1994; Ludwig, 2008). N, P and L proteins together with
the viral RNA form a ribonucleoprotein (RNP) complex
(Fig. 1). Once within the cytoplasm, the RNP complex translo-
cates into the nucleus (Jamali ¢z 2/, 2011; Honda and Tomonaga,
2013). Viral replication and transcription occur within the
nucleus. Only a small number of infectious particles are released
from bornavirus-infected cells (Gonzalez-Dunia e al, 1998;
Tomonaga ¢t al., 2002).

For many years, BoDV-1 was the only known member of the
Bornaviridae. 1t shows little genetic vatiation with 4.1% diversity
in nucleotides and 1.5-3% diversity in the amino acid sequences
of its N- and P-proteins (Formella ez a/, 2000; Lipkin ez al.,
2011). The finding of multiple bornavirus species in patrots in
2008 changed that situation. Thus the known Bormaviridae have
expanded from a single conserved mammalian virus to a highly
diverse family of at least six viral species (Kuhn ez @/, 2015).
Mammalian 1 bornavirus encompasses classical Borna disease
vitus- BoDV-1 and BoDV-2. Recently, VSBV-1 has been iden-
tified and may be a new species. Parrot 1 bornavirus encompasses
psittacine bornaviruses 1, 2, 3, 4 and 7; Parrot 2 bornavirus,
encompasses psittacine bornavirus 5; Passeriformz 1 bornavirus
(canary bornaviruses); Passeriform 2 bornavirus (estrilidid finch
botnavirus); waterbird 1 bornavirus (aquatic bird bornaviruses -1
and -2) have also been described. At least two bornaviruses
have also been identified in snakes (Elapid 1 bornavirus and an
unclassified virus) and multiple endogenous bornaviral
sequences have been identified in mammals including people
(Horie et al., 2010, 2013).

Borna disease in mammals

Natural Borna disease affects horses and sheep in central
Europe. It occasionally affects other domestic mammals such
as donkeys, goats and cattle. It has been recorded in rabbits,
some zoo animals and dogs (Stacheli ¢z 2/, 2000). Cases of ‘stag-
gering disease’ in cats have also been attributed to infection by
BoDV-1 (Wensman et al., 2014). It is believed that these natu-
rally occurring cases result from infection acquired from the
urine of shrews.

The bicolored white-toothed shrew (Crocidura lencodon) is a
reservoir host species for BoDV-1 within endemic regions of
central Europe and develops an asymptomatic infection
(Sprankel ef al, 1978; Puorger ¢t al, 2010; Nobach e al,
2015). Virus can be detected, not only in the brain and other
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nervous tissues but also in hepatocytes, Leydig cells in the testes
and epithelial cells of the respiratory and urinary tracts. Shrews
express large amounts of virus in their oral epithelial cells, as
well as skin keratinocytes (Durrwald e al., 2014). Infectious
vitus and viral RNA can be demonstrated in saliva, urine,
skin, tears and feces (Nobach ez al., 2015). There is also evidence
for a wild reservoir of BoDV-1 in bank voles (Myodes glareolus) in
northern Europe (Kinnunen ez a/, 2007, 2013).

Horses

Naturally occurring Borna disease has been recognized in horses
in eastern Germany since the 18th Century. However, it gained
notoriety (and its name) when in 1894-1896 it immobilized a
regiment of cavalry based in the town of Borna in Saxony
(Richt et al., 2000). Equine BoDV-1 infection occurs naturally
only in Germany, Switzerland, Lichtenstein and Austria where
on average about 12% of horses are seropositive.

The typical disease course in horses is characterized by an
acute encephalitis that develops following an incubation period
of 4 weeks to 3 months (Richt ez 4/, 1997). Non-specific clinical
findings such as depression (apathy, somnolence, stupor), fever
and anorexia precede ataxia. Horses spread their legs or cross
them, and support themselves by pressing their head against
the manger or wall. Repetitive behaviors including circling, vac-
uous slow motion chewing and severe tooth grinding may occur.
Eventually, the horses become paretic, develop neurogenic tor-
ticollis, or blindness, coma and death. Lethality exceeds 80%
(Ludwig and Bode, 2000; Lipkin ez @/, 2011). Death usually
occurs 1-4 weeks after the onset of clinical signs. A chronic
recurring form of the disease may develop in up to 10% of
cases and thus some horses may become persistently infected
carriers. Serologic surveys indicate that infection without
obvious clinical disease is common (Richt ez a/., 2000).

On necropsy, horses show no gross lesions. Histopathology
shows a non-purulent meningoencephalomyelitis with randomly
scattered inflammatory foci in the hippocampus and along the
central axis including the mesencephalon and the hypothalamus
(Fig. 2). These foci consist of extensive lymphocytic perivascular
infiltrates involving primarily the gray matter (Rott and Becht,
1995; Bilzer ez al, 1996). Most of the inflammatory cells in
these foci are CD3+ T cells (Caplazi and Ehrensperger,
1998). Of these, CD4+ cells outnumber CD8+ T cells.
Natural killer (NK) cells are likely present in the infiltrates as
well (Hatalski ez a/, 1998). Macrophages are fewer and B
cells/plasma cells fewer still. Polymorphonuclear leukocytes
are rarely present. The highest viral titers occur in the hippocam-
pus and the piriform cortex reflecting viral invasion from the
olfactory bulbs. The lowest viral titers are in the cerebellum
(Gosztonyi, 2008). The virus is primarily located within neuro-
nal nuclei (Richt ez a/., 2000). Less consistently, smaller amounts
of viral antigen may be detected in the neuronal perikaryon, den-
drites and axons (Bilzer ez al, 1996). There is usually a correla-
tion between viral titer and the severity of the brain lesions and
the inflammatory exudate is associated with the presence of viral
antigen, but the inflammatory cells never appear to contain viral
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Fig. 1. The intranuclear replication of bornaviruses. The viral ribonucleoprotein (RNP) complex is imported into the nucleus. It

binds to the nuclear chromatin and generates more of these RNP complexes. The virus rarely forms complete virions and as a
result, it probably spreads between cells in the form of the RNP.
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Fig. 2. The major sites within the equine brain that BoDV-1 appears to favor. Infected neurons are also scattered diffusely
throughout the cerebrum. The arrows indicate what is believed to be the ‘natural’ route of viral invasion, originating in the olfac-
tory bulb.
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antigens (Gosztonyi and Ludwig, 1984). In chronic infections,
viral antigen is demonstrable in astrocytes and the meningeal
surface is infiltrated with mononuclear cells (Richt e al,
2000). Inflammation may spread from the gray matter into the
adjacent white matter and involve nerve roots and the spinal
ganglia (Johnson, 1980).

