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Artificial intelligence control of a low-drag
Ahmed body using distributed jet arrays
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This work proposes a machine-learning or artificial intelligence (AI) control of a low-drag
Ahmed body with a rear slant angle ϕ = 35° with a view to finding strategies for
efficient drag reduction (DR). The Reynolds number Re investigated is 1.7 × 105 based
on the square root of the body cross-sectional area. The control system comprises of five
independently operated arrays of steady microjets blowing along the edges of the rear
window and vertical base, twenty-six pressure taps on the rear end of the body and a
controller based on an ant colony algorithm for unsupervised learning of a near-optimal
control law. The cost function is designed such that both DR and control power input
are considered. The learning process of the AI control discovers forcing that produces a
DR up to 18 %, corresponding to a drag coefficient reduction of 0.06, greatly exceeding
any previously reported DR for this body. Furthermore, the discovered forcings may
provide alternative solutions, i.e. a tremendously increased control efficiency given a small
sacrifice in DR. Extensive flow measurements performed with and without control indicate
significant alterations in the flow structure around the body, such as flow separation over
the rear window, recirculation bubbles and C-pillar vortices, which are linked to the
pressure rise on the window and base. The physical mechanism for DR is unveiled, along
with a conceptual model for the altered flow structure under the optimum control or biggest
DR. This mechanism is further compared with that under the highest control efficiency.

Key words: flow control, machine learning, wakes

1. Introduction

The issues of environmental pollution and global warming highlight the necessity and
urgency of searching for new technologies to reduce the aerodynamic drag and hence
fuel consumption of road vehicles. With the passive techniques, such as shaping vehicle
bodies approaching the optimum, it is active control that may have potential to reduce drag
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significantly further. The European motor industry has set a target to reduce actively the
aerodynamic drag of vehicles by at least 30 % without restrictions on the comfort, storage
and security of passengers (Bruneau et al. 2011). Naturally, active control has been recently
given great attention in the literature.

The generic Ahmed body (Ahmed, Ramm & Faltin 1984) is widely used as a
simplified vehicle model in investigating the drag reduction (DR) of vehicles. This
model is characterized by a rounded forepart, a straight middle body with a rectangular
cross-section and a rear part with a slanted surface, sometimes referred to as the rear
window, whose slant angle ϕ is measured clockwise from the streamwise direction to the
slanted surface. The model is divided into high- and low-drag bodies, which correspond to
12.5° < ϕ < 30° and ϕ > 30°, respectively. The low-drag bodies (ϕ > 30°) may represent
the commonly used cars such as sport utility vehicles (SUV) and multi-purpose vehicles
(MPV), whose rear slant angles are usually larger than 30° (Metka 2013; Edwige et al.
2018; Zhou & Zhang 2021). The associated flow is fully separated over the rear window,
forming a big recirculation bubble which covers the rear window and most of the base.
Meanwhile, one pair of C-pillar vortices are formed along each side edge of the window,
whose strength is greatly weakened as compared with that associated with a high-drag
Ahmed body. Please refer to Liu, Zhang & Zhou (2021) for more details. Note that the
drag coefficient of a square-back Ahmed body (ϕ = 0°) is also low, at approximately
0.25. However, the wake of this body is completely different from that of a low-drag
body. This flow, where the C-pillar vortices are absent, is characterized by bi-stability
(e.g. Grandemange et al. 2013), that is, the recirculation region exhibits a random
spanwise switch between two preferred reflectional symmetry-breaking positions. This
instability has never been observed in the low-drag regime (Liu et al. 2021). Therefore,
the square-back Ahmed body is often considered to be a special case, not included in the
low-drag regime. Please refer to the flow classification in the review article by Zhou &
Zhang (2021).

Numerous investigations have been performed on the active DR of Ahmed bodies,
wherein various techniques are developed, as summarized in tables 1–3. Please refer to
Zhou & Zhang (2021) for a recent compendium on this topic. The DR in percentage,
defined as the ratio of the drag coefficient reduction under control to that in the baseline
flow, can clearly reflect the DR capability and therefore has been widely used as the
major indicator in evaluating the control performance in the literature. Most of previous
investigations are focused on the high-drag regime and square-back bodies. For the
square-back Ahmed body, Barros et al. (2016) deployed four pulsed slot jets with Coanda
deflection surfaces along the periphery of the base, achieving a maximum DR of 18 %.
Haffner et al. (2020) investigated the influence of the blowing frequency, intensity,
the Reynolds number Re and the radius of surface curvature on DR using the same
actuation technique, and proposed a scaling law for pulsed blowing with the Coanda
effect. Lorite-Díez et al. (2020b) utilized steady slot jets along the four edges of the base
and obtained a maximum DR of 6 %. Lorite-Díez et al. (2020a) further deployed steady
blowing with different gas media (helium, air and CO2) near the bottom edge of the base,
producing a maximum DR of 11 % when helium was used.

There have been a few investigations on the active DR of a low-drag Ahmed body
(table 3). Park et al. (2013) experimentally deployed one array of synthetic jets, issuing
through rectangular orifices, along the upper edge of the rear window (ϕ = 35°). The
jets were directed at 30°, 60° and 90° upward with respect to the streamwise direction.
The control led to no DR and instead raised the drag by more than 15 %. The synthetic
jet arrays were also placed along the two side edges of the rear window, but again no

963 A3-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.291


Artificial intelligence control of a low-drag

R
es

ea
rc

he
rs

ϕ
Re

/1
05

A
ct

ua
tio

n
te

ch
ni

qu
e

A
pp

ro
ac

h
�

C
D

,m
ax

D
R

m
ax

A
ub

ru
n

et
al

.(
20

11
)

25
°

3.
1–

6.
2

St
ea

dy
bl

ow
in

g
at

up
pe

re
dg

e
of

re
ar

w
in

do
w

E
xp

er
im

en
ta

l
0.

05
6

14
%

B
ru

ne
au

et
al

.(
20

11
)

25
°

0.
1

C
om

bi
ne

d
st

ea
dy

bl
ow

in
g

at
up

pe
r

an
d

tw
o

si
de

ed
ge

s
of

re
ar

w
in

do
w

an
d

su
ct

io
n

at
m

id
-h

ei
gh

to
fb

as
e

N
um

er
ic

al
0.