Sheep

Natural Borna disease in sheep tesembles that in horses
although large numbers of sheep may be affected within a
flock unlike horses where the disease usually affects few animals
(Richt et al., 1997). Clinical signs vary from minor behavioral
changes to severe encephalomyelitis reflecting the intensity of
the inflammatory response in the brain (Vahlenkamp e al,
2002). A short period of depression precedes overt disease
including somnolence, ataxia and multiple deficits (Metzler
et al., 1976; Waelchli e al, 1985). As in horses, the majority of
BoDV-1 infections in sheep remain asymptomatic. The location
of the virus within the brain is identical to that in horses.
Lethality in clinically affected animals is at least 50%. Some
sheep recover completely while others survive but fail to thrive
(Metzler et al., 1979).

Cats

BoDV-1 causes staggering disease in cats (Lundgren ef al,
1995b; Wensman ef al., 2014; Lutz et al, 2015). This begins
with fever, apathy and a reduced appetite. Cats eventually
develop ataxia, gait disturbances, blindness, lower back pain,
behavioral changes, loss of postural reactions and hind-leg
paralysis (Wensman ez a/., 2014). Some may be unable to retract
their claws (Lutz ef al, 2015). A similar disease can be induced
by experimental challenge with BoDV-1 (Lundgren ¢z al., 1997).
Some cats recover. There are anecdotal reports of cats surviving
the acute infection and later developing extreme obesity
(Wensman ¢ al., 2014). The lesions in the cat brain are similar
to those observed in horses although plasma cells may be
more prominent (Lundgren e @/, 1997). While it is possible
that cats become infected by eating small infected mammals
or birds (Berg et al, 2001) it is just as likely that it results
from exposure to the urine of infected shrews (see below). It
has been suggested that as in horses and sheep, the virus prob-
ably enters the cat through the olfactory epithelium and the oro-
pharyngeal mucosa and then gains access to the brain by intra-
axonal spread (Wensman e# al., 2014).

BoDV-1 triggers an intense T cell reaction in the cat brain.
Lundgren ez al. observed elevated T cell numbers in the blood
and brains of experimentally challenged cats (Lundgren et 4/,
1995a, 1997). Berg et al. used flow cytometry to demonstrate
that the CD8+ T cells in the brain of infected cats belong to
a non-major histocompatibility complex (MHC) restricted popu-
lation and suggested that they could be important in viral clear-
ance from neurons (Berg et al., 1999). Some cats may develop
disease in the absence of gross encephalitis, a disease process
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similar to that seen in neonatal rats (See below). Infected cats
express high levels of interferon (IFN)-y in their brains and
this may promote NK and T cell cytotoxicity and neuronal
destruction (Wensman e al, 2011, 2014). However BoDV-1
can survive in the presence of IFN-y (Wensman et al., 2014).
CD8+ cells stimulated by BoDV-1 are found in blood, spleen
and brain. Cats may also develop inflammatory changes in their
intra-abdominal ganglia and the adrenal medulla (Wensman
et al., 2012).

Humans

At least one bornaviral species can infect humans. In 2011-
2013, three breeders of variegated squitrels (Sciurus variegatoides)
in Germany developed a progtessive meningoencephalitis and
died within 2—4 months (Hoffmann e# @/, 2015). Their clinical
disease progressed from a fever, to progtressive psychomotor
slowing, confusion, ocular paresis, coma and death. On autopsy,
their brains showed edema, gliosis, lymphocyte infiltration with
perivascular cuffing, and necrosis. Subsequently a bornavirus
was isolated from their brains as well as from the brains of
one of their squirrels. Sequencing of this virus genome revealed
that it was a previously unidentified mammalian bornavirus
(VSBV-1). The distribution of virus in the brains of these
patients and in the squirrel resembled that seen in equine
Borna disease. There was a high viral RNA load in an orophar-
yngeal swab from the squirrel suggesting that squirtels may act
as carriers and that the virus may have been accidentally trans-
mitted by squirrel bites (Hoffmann ez 4/, 2015). One of these
patients had high levels of autoantibodies to the Yo autoantigen,
an antigen located within Purkinje cells. However other authors
have considered the presence of these autoantibodies in other
viral encephalitides to be a clinically irrelevant epiphenomenon
(Jatius and Wildemann, 2015).

In 1985, it was suggested that Borna disease virus could cause
mental illness in humans (Amsterdam e# al, 1985). Thus Rott
et al. using an indirect immunofluorescent focus assay, detected
antibodies to BoDV-1 in 16 out of 979 psychiatric patients but
none were found in 200 normal volunteers (Rott e al., 1985).
Fu ¢ al. also reported that patients with mental illness had anti-
body titers against BoDV-1 (Fu e al, 1993). These, and subse-
quent reports stimulated extensive investigations into possible
links between bornaviral infection and mental health. It was sug-
gested that BoDV-1 was associated with human neuropsychiatric
diseases including bipolar disorder, chronic fatigue syndrome,
schizophrenia and unipolar depression. However, isolation of
BoDV-1 from humans is rare, and the serologic results obtained
are possibly mis- or over-interpreted (Lipkin e al., 2011). Positive
reverse-transcriptase polymerase chain reaction results may have
been a result of inadvertent laboratory contamination, because
the human-derived sequences showed marked similarity to ani-
mal-derived laboratory strains (Dutrwald e a/, 2007). It is now
generally accepted that bornaviruses are not a significant cause
of human neuropsychiatric disease (Lipkin ez 4/, 2011; Hornig
et al., 2012).
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Rodents

Experimental BoDV-1 infection of laboratory rats and mice has
revealed many key features of bornaviral pathogenesis. One of
the most significant features of these infections is the difference
between the nature of the disease in adult and newborn rats.

Adult rats

Experimental infection of immunocompetent adult rats with
BoDV-1 results in the development of an encephalitis similar
to that observed in horses and sheep. The lesions that develop
depend on the age and immune status of animals as well as their
genetic background, the route of inoculation and on the passage
number of the vitus (Wu ¢ al, 2013). Many infected adult rats
die within 1-4 months as a result of the encephalitis but
50-80% may survive and develop behavioral abnormalities or
an obesity syndrome (Hirano ez a/., 1983; Narayan ez al., 1983a).
BoDV-1-inoculated adult rats develop illness after an incuba-
tion period of 17-90 days, the time required for the virus to
spread in dendritic-axonal processes from the inoculation site to
the hippocampus (Carbone ¢ al., 1987). Intranasal inoculation
of virus results in spread to the olfactory bulb by 4-6 days, and
to the rest of the brain in 20 days. Inoculation into the footpads
results in intraaxonal spread towards the brain. The virus then
migrates from the dorsal root ganglia adjacent to the lumbar spinal
cord, to the gracilis nucleus in the medulla, the pyramidal cells in
the hippocampus and eventually, results in clinical disease. This
progression takes 50—-60 days (Carbone ez al, 1987). Intravenous
inoculation of rat foot veins fails to cause infection suggesting
that the virus does not cross the vascular endothelium (Carbone
et al., 2001). Sectioning of the foot nerve within 1 day of footpad
inoculation also prevents viral migration to the brain but not if the
nerve is cut later. Once introduced into the rat central nervous sys-
tem, BoDV-1 persists in the brain and spinal cord (Hetzog e al.,
1984). In immunocompetent adult rats neither infectious virus nor
viral antigens can be detected in lung, spleen, kidney, muscle, peti-
toneal macrophages or blood leukocytes (Stitz ez al., 2002).
Infected adult Lewis rats show increased alertness at 20 days
post-infection. Eventually this develops into frenzied behavior
(exaggerated motor responses to minor stimuli), aggression and
ataxia (Narayan e al., 1983a). The onset of these behaviors coin-
cides with the development of encephalitis and retinitis that
reaches maximum intensity 30—40 days after infection. The cessa-
tion of this active phase coincides with a decline in inflammation
and the onset of blindness and results in a change to a passive
behavior with apathy, somnolence and depression. The diminu-
tion of inflammation may be associated with the development
of static hydrocephalus. By 200 days, there is much virus but
minimal inflammation in the brain (Narayan ¢f al., 1983b).

Neonatal rats

In neonatal rats, experimental infection with BoDV-1 results in
transient mild inflammation, and there are no immediate clinical
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signs of disease. However the virus does cause glial activation
that eventually leads to significant changes in brain develop-
ment, behavioral abnormalities and a life-long persistent infec-
tion (Hornig ef al, 1999). This infection is initiated at a time
when the rat brain is continuing to develop and its neuronal
connections are being tuned and adapted to environmental
influences (Gonzalez-Dunia ez a/., 2005). Herzog et al. compared
BoDV-1 distribution following challenge in adult and neonatal
rats. In adults, the virus was restricted to the central netvous sys-
tem, but in neonates it was also found in the heart, adrenal, sto-
mach and intestine but not blood (Herzog ¢ al., 1984).

This persistent infection of newborn rats results in selective
injury to those areas of the brain undergoing significant post-
natal development (de la Torre, 2002). Thus, thete is neuronal
loss in the cortex, hippocampus and cerebellum (Fig. 3). The
lesions in the hippocampus are concentrated in the granule
cells of the dentate gyrus. This neuronal degeneration results
from progressive granule cell apoptosis (Hornig ez al, 1999).
Neonatal neuronal plasticity is accompanied by formation of
new synapses and an increase in dendritic arborization (Engert
and Bonhoeffer, 1999). Synaptic density is altered in BoDV-1-
infected neonatal rats and in BoDV-1-P transgenic mice
(Gonzalez-Dunia e¢# a/., 2000; Kamitani ef al., 2003)

Eisenman e al. showed reduced cerebellar size but normal lamel-
lar organization in BoDV-1-infected neonatal rats (Eisenman ez al.,
1999). Gaps eventually develop in the Purkinje cell layer of the
cerebellum and it has been estimated that up to 75% of
Purkinje cells may be lost in these animals (Bautista e# a/, 1995;
Eisenman e al., 1999).

Persistently infected neonatal rats also develop an astrocytosis
(Ovanesov et al., 2008a). These astrocytes control homeostasis
around synapses and have a key role in removing excess neuro-
transmitters such as glutamate (Coulter and Eid, 2012).
Bornavirus-infected astrocytes have a reduced ability to take
up glutamate (de la Torre, 2002) (see below).

Persistently infected neonatal rats have impaired cognitive
functions, and deficiencies in fear conditioning (Carbone ¢ al.,
2001; Pletnikov e al., 2002). Despite their cerebellar abnormal-
ities, they do not show ataxia, but they do exhibit novelty-
induced hyperactivity, chronic anxiety and have abnormal
sleep-wake cycles, as well as decreased play behavior (Hornig
et al., 2001; Pletnikov ¢ al., 2002). These neonatal rat behaviors
resembles some human neuropsychiatric disorders especially
autism spectrum disorder (Lancaster e al., 2007).

Mice

The results of experimental BoDV-1 infection in adult mice are
strain specific (Rubin e a/, 1993). It may result in non-sympto-
matic infection (Hallensleben ez al., 1998) or fatal encephalitis
depending on the strain of mice used (Hausmann ef a/, 1999).
For example, 13% of infected C57BL/6 mice show mild transi-
ent symptoms. In contrast, 80% of infected MRL mice develop
severe disease although the amounts of virus in their brains are
comparable (Rubin e 4/, 1993). Intracerebral inoculation of
BoDV-1 into B2-Microglobulin-deficient (CD8-) newborn
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Fig. 3. A schematic diagram showing the multiple alterations in neurogenesis induced by BoDV-1 in neonatal mice.

mice of both strains does not result in disease (Hallensleben
et al., 1998).

Ackermann e al. generated a mouse-adapted BoDV-1 that
expressed green fluorescent protein, and then infected mice
intracerebrally. By 28 days after challenge, labeled astrocytes
were detected in the lower hippocampus (the subiculum).
Eventually infected neurons were found throughout the hippo-
campus. The virus was found in Purkinje cells and in the inner
granule layer of the cerebellum by day 65. The virus was also
expressed in cerebral neurons and from day 65 onward was
found in the neurons of the spinal cord. By day 120 the virus
was detectable in the sciatic nerve (Ackermann e al, 2010).
BoDV-1 infection of neonatal mice causes neurologic disease
4-6 weeks after intracerebral infection. The animals show
abnormal hind leg positioning and eventual paraparesis
(Narayan e# al., 1983a).

Gerbils

Experimental BoDV-1 infection of neonatal gerbils (Meriones
unguiculatns), unlike neonatal rats, resulted in their death within
30 days. Virus was teadily detected in their brains associated
with the development of acute inflammatory lesions (Nakamura
et al., 1999). Despite severe symptoms and high levels of virus,
there was no appatent neuronal loss (Watanabe ez 4/, 2001). In
gerbils that had not sickened, the virus was detected in the cere-
bral cortex and the hippocampus. As disease progressed, viral
expression increased in the lower brain stem and cerebellum,
especially within Purkinje cells (Watanabe ¢f a/, 2001). However
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while infected newborn gerbils developed fatal neurologic disease
those infected 14 days after birth survived (Lee ¢ al., 2003). Very
low levels of virus were detected in their brains. Additionally, neo-
natal gerbils treated with cyclosporine A were not protected
against fatal disease. The cyclosporine did however prevent
brain inflammation and significantly reduced brain cytokines
(except interleukin (IL)-1B) (Watanabe e# al, 2003).