04
8

13
%

B
ou

ci
nh

a,
W

eb
er

&
K

ou
rt

a
(2

01
1)

25
°

2.
3

Pl
as

m
a

ac
tu

at
or

at
up

pe
re

dg
e

of
re

ar
w

in
do

w
E

xp
er

im
en

ta
l

0.
03

2
8

%
Pe

rn
od

et
al

.(
20

11
)

25
°

1.
5–

6.
1

Pu
ls

ed
bl

ow
in

g
at

up
pe

re
dg

e
of

re
ar

w
in

do
w

E
xp

er
im

en
ta

l
0.

02
5

6
%

Jo
se

ph
,A

m
an

do
le

se
&

A
id

er
(2

01
2)

25
°

4.
5

Pu
ls

ed
bl

ow
in

g
ne

ar
th

e
en

d
of

ro
of

E
xp

er
im

en
ta

l
0.

02
6

8
%

Jo
se

ph
et

al
.(

20
13

)
25

°
3.

5–
6.

8
Pu

ls
ed

bl
ow

in
g

ne
ar

th
e

en
d

of
ro

of
E

xp
er

im
en

ta
l

0.
03

4
10

%
K

ou
rt

a
&

L
ec

le
rc

(2
01

3)
25

°
3.

9–
6.

1
Sy

nt
he

tic
je

tn
ea

rt
he

en
d

of
ro

of
E

xp
er

im
en

ta
l

0.
03

5
9

%
Pa

rk
et

al
.(

20
13

)
25

°
1.

4
Sy

nt
he

tic
je

ta
tu

pp
er

ed
ge

of
re

ar
w

in
do

w
E

xp
er

im
en

ta
l

0.
01

5
5

%
M

et
ka

&
G

re
go

ry
(2

01
5)

25
°

4.
5

Fl
ui

di
c

os
ci

lla
to

ra
tu

pp
er

ed
ge

of
re

ar
w

in
do

w
E

xp
er

im
en

ta
l

0.
03

3
7

%
To

un
si

et
al

.(
20

16
)

25
°

3.
2–

9.
6

Sy
nt

he
tic

je
ta

tu
pp

er
ed

ge
of

re
ar

w
in

do
w

E
xp

er
im

en
ta

l
0.

03
4

10
%

Sh
ad

m
an

ie
ta

l.
(2

01
8)

25
°

1.
5–

2.
9

Pl
as

m
a

ac
tu

at
or

at
up

pe
re

dg
e

of
re

ar
w

in
do

w
E

xp
er

im
en

ta
l

0.
02

1
7

%
Z

ha
ng

et
al

.(
20

18
)

25
°

1.
3–

2.
0

C
om

bi
ne

d
st

ea
dy

bl
ow

in
g

at
up

pe
r

an
d

tw
o

si
de

ed
ge

s
of

re
ar

w
in

do
w

,a
nd

up
pe

ra
nd

lo
w

er
ed

ge
s

of
ba

se
E

xp
er

im
en

ta
l

0.
10

5
29

%

M
cN

al
ly

et
al

.(
20

19
)

25
°

6.
2

C
om

bi
ne

d
st

ea
dy

bl
ow

in
g

at
up

pe
re

dg
e

of
re

ar
w

in
do

w
an

d
up

pe
re

dg
e

of
ba

se
E

xp
er

im
en

ta
l

0.
05

1
13

%

W
an

g,
Y

an
g

&
Z

hu
(2

01
9)

25
°

9.
0

C
om

bi
ne

d
pu

ls
ed

su
ct

io
n

at
up

pe
re

dg
e

of
re

ar
w

in
do

w
an

d
tw

o
si

de
ed

ge
s

of
ba

se
N

um
er

ic
al

0.
08

1
26

%

K
im

,D
o

&
C

ho
i(

20
20

)
25

°
1.

1–
2.

3
Pl

as
m

a
ac

tu
at

or
at

up
pe

re
dg

e
of

re
ar

w
in

do
w

E
xp

er
im

en
ta

l
0.

03
5

10
%

L
iu

et
al

.(
20

21
)

25
°

1.
7

C
om

bi
ne

d
st

ea
dy

bl
ow

in
g

at
up

pe
r

an
d

tw
o

si
de

ed
ge

s
of

re
ar

w
in

do
w

,a
nd

lo
w

er
ed

ge
of

ba
se

E
xp

er
im

en
ta

l
0.

09
4

26
%

Ta
bl

e
1.

Su
m

m
ar

y
of

st
ud

ie
s

on
ac

tiv
e

D
R

of
a

hi
gh

-d
ra

g
A

hm
ed

bo
dy

in
pa

st
de

ca
de

,w
he

re
th

e
m

ax
im

um
D

R
is

de
no

te
d

by
D

R
m

ax
,a

nd
th

e
m

ag
ni

tu
de

of
th

e
re

du
ce

d
dr

ag
co

ef
fic

ie
nt

co
rr

es
po

nd
in

g
to

th
e

m
ax

im
um

D
R

is
de

no
te

d
by

�
C

D
,m

ax
.

963 A3-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.291


B.F. Zhang, D.W. Fan and Y. Zhou

R
es

ea
rc

he
rs

Re
/1

05
A

ct
ua

tio
n

te
ch

ni
qu

e
A

pp
ro

ac
h

�
C

D
,m

ax
D

R
m

ax

B
ru

ne
au

et
al

.(
20

10
)

0.
1

St
ea

dy
bl

ow
in

g
at

m
id

-h
ei

gh
to

fb
as

e
N

um
er

ic
al

0.
07

2
23

%
B

ar
ro

s
et

al
.(

20
14

)
3.

3
Pu

ls
ed

bl
ow

in
g

at
fo

ur
tr

ai
lin

g
ed

ge
s

of
ba

se
E

xp
er

im
en

ta
l

0.
02

1
7

%
B

ar
ro

s
et

al
.(

20
16

)
2.

2–
4.

3
Pu

ls
ed

bl
ow

in
g

w
ith

C
oa

nd
a

de
fle

ct
io

n
su

rf
ac

e
at

fo
ur

tr
ai

lin
g

ed
ge

s
of

ba
se

E
xp

er
im

en
ta

l
0.

05
3

18
%

B
ra

ck
st

on
et

al
.(

20
16

)
2.