Other species

BoDV-1 has been used to induce experimental infections in
many other mammals. The clinical disease and outcome vary
between species. Rabbits, for example, develop a fatal paralytic
disease similar to that seen in horses (Richt and Rott, 2001);
tree shrews (Tupaia glis) develop aberrant neurologic behaviors
(Richt e al., 1992); and rhesus monkeys develop severe paralytic
disease with retinopathy (Stitz ef al, 1981; Richt et al., 1992).
BoDV-1 has been detected in two dogs with neurologic symp-
toms (Weissenbock ¢# al., 1998; Okamoto et al., 2002). Cattle can
also develop Borna disease but it is uncommon and sporadic
Bode e al., 1994; Caplazi ¢t al., 1994). Bornaviral encephalitis
has also been recorded in captive alpacas and wild deer
(Jacobsen ez al., 2010).

The pathogeneses of Borna diseases

When viruses invade the brain a consistent defensive response is
mounted. Thus virus-infected cells are detected by resident


https://doi.org/10.1017/S1466252316000062

98

I. Tizard et al.

microglia and recruited macrophages. These responding cells
become activated and release a mixture of antiviral cytokines
and chemokines (Russo and McGavern, 2015). These cytokines
in turn, attract T cells, NK cells and other mononuclear cells
to the site of invasion. Antigen presentation by the antigen-
processing cells, release of cytokines and other mediators
from microglia and astrocytes stimulates a type 1 antiviral T
cell response (Hatalski ez a/., 1998). For many, but not all viruses,
this T cell response is sufficient to eliminate the virus. This is
not the case in Borna diseases.

Encephalitis

In BoDV-1 infected rats, the most severely affected brain
regions include the olfactory bulb, the dentate gyrus, the caudate
nucleus and the hippocampus as well as adjacent structures such
as the mesencephalon, central gray matter, substantia nigra and
hypothalamus (Tomonaga ¢ af., 2002). BoDV-1 thus exhibits a
preferential tropism for the rodent limbic system (de la Torre,
2002). Unfortunately, the viral cellular receptor(s) have yet to
be identified, so the biochemical basis of this tropism is
unknown.

BoDV-1 enters cells by receptor-mediated endocytosis
(Gonzalez-Dunia et al., 1998). The primary route of natural
invasion in most mammals is most likely through the nasal
epithelium (Morales ez al, 1988; Sauder and Stacheli, 2003).
The olfactory bulbs of experimentally infected horses show
inflammation and edema early in disease (Solbtig and Koob,
2003). The virus replicates in the neurons at the initial entry
site and then migrates intra-axonally towards the brain
(Carbone et al., 1987; Salinas ez al., 2010). The viral surface gly-
coprotein is required for cell to cell transfer (Bajramovic ¢ al.,
2003; Lennartz ef al., 2016). The viral RNP complex spreads
by axonal and polysynaptic neuronal transmission. Once within
the axon, intracellular microtubules transport the viral RNP
(Clemente ¢t al., 2010). The protein dynein forms motor com-
plexes with BoDV-1 RNP and transport it from the nerve term-
inal to the cell body (Gosztonyi ¢t al, 1993; Clemente ¢t al.,
2010). Subsequently, RNP spreads to other cells such as astro-
cytes, oligodendroglia, ependymal cells and possibly Schwann
cells. Eventually viral RNA can be detected in all peripheral
nerves (Enbergs ¢f al., 2001). As inflammation develops, peri-
vascular cuffs form. These cuffs contain CD4+ and CD8+ T
cells and macrophages (Hatalski ez a/., 1998).

BoDV-1 is not cytotoxic in cultured cells (Stitz e al., 2002;
Matsumoto ¢t al., 2012). The vitus is strongly cell associated
and produces very few infectious virions per cell even though
large quantities of RNP are present (de la Torre, 2002;
Tomonaga et al., 2002). Virions are not detected in infected
brain either, suggesting that virus spreads as an RNP complex
(Zimmermann ez al., 1994). Transgenic mice expressing BoDV
P-protein in their astrocytes show major behavioral abnot-
malities such as aggressiveness, hyperexcitability and special
reference memory deficit resembling those seen in bornavirus-
infected mice (Honda ¢z @/, 2011). These behaviors are asso-
ciated with alterations in the expression of genes associated

https://doi.org/10.1017/51466252316000062 Published online by Cambridge University Press

with the transforming growth factor (IGF)-f pathway (Kamitani
¢t al., 2001; Nishino ez al, 2015).

Wu et al. infected hippocampal slice cultures of several rat
strains with BoDV-1 (Wu ¢ 4/, 2013). Cultures from some
strains such as Lewis (LEW) showed disrupted architecture
while others, such as Sprague Dawley (SD) did not. The efficacy
of viral replication was however identical in cultures from differ-
ent rat strains. These strain differences also occur in vivo. Media
harvested from uninfected LEW or SD cultures could prevent
BoDV-1-induced damage in LEW cultures. Infection with
BoDV-1 reduced the availability of this inhibitory factor in
LEW but not SD cultures. Genetic analysis indicated that a bot-
naviral resistance locus is present on rat chr6q16 and a suscept-

ibility locus on chr3q21-23 (Wu ez af., 2013).

Retinitis

BoDV-1 spreads to the retina from the brain along the optic
netrve. Krey ¢f al. blocked the optic nerves of rabbits by xenon
coagulation and then infected them intracerebrally with
BoDV-1 (Krey et al., 1979). Retinopathy did not develop, and
viral antigen could not be detected in animals with blocked
nerves. Blindness is regularly observed in equine Borna disease
as a result of retinal degeneration with lymphoplasmacytic
infiltration (Bilzer e @/, 1996). Lymphocytic infiltrates may
also be observed within the optic nerve. There is a great diver-
sity in its severity, and not all hotses have detectable bornavirus
in their retinas (Dietzel e¢f al., 2007).

Muller cells are retinal glial cells (Kacza ez a/, 2000, 2001).
The neuron:Muller cell ratio in the retina is significantly reduced
in diseased horses as compared with controls. This appears to
be due to a concomitant loss of neurons and an increase in
glia. The neuronal degeneration begins in the outer retinal
layer where the photoreceptors are located but all retinal layers
show reduced thickness (Kacza e al., 2000).

Neurons are also lost in the retinas of BoDV-1 infected rats
and rabbits (Narayan e a/., 1983b). Four weeks after intracereb-
ral inoculation of rats there is a significant thinning of the retina
due to a loss of photoreceptor segments and ganglion cells. At
the same time, there is a great increase in the number of glial
cells in the ganglion cell and inner plexiform layers (Kacza
et al., 2000). Microglia and macrophages are involved in the neu-
ronophagocytosis that accompanies this neurodegeneration
(Kacza e al, 2000). Muller cells show moderate changes
(Tandiev es al, 2006). Kacza et al infected Lewis rats with
BoDV-1 intracerebrally (Kacza e¢f al, 2001). Within months
their retinal thickness had declined to a third of that in control
animals. Photoreceptor segments were completely destroyed
and the number of neurons reduced. There were many active
microglia and macrophages undertaking neuronophagocytosis.
Muller cells showed signs of gliosis, alterations in glutamate
synthetase, altered K currents and thickened stem processes
(Kacza et al., 2001).