0–
3.

8
O

sc
ill

at
in

g
fla

ps
at

tw
o

la
te

ra
le

dg
es

of
ba

se
E

xp
er

im
en

ta
l

0.
00

7
2

%
L

ie
ta

l.
(2

01
6)

6.
5

Pu
ls

ed
bl

ow
in

g
at

tw
o

la
te

ra
le

dg
es

of
ba

se
E

xp
er

im
en

ta
l

0.
00

6
2

%
E

vs
ta

fy
ev

a
et

al
.(

20
17

)
0.

00
5

Sy
nt

he
tic

je
ts

at
fo

ur
tr

ai
lin

g
ed

ge
s

of
ba

se
N

um
er

ic
al

0.
00

9
3

%
L

ie
ta

l.
(2

01
7)

3.
3

Pu
ls

ed
bl

ow
in

g
w

ith
C

oa
nd

a
de

fle
ct

io
n

su
rf

ac
e

at
fo

ur
tr

ai
lin

g
ed

ge
s

of
ba

se
E

xp
er

im
en

ta
l

0.
07

3
24

%
L

ie
ta

l.
(2

01
9)

5.
4

Pu
ls

ed
bl

ow
in

g
at

tw
o

la
te

ra
le

dg
es

of
ba

se
E

xp
er

im
en

ta
l

0.
01

9
7

%
L

or
ite

-D
íe

z
et

al
.(

20
19

)
1.

1
St

ea
dy

bl
ow

in
g

at
fo

ur
tr

ai
lin

g
ed

ge
s

of
ba

se
E

xp
er

im
en

ta
l

0.
01

1
3

%
Pl

um
ej

ea
u

et
al

.(
20

19
)

3.
3

Pu
ls

ed
bl

ow
in

g
at

tw
o

la
te

ra
le

dg
es

of
ba

se
E

xp
er

im
en

ta
l

0.
00

9
3

%
Fa

n
et

al
.(

20
20

a)
1.

7
Pu

ls
ed

bl
ow

in
g

at
fo

ur
tr

ai
lin

g
ed

ge
s

of
ba

se
E

xp
er

im
en

ta
l

0.
03

7
11

%
H

af
fn

er
et

al
.(

20
20

)
2.

0–
3.

8
Pu

ls
ed

bl
ow

in
g

w
ith

C
oa

nd
a

de
fle

ct
io

n
su

rf
ac

e
at

fo
ur

tr
ai

lin
g

ed
ge

s
of

ba
se

E
xp

er
im

en
ta

l
0.

03
12

%
L

or
ite

-D
íe

z
et

al
.(

20
20

b)
1.

1
St

ea
dy

bl
ow

in
g

at
fo

ur
tr

ai
lin

g
ed

ge
s

of
ba

se
E

xp
er

im
en

ta
l

0.
02

2
6

%
L

or
ite

-D
íe

z
et

al
.(

20
20

a)
0.

7
St

ea
dy

bl
ow

in
g

at
lo

w
er

ed
ge

of
ba

se
E

xp
er

im
en

ta
l

0.
04

1
11

%
H

af
fn

er
et

al
.(

20
21

)
5.

4
Pu

ls
ed

bl
ow

in
g

w
ith

C
oa

nd
a

de
fle

ct
io

n
su

rf
ac

e
at

fo
ur

tr
ai

lin
g

ed
ge

s
of

ba
se

E
xp

er
im

en
ta

l
0.

03
5

13
%

K
ha

n
et

al
.(

20
22

)
0.

8
St

ea
dy

bl
ow

in
g

at
th

e
ce

nt
re

of
ba

se
E

xp
er

im
en

ta
l

0.
02

3
6

%

Ta
bl

e
2.

St
ud

ie
s

on
ac

tiv
e

D
R

fo
rt

he
sq

ua
re

-b
ac

k
A

hm
ed

bo
dy

.

963 A3-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.291


Artificial intelligence control of a low-drag

Researchers ϕ Re/105 Actuation technique Approach �CD,max DRmax

Jahanmiri &
Abbaspour (2011)

35° 9.0 Combined steady suction
at upper edge of rear
window and blowing at
mid-height of base

Experimental 0.013 4 %

Metka (2013) 45° 4.5 Fluidic oscillator at upper
edge of rear window

Experimental — No DR

Park et al. (2013) 35° 1.4 Synthetic jet at upper
edge of rear window

Experimental — No DR

Edwige et al. (2018) 47° 4.9 Pulsed blowing at two
lateral edges of base

Numerical 0.004 2 %

Table 3. Active DR investigations for the low-drag Ahmed body.

DR was achieved. Metka’s (2013) attempt deploying an array of fluidic oscillators along
the upper edge of the rear window of an Ahmed body with ϕ = 45° again resulted in
a drag increase by 2 %. Jahanmiri & Abbaspour (2011) introduced experimentally and
numerically air suction through two rows of holes near the upper edge of the rear window
(ϕ = 45°), achieving a DR of 2 %. They further placed two rows of steady microjets at
the mid-height of the base and observed a rise in the static pressure of the flow behind
the base. A combination of the two actuations produced a DR of 4 %. This is considerably
below what has been achieved with the high-drag body. This is to some extent expected. As
found by Zhang et al. (2018), the key to obtaining a substantial DR for a high-drag body lies
in the deployment of a combination of three or more independent actuations which may
optimally manipulate different coherent structures. As such, the flow structure changes
from the high-drag regime, characterized by a separation bubble over the rear window,
one pair of counter-rotating longitudinal or C-pillar vortices along two side edges of the
slanted surface and two recirculation bubbles behind the vertical base (Ahmed et al. 1984),
to the low-drag regime characterized by substantially weakened C-pillar vortices and the
separation bubble over the rear window joining with the upper recirculation bubble behind
the vertical base (e.g. Liu et al. 2021). Several issues arise naturally. Could we achieve a
substantial DR with a reasonable control efficiency even for a low-drag body? Would a
combination of multiple independent actuations also work for a low-drag body? If so, how
would the flow structure vary or what is the mechanism?