Narayan e al. attributed bornaviral retinitis to a transient
attack by cytotoxic T cells (Narayan e a/., 1983b). For example,
Krey e al treated BoDV-1 infected rabbits with
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immunosuppressive drugs that delayed the onset of retinitis (Krey
et al., 1981). The treatment reduced the confluency of the retinal
lesions and some treated animals either lacked eye lesions or showed
nonprogression. Subsequently, Stahl ¢7 /. showed that the retinal T
cell infiltration consisted of afTCR+, CD4+, CD8+ cells (Stahl
et al., 2003). B cells were rarely found by Stahl ¢# a/. but Hatalski
et al. found them to be plentiful (Hatalski ¢ a/, 1998). This may
reflect the use of different reagents. Cytokine transcripts in
affected retinas included raised 1L-1fB, IL-6, IFNy and tumor
necrosis factor (INF)-a, as well as CXCL10, chemokine ligand
(CCL)2 and CCILA4. By day 36 the levels of these transcripts had
returned to normal. These cytokines were probably derived
from the infiltrating T' cells and NK cells (Sauder and de la
Torre, 1999). Chronic bornaviral infections may result from a
switch in the brain-infiltrating T cells from generating a Thl
response to a Th2 response (Hatalski e al., 1998).

Alterations in neurogenesis

In the developing rodent brain, neurogenesis occurs predomi-
nantly in the subventricular zone of the lateral ventricles and
the subgranular zone of the dentate gyrus in the hippocampus
(Katsumoto ez al., 2014). It is unclear how neuronal loss occurs
in persistently infected neonatal rats but it is probably due to
induced apoptosis (Hornig e al, 1999; Zocher et al., 2000;
Ovanesov ¢ al, 2008b). Damage to synaptic structures pre-
cedes neuronal loss in persistently infected rats and this may
impair trafficking of growth factors (Volmer ez af, 2007).
Bornaviral-induced disturbances in the neurotrophin system
also contribute to this neurodegeneration. Thus Zocher ¢t al.
found reduced levels of neurotrophin 3, brain-detived neurotro-
pic factor (BDNF) and netve growth factor in the hippocampus
14-days post-infection in newborn rats and in the cerebellum by
21 days post-infection (Zocher et al., 2000) (Fig. 3). They also
detected reduced levels of neurotrophin receptors in both the
hippocampus and cerebellum. Neonatal persistently-infected
rats fail to gain weight but lack of nourishment does not
account for the brain lesions or the lack of weight gain
(Dietz and Pletnikov, 2003). There ate increased concentrations
of serotonin in the hippocampus of bornavirus- infected neo-
nates (Dietz and Pletnikov, 2003). Hans e a/ examined the
effect of bornaviral infection on the response of hippocampal
neurons to neurotrophin BDNF. Persistent infection blocked
BDNF-induced
(ERK) phosphorylation even although the expression of the
BDNF receptor was normal (Hans ez al, 2004). As a result,
BDNF-induced expression of synaptic vesicle proteins is

extracellular  signal-regulated  kinases-1/2

blocked, potentially causing defective synaptic organization.
Persistently-infected newborn rats show a progressive decline
in the expression of synaptic markers (growth-associated pro-
tein 43, a presynaptic membrane phosphoprotein and synapto-
physin, a calcium-binding protein found in presynaptic vesicles)
followed by a loss of up to 30% of cottical neurons (Gonzalez-
Dunia ez a/., 2000). This decline in synaptic density and neuro-
nal plasticity occurs primarily within the cerebrum and the
hippocampus.
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Obesity

Some adult rats that survive acute BoDV-1 disease begin to
overeat and as a result, become obese ((Narayan ef al., 1983a;
Wensman e al., 2014). Obesity also develops in some petsis-
tently infected neonatal rats (Lyons ez af, 2002). This uncon-
trolled appetite may result from damage to hunger control
centers in the brain (Nagashima ez al, 1992; Gosztonyi and
Ludwig, 1995). The neonatal rats develop inflammation in
their pituitary stalk (Gosztonyi and Ludwig, 1995). As the obe-
sity syndrome develops, the number of virus-infected cells
grows and leads to progressive involution of the hypothalamus
as well as vacuolar degeneration of neurons in the hypothalamic
paraventricular nucleus. Herden e 2/ compared the brain lesions
of a pathogenic BoDV-1 strain with that of an obesity-inducing
strain (Herden e# a/., 2000). The obesity-inducing-strain lesions
were restricted to the septum, hippocampus, ventromedial
hypothalamus and amygdala. Herden ¢# 4/ also examined the
levels of neuropeptides in BoDV-1-infected brains and found
that expression of melanocyte-stimulating hormone (MSH)
was reduced in infected animals (Herden ez @/, 2000; Herden
et al., 2005). 0-MSH reduces appetite so its deficiency may
have an opposite effect and bornaviral obesity could therefore
be due to lesions in the melanocortin feeding center within
the hypothalamus.

Pathogenic processes

Three major pathogenic processes collectively cause the neuro-
nal damage associated with bornaviral encephalitis (Fig. 4).
Initially, the virus replicates almost exclusively in neurons
(Gosztonyi and Ludwig, 1995). This triggers immune-mediated
attack by virus specific CD8+ T cells directed against viral anti-
gens such as bornaviral N-protein or autoimmune attack against
neoantigens on the neuronal surface (Amor ¢f al., 2014). In the
later stages of infection, the virus infects microglia and astro-
cytes (Carbone ¢ al, 1991; Gosztonyi and Ludwig, 1995).
These plus the results of neuronal destruction leads to the pro-
longed activation of microglia and a consequent increase in tis-
sue cytokines and reactive nitrogen species (Gonzalez e¢f al.,
2014). Thirdly, astrocyte dysfunction due to viral invasion dis-
rupts glutamate regulation. Excess glutamate generated as a
result kills neurons through a process called excitotoxicity.

Immune-mediated T cell attack

The primary mechanism of neuronal damage in bornaviral ence-
phalitis is T cell-mediated neuronal cytotoxicity. These T cells
are activated by viral infection and as a result, mount a type 1
response characterized by the production of both IFN-y and
TNF-a (Batuch and Schwartz, 2013). The neurotransmitters
glutamine and acetylcholine also favor T cell activation
(Pacheco e al., 2010; Pikor et al., 2015) as do activated Th17
cells (Nouti ez al., 2014).
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Fig. 4. The three major mechanisms of neuronal destruction mediated by BoDV-1. These are, T-cell-mediated cytotoxicity,
microglial activation resulting in cytokine-mediated neurotoxicity, and loss of astrocyte function resulting in glutamate accumu-

lation and excitotoxic destructions of neurons.