It is a challenge to find the optimal control law when multiple independent actuations
are used, especially with many control parameters involved. Artificial intelligence (AI)
or machine learning control (MLC) provides a powerful vehicle for improving the
effectiveness and efficiency of flow control and hence attracts increasing attention from
fluid mechanics researchers. Please refer to Brunton, Noack & Koumoutsakos (2020)
for a recent review on this topic. This method searches for the best control law through
optimizing the cost function using a regression technique such as genetic programming
(e.g. Gautier et al. 2015; Parezanović et al. 2016; Li et al. 2017), artificial neural networks
(e.g. Ling, Kurzawski & Templeton 2016; Giannopoulos & Aider 2020; Ren, Hu & Tang
2020) and the explorative gradient method or EGM (e.g. Fan et al. 2020a; Li et al.
2022). Gautier et al. (2015) performed a feedback control on the flow separation of a
backward-facing step. The actuation was provided by one pulsed slot jet upstream of
the upper edge of the step, driven by an online particle image velocimetry (PIV)-based
sensing. Genetic programming was deployed, producing a reduction in the reattachment
length by 80 %. Li et al. (2017) applied pulsed blowing with the Coanda surface along
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the four trailing edges of a square-back Ahmed body (ϕ = 0°) to reduce the drag. Using
the linear genetic programming (LGP) technique, they achieved a maximum DR of 24 %.
All these investigations have used synchronized actuations where the control parameters
are few in number, in general not exceeding three, that is, the momentum coefficient,
frequency and duty cycle (e.g. Fan et al. 2020a). Zhou et al. (2020) developed for the first
time independent spatially distributed actuators to enhance turbulent jet mixing, where six
independently operated unsteady jets were deployed with dozens of independent control
parameters. Their learning curve based on the LGP algorithm converged to an optimal
control law that led to the finding of a turbulent flow structure, never reported previously,
that outperformed significantly all of those classical flow structures well known for jet
mixing enhancement. It seems plausible that the AI technique is a natural choice in the
search for an optimal control law that may achieve a substantial DR for a low-drag Ahmed
body given multiple independent actuations. Fan et al. (2020a) employed experimentally
the EGM in their DR investigation of a square-back Ahmed body, where four synchronized
arrays of pulsed jets were placed around the periphery of the base to manipulate the flow.
Their sensitivity analysis of DR to control parameters indicated that the control efficiency
could be increased by 400 times given a small sacrifice, only 1 %, in DR. One naturally
wonders whether the AI control could find solutions or forcings that achieve both large DR
and high control efficiency.

This work sets out to address the issues raised above through a rather extensive
experimental investigation on active DR of a low-drag Ahmed body with ϕ = 35° using five
independent steady jets arranged at every edge of the rear end. An AI system is developed
based on the ant colony algorithm (ACA) to search for the optimum control strategies of
these independent actuators. Experimental details are provided in § 2. The deployed AI
system is described in § 3. The results are presented in § 4, including the base flow, the
effects of individual actuations on the drag, the AI-based optimization for the combined
actuations and the underlying flow physics or DR mechanisms, the sensitivity analysis on
each control parameter and the control efficiency. This work is concluded in § 5.

2. Experimental details

2.1. Experimental set-up
Experiments were performed in a closed circuit wind tunnel with a 5.6 m long rectangular
test section (1.0 m high and 0.8 m wide). The flow non-uniformity is 0.1 % and the
longitudinal turbulence intensity is less than 0.4 % in the test section for the given
experimental conditions. Figure 1(a) schematically shows the experimental set-up. A flat
plate of 2.6 m × 0.78 m × 0.015 m was installed horizontally, 0.1 m above the floor of the
test section as a raised floor to control the boundary layer thickness. Following the design
of Narasimha & Prasad (1994), its leading edge was shaped to a clipper-built curve to avoid
flow separation. The plate leading edge was placed 2 m downstream of the exit plane of
the tunnel contraction.

The vehicle model was a standard 1/2-scaled Ahmed body following Ahmed et al.
(1984) with a rear slant surface angle (ϕ) of 35°, whose overall length (L), width (W)
and height (H) were 0.522 m, 0.1945 m and 0.144 m (figure 1b,c), respectively. The model
was supported by four hollow cylindrical struts of 15 mm diameter, and the clearance
between the model underside and the raised floor was 25 mm. Its front end was 0.3 m
downstream of the floor leading edge, where the boundary thickness was approximately
4 mm at a free-stream velocity (U∞) of 12 m s−1. The blockage ratio of the model to
the test section was approximately 3.9 %. The coordinate system (x, y, z) is defined in
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Figure 1. (a) Schematic of experimental arrangement. (b) Side and (c) back views and dimensions of a 1/2
scaled Ahmed body. The length unit is mm.

figure 1(b,c). The instantaneous velocity components along the x, y and z directions are
defined as U, V and W, respectively, which can be decomposed as U = Ū + u, V = V̄ + v

and W = W̄ + w, where the overbar denotes time averaging, and u, v and w are fluctuating
velocities. The superscript asterisk denotes normalization by the square root of the model
frontal area

√
A(= 0.167 m) and/or U∞; for example, f ∗ = f

√
A/U∞, ω∗

x = ωx
√

A/U∞,
ω∗

y = ωy
√

A/U∞ and ω∗
z = ωz

√
A/U∞, where f is frequency, ωx, ωy and ωz are the

instantaneous vorticity components along the x, y and z directions, respectively.
Liu et al. (2021) carried out a relatively thorough investigation on the flow structures

around this body and proposed a conceptual model of the flow structures. Unlike the
well-known classical flow structure model developed by Ahmed et al. (1984), which is
constructed based on time-averaged data, Liu et al.’s (2021) model embraces both steady
and unsteady coherent structures around the body and even the predominant frequencies
of the unsteady structures. Based on this model, five different actuations based on constant
blowing, referred to as C1, C2, C3, C4 and C5 (figure 2a), were deployed. C1, C3 and C5
are three arrays of microjets along the upper and lower edges of the slanted surface and the
lower edge of the base, respectively, each array consisting of 45 circular orifices of 1 mm
diameter; C2 and C4 each comprise two microjet arrays, arranged along the two side edges
of the rear window and the vertical base, respectively, each array includes 28 orifices for
C2 and 15 for C4. The separation between two neighbouring orifices is the same, 2 mm,
for all actuations. The blowing angle θCi of Ci (i = 1, 2, . . . , 5) may change via replacing
the actuator, each fabricated with a different θCi. Three blowing angles of 0°, 55°and 120°
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Figure 2. (a) Arrangement of actuations on the rear window and the vertical base of the Ahmed body and the
definitions of the blowing angles, where θC3 and θC5 are positive and negative, respectively. (b) Top and side
views of the chamber. Measurement locations of surface pressure on (c) the rear window and (d) the vertical
base. The length unit is mm.

were tested for DR for each of C1 and C3, and angles of 30°, 90° and 150° for each of C2
and C4; C5 was examined at θC5 = −45°, 0° and 45°.