In bornaviral lesions, the perivascular cellular infiltrates pre-
dominantly consist of CD4+ T cells while CD8+ cells predomi-
nate within the brain parenchyma. The development of neuronal
lesions is specifically associated with invasion by CD8+ cells
(Sobbe ¢ al., 1997). The importance of these T cell infiltrates
can be demonstrated by adoptive transfer of lymphocytes
from infected to uninfected rats. For example, Narayan e a/.
could transmit the disease using spleen cells from 4-week-old
rats transferred into cyclosporine-treated recipients (Narayan
et al., 19832). Rott ¢t al. were able to establish a virus-specific,
CD4+ T cell line that induced typical bornaviral lesions when
administered to recipient rats of the corresponding MHC class
II haplotype (Rott ¢ al., 1988). Sobbe ez al. induced typical bor-
naviral brain lesions in rats by adoptive transfer of CD8+ brain
T cells (Sobbe ez al, 1997). Additionally, lymphocytes obtained
from rats early in bornaviral infection could transfer the disease
but not late in infection implying that the cytotoxic cells were
generated early in the disease process (Narayan ef al., 1983a).
Planz e al. identified a peptide, ASYAQMTTY, from BoDV-
1 nucleoprotein that was recognized by CD8+ T cells in associa-
tion with the rat MHC class I molecule, RT1.A, and, as a result,
triggered T cell cytotoxicity (Planz ez al., 2001). Transgenic mice
expressing the nucleoprotein are resistant to disease, presumably
because they are immunologically tolerant to it (Schwemmle
et al., 1998). Lymphocytes from the brains of rats with acute
bornaviral disease show MHC class I restricted cytotoxic T
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cell activity. MHC class I expression occurs on astrocytes and
on some neurons in BoDV-1-infected brains. MHC class I pro-
duction by neurons is normally minimal but can be induced
(Planz et al., 1993).

Support for the essential role of T cells is also provided by
immunosuppressive studies. For example, Rott ¢ 2/ demon-
strated that T cell elimination prevented inflammation and the
development of clinical disease. A single intraperitoneal injection
of cyclophosphamide given to adult rats prevented the develop-
ment of bornaviral encephalitis and clinical disease. Stitz ¢ /.
were able to prevent the development of bornaviral disease by
administering cyclosporine prior to infection (Stitz ef al,
1989). Stitz ez al. also treated bornavirus-infected adult rats
with monoclonal antibodies against N-protein-specific CD4+
and CD8+ T cells (Stitz et al, 1992). Both types of antibody
suppressed the encephalitis but anti-CD8 was more effective
than anti-CD4. These monoclonal antibodies worked best if
given before or shortly after infection and they did not prevent
encephalitis or disease when given more than 4 days after infec-
tion. BoDV-1 infection will not result in disease in athymic nude
rats (Herzog ez al., 1985). Thus the lesions of bornaviral ence-
phalitis in rats are mediated primarily by N-protein-specific
CD8+ T cells.

In persistently infected neonatal rats, unlike adult rats, T cells
may be protective. Thus persistent BoDV-1 infection could be
prevented by prior administration of a virus-specific CD4+ T
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cell line. Recipient rats developed a transient, mild encephalitis
that lasted for only a few days. This T cell line had no cytotoxic
properties but virus clearance was accompanied by the appear-
ance of CD8+ cytotoxic T cells in the recipients (Noske ez 4/,
1998). It is interesting to note however, that in adult rats infected
with BoDV-1, the virus is found exclusively in the brain. In
cyclosporine-treated rats the virus can be detected in peripheral
netve fibers and adjacent tissues such as lung, liver and spleen
(Stitz ez al, 1991). This suggests that T cells are responsible for
containing BoDV-1 within the central nervous system (CNS).
In subsequent studies, Stitz e 2/ examined the role of antibodies
in restricting BoDV-1 to the CNS. Immune serum transfer into
cyclosporine-treated or newborn rats resulted in trestriction of
the virus to the CNS (Stitz ¢ al., 1998).

Hatalski ef a/. followed the evolution of the immune response
in the brain of BoDV-1-infected Lewis rats (Hatalski e# af,
1998). Thus at the peak of the acute infection, the petivascular
infiltrates contained both CD4+ and CD8+ T cells as well as a
significant population of NK cells. The NK cells could be iden-
tified in the brain lesions 3.5 weeks post-infection before the
onset of clinical disease. As the disease progressed and became
chronic, the numbers of all cell types dropped and the authors
suggested that this reflected a switch from a type 1 to a type 2
immune response. This suggestion was supported by a rise in
serum IgE levels. Hatalski ¢# 4/ also measured cytokine
mRNA expression in infected brains. They showed a significant
increase in the levels of the proinflammatory cytokines, IL-1a,
IL-2, IL-6, TNF-o and IFN-y that peaked at 5 weeks post-infec-
tion when acute inflammation was maximal. On the other hand,
the anti-inflammatory cytokine, I1-4 increased to reach maximal
levels at the end of the study at 15 weeks. The regulatory cyto-
kine, TGF- in contrast, peaked at 5 weeks and then stabilized
(Hatalski ez al., 1998). It is possible that the decline in inflamma-
tion seen in long-term bornaviral infections may also be due to
the development of neuroprotective Treg cells (Walsh ez af,
2014). Nishino e af. investigated this upregulation of TGF-f
in BoDV-1-infected rats. They found that signal receptors for
TGF-B1 wete also upregulated as wete inhibitin/activin BC,
two components of the TGF-f pathway (Nishino e a/, 2009).
This may reflect the ongoing immunosuppressive effects of bot-
naviral P-protein (Nishino ez a/, 2015).

Microglia and the role of chronic inflammation

The second important pathogenic process in bornaviral disease
results from prolonged activation of microglia (Weissenbock
et al., 2000; Ovanesov e/ al., 2006, 2007, 2008a, b). In the healthy
brain, microglia remodel neuronal synapses and secrete neuro-
trophic proteins that help maintain effective neuronal network
functions (Zocher ¢t al., 2000). When activated however, micro-
glia flood the brain with the inflammatory cytokines, TNF-a,
IFN-B and IL-10 as well as induced nitric oxide synthase
(iNOS), and reactive oxygen and nitrogen species (ROS and
RNS) (Gonzalez et al., 2014). These molecules induce neuronal
dysfunction and death (Heneka e a/, 2014; Papageorgiou ez al.,
2015). Zheng et al. have demonstrated that the severity of the
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neurologic signs and of the corresponding encephalitis corre-
lated well with iINOS and <t NOS mRNA expression in rat bor-
naviral disease and that the distribution of iNOS-positive cells in
the basolateral cortex and the hippocampus correlated with sites
of BoDV-1 infected cells (Zheng ¢ al., 1993). This cannot how-
ever be the whole explanation for bornaviral pathogenicity since
Hausmann e¢# a/. demonstrated that BoDV-1 caused neurologic
disease in mice that lacked IFN-y, Fas, iNOS or the chemokine
receptor, CXCR3 (Hausmann ez 4/, 2004).

Microglia are activated by BoDV-1 (Plata-Salaman ez al, 1999;
Ovanesov ¢ al., 2006) (Fig. 5). In BoDV-1-infected adult rats,
these activated microglia can be detected in the dentate gyrus
at 10 days post-infection but detectable loss of granule cells is
not seen until 30 days. Thus the virus activates the microglia
long before neuronal loss and it is therefore unlikely that the
activated microglia alone trigger neuronal loss and dysfunction
(Ovanesov et al., 2008b). Nevertheless, increased levels of
brain IL-6, TNF-a and iNOS mRNAs do correlate with the
severity of the inflammatory lesions in infected brains (de la
Torre, 2002).

Classically activated microglia (M1 cells) have two alternative
fates. They may differentiate into regulatory cells (M2 cells) and
so reduce inflaimmation and promote tissue repair or alterna-
tively, they can undergo uncontrolled activation and trigger
chronic inflammation resulting in the production of neurotoxic
factors and progtessive neural loss (Gonzalez e al., 2014). M2
activation of microglia enhances their release of neurotrophic
factors, proteases, 1L-4, TGFB and arginase 1 and stimulates
their phagocytic activity. M2 activation thus reduces inflamma-
tion and promotes tissue repair. The anti-inflammatory cyto-
kines, IL-4 and TGFP are produced during the later stages of
bornaviral encephalitis (Hatalski ez a/, 1998). While they are
mainly derived from T cells, they may also be produced by
microglia (Heneka ez a/., 2014).

Morimoto e al. used dexamethasone to inhibit bornavirus-
induced inflammation in rats. They suggested that bornaviral
disease involved an early inflammatory reaction mediated by
resident microglia leading to sensitization (antigen processing
and presentation), and an influx of primed T cells.
Restimulation of these infiltrating T cells led to the local produc-
tion of a cytokine mixture amplifying the reaction. Subsequently,
recruitment and activation of microglia continued this process.
Mortimoto ¢ al. suggested that the initial expression of pro-
inflammatory cytokines was directly mediated by microglial
BoDV-1 (Morimoto ez al., 1996).

Astrocytes and glutamate toxicity

The third major mechanism of bornaviral-induced neuronal
destruction results from astrocyte-mediated disturbances in glu-
tamate levels.

Astrocytes ate the major microglial cell population in the brain
(Rossi and Volterra, 2009). Under normal conditions, they supply
glucose to neurons and regulate the composition of extracellular
fluid. Importantly, they remove excess potassium ions and neuro-
transmitters, especially glutamate (Coulter and Eid, 2012).
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Fig. 5. The role of microglial activation in the pathogenesis of bornaviral encephalitis. M1 activation of the microglia results in
the flooding of the brain with multiple cytokines as well as potent oxidants resulting in neuronal death. Should the microglial
phenotype change to M2, the resulting cytokines will reduce inflammation and cell destruction and promote repair although

destroyed neurons unlikely to be replaced.

Astrocytes take up extracellular glutamate, transform this into glu-
tamine using glutamine synthetase and subsequently shuttle the
glutamine back to neurons using transporters. Between 80 and
90% of extracellular glutamate uptake in the brain is through
these astrocytic glutamine transporters (Vesce e al, 2007;
Coulter and Eid, 2012) (Fig. 6). Once within neurons glutamine
is reconverted to glutamate. This glutamate may act as a neuro-
transmitter directly or it is decarboxylated to form y-amino buty-
ric acid (GABA), which also acts as a neurotransmitter.

Excitotoxicity

Excitatory synaptic transmission in the brain is mainly mediated
by glutamate (Bondy and Purdy, 1977; Choi, 1988). If the extra-
cellular concentration of glutamate is excessive, neurons will be
damaged. This process is called excitotoxicity and the excessive
production of glutamate within the brain is called a glutaminer-
gic storm. Neurons die as a result of excessive influx of calcium
through glutamate receptor channels leading to mitochondrial
damage and the production of ROS and RNS (Gudino-
Cabrera e al., 2014). Excitotoxicity has been associated with
neurodegeneration (Jacobs e al., 2006). Excessive glutamate
may also impair the blood-brain barrier (Gudino-Cabrera
et al., 2014).

In the healthy brain, homeostasis is maintained by the
removal of excess glutamate by astrocytes. If these astrocytes
are lost and replaced by microglia, the glutamine-glutamate
cycle is down-regulated (Schwartz e# al., 2003). TNF-o upregu-
lates the production of glutamate in activated microglia and at
the same time, inhibits glutamate uptake by astrocytes
(Takeuchi ez al., 2000).
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Billaud ¢# a/. showed that BoDV-1 inhibits glutamate uptake
by feline primary cortical astrocytes (Billaud ez @/, 2000; de la
Torre, 2002). This failure to remove glutamate could result in
neuronal excitotoxicity. This is supported by the studies of
Ovanesov ¢ al. who measured extracellular glutamate in the
striatum of Fischer 344 rats (Ovanesov ¢ al., 2007). BoDV-1
infection increased the extracellular levels of glutamate. This ele-
vated extracellular glutamate was associated with reduced neu-
ron numbers and volume in the striatum.

Bergmann glial cells are astrocytes that surround Purkinje
cells where they sequester neuronally-produced glutamate.
Purkinje cells disappear from the cerebellum of BoDV-1-
infected neonatal mice although they themselves may not be
infected. The Bergmann glia are however infected and it is pos-
sible that damage to these cells could result in secondary loss of
Purkinje cells (Bordey and Sontheimer, 2003).

On the other hand, Richter ¢z a/. showed that two glutamate
receptor antagonists failed to prevent bornaviral-induced neuro-
nal loss in IFNYy-deficient mice. While there was a trend towards
protection it was not statistically significant. Richter ez a/. also
demonstrated that neither the frequency of virus-infected cells,
nor the composition of the T cell infiltrate was altered by
these antagonists and they concluded that glutamate excitotoxi-
city was an unlikely cause of neuronal damage (Richter e al,
2009). They did not however exclude toxic effects mediated
through the third glutamate receptor — kainite. The kainite
receptor (KA-1) has been suggested to be a BoDV-1 receptor
or target (Gosztonyi, 2008).