Each array of microjets is associated with a separate chamber (figure 2b), embedded
in the model. The chamber is connected to supply air via a flexible tube through the
hollow strut of the model. The tube is hanging vertically downward from the model
before reaching the ground, so that the resultant horizontal force between the tube and
the ground is negligibly small. The chamber inlet consists of 6 equally separated holes
of 8 mm diameter for C1, C3 and C5, and 3 and 2 holes for C2 and C4, respectively.
Air flows into the chamber along streamlined diverging passages before reaching the
outlet, which act to minimize the non-uniformity of the microjets through the orifices. The
flow rate through the chamber is measured and controlled using a mass flow controller
(Flow Method FL-805) with a measuring range of 0–200 l min−1 and an uncertainty of
±2 l min−1. The blowing ratio BRCi is defined by

BRCi = VCi

U∞
, (2.1)
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Figure 3. Distributions of Vc along each microjet array measured at 1 mm above the centre of the jet exit:
C1 (θC1 = 55°), CC1

μ = 0.081; C2 (θC2 = 90°), CC2
μ = 0.051; C3 (θC3 = 55°), CC3

μ = 0.056; C4 (θC4 = 90°),
CC4

μ = 0.006; C5 (θC5 = 0°), CC5
μ = 0.016.

where VCi is the exit velocity of a microjet. Figure 3 presents the distributions of the
time-averaged centreline velocity Vc along the jet exit for each of the five actuations (C1,
C2, C3, C4 and C5). This velocity was measured using a Pitot static tube connected to an
electronic manometer (Furness FCO560) 1 mm downstream of the jet exit. The value of
Vc exhibits a very small variation, <2 % of Vc, from one microjet to another, irrespective
of Ci (i = 1, 2, . . . , 5).

2.2. Flow measurements
A single hot-wire was placed along the y-direction to measure the velocity fluctuations
uxz in the (x, z) plane to detect the predominant frequencies in the wake. The sensing
element was a tungsten wire 5 µm in diameter and approximately 1 mm in length. The
wire was operated on a constant temperature circuit (Dantec Streamline) at an overheat
ratio of 1.8. The signal from the wire was offset, amplified and low-pass filtered at a cutoff
frequency of 1.0 kHz, and digitized at a sampling frequency fs of 6 kHz using a 16-bit A/D
converter (NI PCI-6143). Hot-wire measurements were performed at x* = 0.8, y* = 0 and
z* = 0. The sampling duration was 60 s, producing a total of 3.6 × 105 data for each record.
At least three records were obtained for each test configuration. A fast Fourier transform
(FFT) algorithm was used to calculate the power spectral density function Eu of uxz, which
is normalized by the variance of uxz so that its integration over the entire frequency range
is unity. The FFT window size Nw was 4096. The frequency resolution �f in the spectral
analysis depends on fs and Nw, viz. �f = fs/Nw (e.g. Zhou et al. 2012) = 1.46 Hz.

A LaVision planar PIV system was used to measure the wake of the Ahmed model.
The model surface, raised floor and tunnel working section walls were all painted black
to minimize laser reflection. The flow was seeded with Di-Ethyl-Hexyl-Sebacat tracer
particles approximately 1 µm in diameter. Flow illumination was provided by two standard
pulsed laser sources (Vlite-200) of 532 nm wavelength, each with a maximum energy
output of 200 mJ per pulse. Each laser pulse lasted for 0.01 µs. One charge-coupled device
(CCD) camera (Imager pro HS4M, 4-megapixel sensors, 2016 × 2016 pixels resolution)
was used to capture particle images. Synchronization between image taking and flow
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illumination was provided by the LaVision timer box. The PIV measurements were
performed in the (x, z) planes at y* = 0 (symmetry plane) and 0.36, the (x, y) plane of
z* = 0.24 and 0.67 and the (y, z) plane at x* = −0.09 and 0.43. The PIV images covered
an area of x* = −0.95 to 1.5 and z* = −0.74 to 1.71 in the (x, z) planes, x* =−0.61 to
1.74 and y* = −1.12 to 1.23 in the (x, y) planes and y* =−0.92 to 0.91 and z* = −0.23 to
1.6 in the (y, z) planes. The image magnifications in both directions of each plane were
identical, approximately 203, 195 and 152 µm pixel−1 in the (x, z), (x, y) and (y, z) planes,
respectively. The intervals between two successive pulses were 90 µs, 80 µs and 20 µs
for measurements in the (x, z), (x, y) and (y, z) planes, respectively. In processing the PIV
images, the adaptive PIV method was used with a minimum interrogation area size of
32 × 32 pixels and a maximum size of 64 × 64 pixels. The grid step size of 16 × 16 pixels
produced 126 × 126 in-plane velocity vectors and the same number of vorticity data points
ωx, ωy or ωz.

Following Zhang et al. (2018) and Liu et al. (2021), the uncertainty of PIV
measurements was evaluated based on image matching analysis. This approach identifies
particle image pairs in two successive exposures according to the measured displacement
vectors, and evaluates the residual distance or particle disparity between the particle image
pairs, which dictates the uncertainty of velocity measurements. Further details of this
technique can be found in Sciacchitano, Wieneke & Scarano (2013). In the (x, z) planes
of y* = 0 and 0.36, the root-mean-square (r.m.s.) value of the disparity was found to be
approximately 0.05 pixel in both the x and z directions, resulting in the uncertainties, σU
and σW , in U and W of 0.7 %U∞. The r.m.s. values of the disparity were found to be
0.05 pixel in the (x, y) planes of z* = 0.24 and 0.67, and 0.04 pixel in the (y, z) planes
of x* =−0.09 and 0.43. The uncertainties (σU and σV ) of U and V in the (x, y) planes
are estimated to be approximately 0.9 %U∞, and those (σV and σW ) in the (y, z) planes
are approximately 2 %U∞. A total of 1800 images were captured for each test run, with
a trigger rate of 15 Hz in the double frame mode. The percentage variations of Ū∗, V̄∗,
W̄∗, ω̄∗

x , ω̄∗
y or ω̄∗

z converge with an increasing number of images to less than ±1 % once
the image number exceeds 1200, irrespective of the measurement plane or trigger rate. As
such, 1800 images are considered to be adequate for capturing the mean and fluctuating
flow fields.

2.3. Aerodynamic drag and surface pressure measurements
Time-averaged aerodynamic drag was measured using a six-component force balance
(China Academy of Aerospace Aerodynamics, HGDDS-80), which is accurate to 0.01 N.
The balance was mounted on a rigid frame fixed directly onto the ground surface in order
to minimize the effect of wind tunnel vibration on measurements (figure 1a). The test
model was rigidly mounted on the balance via the four hollow cylindrical posts 280 mm
in height, which were fixed to a horizontal connecting plate that was screwed onto the
balance. The posts were isolated from the raised floor and the wind tunnel, and were
enclosed by a sealed compartment between the raised floor and the bottom wall of the
tunnel test section, to avoid the force transmission and the effect of aerodynamic forces
resulting from the gap flow on measurements. Without sealing the compartment, the drag
force induced by the flow between the raised floor and the bottom wall on each cylindrical
support is estimated to be approximately 0.22 N, approximately 18 % of the drag on the
Ahmed body, given a flow velocity of 15 m s−1. The sampling frequency was 1 kHz for
the drag force measurement with a duration of 60 sec, producing a total of 6 × 104 samples
for each record. At least three records were collected for each test configuration.
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Following Littlewood & Passmore (2012), the aerodynamic drag FD is given by the
force-balance-measured drag Fx subtracted by the thrust force Fj induced by the blowing
jets, viz.

FD = Fx − Fj, (2.2)

where Fj was obtained at U∞ = 0 m s−1. The drag coefficient CD is calculated by

CD = FD

0.5 ρ U 2∞A
. (2.3)

The drag coefficient variation �CD is defined by

�CD = CD − CD0

CD0
, (2.4)

where CD0 is the drag coefficient of the model in the absence of control.
The pressures on the slanted surface and the vertical base were monitored from

twenty-six pressure taps (figure 2c,d), which were connected to an electronic pressure
scanner (a PSI DTC Initium system) using the plastic tubes of 1 mm inner diameter. The
scanner was placed inside the test model to minimize the length of the tubes connected
to each tap and hence to limit the filtering effect of tubing in pressure measurements
(Grandemange et al. 2013). The measurement uncertainty is estimated to be ±1 Pa. At
least three test runs were conducted for each flow condition. The sampling duration is 60 s,
with a fs of 650 Hz, for pressure measurements. The instantaneous pressure coefficient Cpi
is given by

Cpi = pi − p0

0.5ρU2∞
, i ∈ {1, 2, . . . , 26}, (2.5)

where pi is the instantaneous local pressure and p0 is the free-stream static pressure
(=45 Pa at U∞ = 15 m s−1) measured at x* = −4.9, y* = 0 and z* = 3.1 above the leading
edge of the raised floor. The change �Cpi of the time-averaged local pressure coefficient
is given by

�Cpi = Cpi − Cpi0

|Cpi0|
, (2.6)

where Cpi0 is the instantaneous pressure coefficient in the baseline flow. The spatially
averaged pressure coefficients on the rear window (〈Cp〉r) and the vertical base (〈Cp〉b)
are calculated by

〈Cp〉r =

13∑
i=1

Cpi

13
, (2.7)

and

〈Cp〉b =

26∑
i=14

Cpi

13
. (2.8)

The contribution of 〈Cp〉r and 〈Cp〉b to the force along the drag direction can be
expressed by

〈Cp〉 = 〈Cp〉r sin(ϕ) + 〈Cp〉b
2

. (2.9)
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Figure 4. (a) Sketch of the principle of the AI control system, which comprises the plant, sensors, actuators
and an ACA controller. (b) Schematic of ant colony optimization algorithm.

Then, the change of 〈Cp〉 is given by

�〈Cp〉 = 〈Cp〉 − 〈Cp0〉
|〈Cp0〉|

, (2.10)

where 〈Cp0〉 is the effective spatially averaged pressure coefficient in the absence of
control. The negative or positive sign of �〈Cp〉 represents a drop or rise in pressure.

The aerodynamic drag measurements were carried out at U∞ from 7.5 to 24 m s−1,
corresponding to the Re range of (0.9–2.7) × 105 based on

√
A and U∞, and all other

measurements were performed at U∞ = 15 m s−1 (Re =1.7 × 105).

3. AI Control based on ACA

3.1. AI control system and cost function design
The AI control system sketched in figure 4(a) consists of a plant, a sensing unit (pressure
taps), an execution unit and a control logic/controller, as in Zhou et al. (2020). The control
logic provides the execution unit with instructions or commands, and the latter, i.e. the
independently operated microjet arrays, then executes, which manipulates the control
plant (the flow around the Ahmed body). The real-time control command is generated
by a National Instrument PXIe-6356 multifunction I/O device, connected to a computer.
A LabVIEW Real-Time module is used to execute the command. The sensing unit
monitors the plant output and processes the information from the pressure taps, based on
which a decision will be made on whether the control goal has been achieved. If yes, stop;
otherwise, continue the search for the optimal control parameters. The execution hardware
and control logic are intimately interwoven, facilitating achieving of the control goal of
the plant. Before introducing the control logic in § 3.2, we discuss the set-up of the control
goal, i.e. the design of the cost function J.