Zhang ¢f al. analyzed metabolites in bornavirus-infected areas
of the equine hippocampus (Zhang ¢ al., 2014). They found that
infected tissues had lower levels of D-myo-inositol-1-phosphate,

glutamate, phosphoethanolamine, heptadecanoic acid and
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Fig. 6. The role of glutamate in BoDV-1 encephalitis. The normal glutamate cycle requires that astrocytes remove excess glu-
tamate from the extracellular fluid, convert it to glutamine and return it to the neurons. If astrocytes are damaged glutamate
accumulates and kills neurons. GABAergic neurons release GABA that inhibits glutamate excitotoxicity and microglial activa-

tion. If these neurons are also damaged by BoDV-1 then additional neuronal loss will be expected.

linoleic acid but higher levels of ammonia. These results also
confirm that there are disturbances in glutamate metabolism
within these tissues.

Effects of glutamate on microglia

Glutamate release by astrocytes is influenced by inflammatory
mediators such as TNF-a and prostaglandins. Thus inflamma-
tion may disrupt astrocyte-neuronal interactions (Ovanesov
et al., 2008a; Rossi and Volterra, 2009). Activation of microglia
by BoDV-1 in witro requires the presence of astrocytes
(Ovanesov ¢ al., 2008a). Activated microglia also release large
amounts of glutamate in response to TNF-o by upregulating
glutaminase (Takeuchi ez a/., 2000).

Effects of glutamate on T cell function

T cells have receptors for glutamate and glutamate enhances T
cell adhesion, chemotactic migration and proliferation (Schwartz
et al., 2003; Levite, 2008). Glutamate also protects them against
antigen-induced apoptosis (Ganor and Levite, 2014). Thus glu-
tamate alters surface receptor expression, and may enhance T
cell cytotoxicity. It is possible therefore that elevated glutamate
in sites of bornaviral invasion might attract T cells and promote
T-cell-mediated brain damage. It may be relevant to note that
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many neurotransmitters other than glutamate also activate T
cells (Levite, 2008). For example, resting T' cells can also be acti-
vated by dopamine, serotonin and some neuropeptides

The role of gamma-aminobutyric acid

Gamma-aminobutyric acid (GABA) is an inhibitory neurotrans-
mitter synthesized from glutamate using - glutamic acid dec-
arboxylase. GABA reduces neuronal excitability by acting at
inhibitory synapses. GABA also acts as a growth factor for
the developing brain where it stimulates neuronal branching
(Chen and Kriegstein, 2015). Microglia possess GABA recep-
tors and the GABAergic system can regulate microgial activ-
ities. These microglia in turn may regulate GABAergic
transmission by neighboring neurons. T cells and dendritic
cells contain glutamic acid decarboxylase and express GABA
receptors. GABA also suppresses both proinflammatory cyto-
kine production and immune cell proliferation. Thus an
increase in GABA may suppress T' cell function and inflamma-
tion (Peng e al., 2008).

Bornaviral P-protein binds directly to GABA-receptor-asso-
ciated protein (Peng e al., 2008). It is then transported to the
cell nuclei where it disrupts the trafficking of GABA-receptors
(Scordel ez al., 2015). The P-protein also reduces neurogenesis,
and specifically targets GABAergic neurogenesis. This results
from inhibition of the production of pro-neuronal factors
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such as ApoE, Nogagn, TH and Scg10/ Strathmin2. BoDV-1 can
distupt the GABA-glutamate cycle reducing its inhibitory effect
and thus enhancing excitotoxicity and T' cell activity (Fig. 6).
Neonatal rats persistently infected with BoDV-1 undergo a
selective loss of GABAetgic cortical neurons (Bautista ef al,
1995; Eisenman e al, 1999; Gonzalez-Dunia e al., 2000;
Pletnikov e al., 2002). It is perhaps no coincidence that aberra-
tions in GABAergic neurogenesis have been associated with
human neuropsychiatric disorders (Scordel e al, 2015).

Other effects on neurotransmission

Bornaviral encephalitis in Lewis rats is associated with a decline
in the cholinergic activity of the brain (Gies ¢ a/., 1998, 2001).
This decline appears to be due to a loss of choline acetyltrans-
ferase activity in the cerebral cortex and hippocampus and a
reduction in acetylcholinesterase in these regions. These declines
parallel the loss of neurons in these areas. The decline in choline
acetyltransferase occurs in the pre-encephalitic stage of borna-
viral infection prior to T cell infiltration into the brains (Gies
et al., 1998).

BoDV-1 also affects the dopamine system. Neonatal rats
experimentally infected with BoDV-1 develop a hyperactive
movement disorder (Solbrig ¢ al., 1996). Since locomotor activ-
ity is regulated through the dopamine system, Solbrig ¢f a/. exam-
ined the dopamine receptors in these rats (Solbrig ez al., 1996).
They found that there was reduced binding to several dopamine
receptors in the nucleus accumbens. The nucleus accumbens is
the site where the limbic system and motor information interact.
It plays a role in motivational, appetite and locomotor behaviors.
Bornaviral-induced alterations have also been recorded in other
neurotransmitters such as cholecystokinin and somatostatin

(de la Torre, 2002).

Conclusions

The diversity of clinical manifestations of BoDV-1 infections
reflect its complex pathogenicity. Even the development of
acute encephalitis reflects the results of multiple disturbances
in many neuronal and immune pathways. There appear to be
three primary mechanisms involved in this pathology, namely
T cell cytotoxicity; microglial release of inflammatory cytokines
and ROS; and astrocyte-induced disturbances in glutaminergic
signaling. It is unlikely however that these are the only important
pathways involved in the disease process. Thus it is recognized
that bornaviruses disrupt the NF-kB pathway (Makino e a/,
2015), the RIG-1/MAVS pathway (Reutet ¢f al., 2010) as well
as HMGB-1 signaling (KKamitani 7 a/., 2001) and can cause epi-
genetic changes (Liu ¢f al., 2015). These effects collectively per-
mit the virus to survive innate immune attack and contribute to
the disease process. Even in the absence of acute encephalitis
BoDV-1 has a profound effect on neurodevelopmental path-
ways in neonatal rats. This may be of relevance to neurodevelop-
mental disease in humans.
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During the 1990s, interest in BoDV-1 peaked as a result of
assertions that it was an unusually common infection in humans
with neuropsychiatric disorders. This claim has been refuted.
Nevertheless, given the diversity of molecular and epigenetic
changes mediated by bornaviruses in mammalian brains, it is
conceivable that they can induce alterations in brain function
well short of the lethal encephalitis observed in squirrel bree-
ders. It is perhaps time to reopen the investigation into possible
links between bornaviral infection and mental illness.
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