963 A3-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.291


Artificial intelligence control of a low-drag

Aiming to find efficient control strategies, which may achieve a substantial DR at small
expenses, i.e. small control power input, we define J by

J = −〈Cp〉 + βp, (3.1)

where −〈Cp〉 provides a measure for the estimate of drag (Li et al. 2017; Fan et al. 2020a)
and βp is the penalization term connected to the control power input, given by

βp = α

5∑
i=1

(BRCi)
3
. (3.2)

In (3.2), α is a weighting factor. Following the energy input analyses by Wassen & Thiele
(2010), Barros et al. (2016) and Zhang et al. (2018), the power input of Ci (i = 1, 2, . . . , 5)
may be calculated by

PCi = 0.5NCiρACiU 3
∞(BRCi)3, (3.3)

where NCi is the number of microjets, and ACi is the exit area of a microjet. The choice of
α is twofold. First, α is such that the penalization term plays an appreciable role in control;
second, α cannot be too large to dominate J (Raibaudo et al. 2020). The present α is set
at 0.00002 so that the penalization term is between 0.04 % and 9 % of −〈Cp0〉 when BRCi

increases from 1 to 6 for each actuation. The variation in J is given by

�J = J − J0

J0
, (3.4)

where J0 is the cost for the baseline flow.

3.2. Optimization algorithm based on ACA
In the present control system, there are five control parameters, i.e. BRC1, BRC2, BRC3,
BRC4 and BRC5, to be optimized. It becomes challenge for conventional optimization
techniques once the number of control parameters exceeds three; for instance, the
extremum seeking method based on extended Kalman filter could be applied to at most
three control parameters (Fan, Zhou & Noack 2020b). On the other hand, the AI control
may get around this difficulty and may find the global optimum solution even when the
number of control parameters is rather large, as demonstrated by Zhou et al. (2020).

The ACA is presently used. Inspired by the behaviour of ant colonies in nature, Dorigo
et al. (1991) proposed an approach for solving hard combinatorial or discrete problems.
In their work, the well-known travelling salesman problem was used as an application
example, and the ACA was found to be effective in finding out the optimal or shortest
tour. The ACA uses many interacting agents, called artificial ants mimicking the real ones
mediated by pheromone trails, and an algorithm based on positive feedback for exploring
rapidly the optimal solution. Liao et al. (2014) developed a unified framework of ACA,
in which the ants in each cycle are divided into two groups, one whose costs are below
a threshold, performing a local search near the best ant, and the other executing a global
search in the entire parameter space. This method is demonstrated to be efficient in finding
the global optimum solutions, when applied to more than 20 benchmark multimodal
functions, without being trapped in local minima. They obtained the global extremum
for every benchmark function with faster speed and higher accuracy as compared with
conventional ACA methods (Dorigo et al. 1991; Socha & Dorigo 2008). This ACA is
implemented presently for the first time as an algorithm of MLC in order to find the best
control strategy for the DR of an Ahmed body wake, and is briefly introduced below.

963 A3-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.291


B.F. Zhang, D.W. Fan and Y. Zhou

The vector B = [b1, b2, . . . , b5]T comprises all actuation commands or analogue
voltages, where the superscript ‘T’ denotes the transpose and bi (i = 1, 2, 3, 4 or 5)
regulates the mass flow controller for Ci (figure 4a). Then

B = K(BR), (3.5)

where BR = [BRC1, BRC2, . . . , BRC5]T is referred to as the control law of the combined
actuations in this paper and K is the vector function that transforms BR to the control
signals of the mass flow controllers. The optimization process searches for a law of form
(3.5) that minimizes the cost:

Kopt = arg min
K

J[K(BR)]. (3.6)

The regression problem is to optimize mapping from five inputs (BRC1, BRC2, . . . ,
BRC5) to a single output signal J and the optimizing process is schematically shown in
figure 4(b), described briefly below:

Step 1: the process is initialized with a set of M = 100 randomly generated BRn
m, m =

1, . . . , M, also called ants, for the first cycle of ACA (n = 1). Here, the superscripts ‘n’ and
‘m’ denote the cycle number and the mth control command of each cycle.

Step 2: each ‘m’ is experimentally tested for 25 s to yield the measured cost Jn
m. The

pheromone (τ n
m) is given by

τ n
m = (1 − ev)τ

n−1
m + Jn

m, (n = 1, . . . , N), (3.7)

where ev is the evaporation rate and is set to 0.9, and N is the total number of cycles.
The value of τ 0

m is zero. Then, the ants are renumbered in order of the pheromone values,
τ n

1 < τ n
2 < · · · < τ n

M .
Step 3: the ants are sorted into two groups, one performing a local search, and the other

regenerated randomly in the entire search space. The transition probability (Pn
m) for the

local search is written as

Pn
m =

{
1 pn

m < p0

0 pn
m ≥ p0

, (3.8)

where p0 is a threshold, which affects largely the ratio of ants that perform local or global
searches. A right choice of p0 may raise the efficiency of the global searching of the ACA,
ensuring a relatively large number of ants to be generated randomly in the entire search
space (or global searching). Otherwise, most ants may get engaged in local searching. The
p0 is presently chosen to be 0.2 after a trial-and-error process. The pn

m is a variation in τ n
m

relative to τ n
1 , viz.

pn
m = τ n

m − τ n
1

τ n
1

. (3.9)

The ant conducting the local search is determined by

BRn+1
m = BRn

m + 1
2n

Ra, Ra = [r1, r2, . . . , r5]T, (3.10)

where ri (i = 1, 2, . . . , 5) can be expressed by

ri = 2Si[rand(0, 1) − 0.5], (3.11)

and Si denotes the maximum BRCi for Ci.
Step 4: next cycle starts with step 2 until the cost is converged to its minimum.
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Figure 5. (a) Time-averaged streamlines superimposed with the contours of velocity magnitude Uxz
∗

and
(b) ω̄∗

y -contours in the symmetry plane (vorticity contour interval = 1). (c) Time-averaged streamlines
superimposed with the contours of velocity magnitude Uyz

∗
and (d) ω̄∗

x -contours in the (y, z) plane of
x* =−0.09 (vorticity contour interval = 0.5). Thick purple closed contours correspond to the time-averaged
swirling strength λ2

ci

∗ = 0.1 and 0.02 in (b) and (d), respectively. Flow is unforced.

4. Results and discussion

4.1. Base flow characterization
The base flow of the Ahmed body is first documented. Its drag coefficient CD0 drops from
0.36 to 0.29 with increasing Re from 0.9 × 105 to 2.7 × 105. The uncertainty in CD0, given

by |CD0 − CD0|, where the double overbar denotes averaging over three test runs (Bidkar
et al. 2014), is estimated to be between 0.0005 and 0.004, one order of magnitude smaller
than the drop (0.07) in CD0. The measured CD0 and its variation agree well with previous
reports on an Ahmed body with ϕ = 35° by Ahmed, Ramm & Faltin (1984), Guilmineau
(2008), Meile et al. (2016) and Liu et al. (2021), who observed a decline in CD0 from 0.32
to 0.26 from Re = 1.7 × 105 to 1.4 × 106.

Figure 5(a) presents the time-averaged sectional streamlines superimposed over the
in-plane velocity magnitude Uxz

∗
in the symmetry plane of the wake. Hereinafter, the

sectional streamlines are referred to as streamlines for simplicity. Flow separates from the
upper edge of the rear window and the lower edge of the vertical base and then rolls up,
forming two recirculation bubbles, one above the other (e.g. Lienhart & Becker 2003;
Liu et al. 2021). The upper bubble is much bigger than the lower one, covering both the
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rear window and most of the upper part of the base, which is highlighted by the thick
solid contour in figure 5(a). The streamlines may allow us to determine the length of
the recirculation bubbles, defined by the maximum longitudinal bubble length of Ū ≤ 0
(e.g. Zhang, Zhou & To 2015). The length (l∗u0) of the upper recirculation bubble is
approximately 0.98. The lower bubble is hardly discernible in the streamlines, probably
because of a jittering in this bubble during time averaging (Liu et al. 2021). Within the
upper bubble, the upwash flow near the base separated from the upper edge of the base
and then rolled up under the pressure difference between the flow at the base and that over
the rear window, generating a corner vortex. This vortex accounts for the anti-clockwise
rotation of streamlines near the lower edge of the slanted surface (figure 5a).

The vortex definition proposed by Zhou et al. (1999), which is briefly introduced below,
is adopted for the identification of vortices from the vorticity data. A vortex core is a
region where the velocity gradient tensor ∇U has complex eigenvalues (Chong, Perry &
Cantwell 1990). Then, ∇U may be written as

∇U = [
vr vcr vci

]⎡⎣λr
λcr λci

−λci −λcr

⎤
⎦[vr vcr vci

]−1
, (4.1)

where λr is the real eigenvalue with a corresponding eigenvector vr, and λcr ± λcii is a
conjugate pair of the complex eigenvalues with eigenvectors vcr ± vcii. The local flow is
either stretched or compressed along the axis vr, while swirling in the plane determined
by vectors vcr and vci. The local swirling strength of the vortex is given by the imaginary
part of the complex eigenvalue pair λci. This method is independent of the reference frame
and would not detect regions containing significant vorticity such as shear layers but no
local swirling motion. A vortical motion is identified if λ2∗

ci is larger than a threshold,
approximately 3 % of the maximum λ2∗

ci , which is 0.100 in the (x, z) planes of y* = 0 and
0.36 and the (x, y) planes of z* = 0.24 and 0.67, and 0.020 and 0.001 in the (y, z) planes of
x* = −0.09 and 0.43, respectively.

The ω̄∗
y contours in the symmetry plane (figure 5b) display an upper negative-signed

concentration and a lower positive-signed concentration, both spatially coinciding
with purple-coloured thick solid contours of λ2∗

ci = 0.1. Obviously, the two vorticity
concentrations are associated with the two recirculation bubbles in the wake. Furthermore,
one positive ω̄∗

y concentration with ω̄∗
y,max = 3.6 occurs at the lower edge of the rear

window, which is ascribed to the corner vortex. Hereinafter, subscripts ‘max’ and ‘min’
denote the maximum vorticity concentrations of positive and negative signs, respectively.

Figure 5(c,d) presents time-averaged streamlines and the ω̄∗
x contours in the (y, z)

planes of x* = −0.09 (above the rear window). The flow exhibits several features. First,
a downwash flow occurs above z* ≈ 0.76, which is linked to flow separation from the
roof. Second, an upwash flow takes place at z* from 0.61 to 0.76, which is associated
with the upstream and upward motion of flow from the base to the rear window within
the upper recirculation bubble, as is evident from the streamlines in the (x, z) plane
of y* = 0 (figure 5a). Third, a flow moves toward the slanted surface below z* ≈ 0.61,
which is connected to the reattachment of the flow separated from the upper edge of the
base. As shown in the ω̄∗

x contours (figure 5d), two concentrations marked by ‘C’, the
signatures of the well-known C-pillar vortices, occur behind the two side edges of the
rear window, whose maximum magnitude reaches approximately 2.1 at (y*, z*) ≈ (±0.53,
0.83), resulting from a swirling motion. This motion is the rollup of shear layer coming off
the sidewall about the side edge of the slanted surface, due to a pressure difference between
flow at the sidewall and that over the rear window (Ahmed et al. 1984). The C-pillar
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Figure 6. Dependence of the change �CD in the drag coefficient on (a) blowing ratios BRC1, (b) BRC2,
(c) BRC3, (d) BRC4 and (e) BRC5 under individual C1, C2, C3, C4 and C5 at various blowing angles

(Re = 1.7 × 105). The uncertainty bars of �CD are calculated from |�CD − �CD|.

vortices are much weaker in strength than their counterparts in the high-drag regime (e.g.
Hucho & Sovran 1993); the maximum ω̄∗

x of the former is ten times larger than that of the
latter based on the PIV data measured in the (y, z) plane of x* = 0.2 (Wang et al. 2013).
A number of alternately signed ω̄∗

x concentrations occur near the rear window. The C-pillar
vortex may induce an inboard neighbouring vorticity concentration or a secondary vortex
with an opposite sign (Zhang et al. 2015). For the same reason, this secondary vortex may
induce another ω̄∗

x concentration next to it.

4.2. Combined actuations

4.2.1. Optimization of control parameters based on ACA algorithm
The control performance under individual C1, C2, C3, C4 and C5 is first investigated.
Figure 6 shows the dependence of �CD on the blowing ratio for the five individual
actuations operated at different blowing angles. The uncertainty of �CD is estimated to
be within 1 %. It can be seen that the blowing angle produces a significant effect on the
DR performance. Firstly, the drag can be either substantially decreased or increased by
C1, depending on θC1 (figure 6a). At θC1 = 0°, the drag drops with increasing blowing
ratio, the maximum DR being approximately 9 % when BRC1 reaches 5.7. Beyond this
BRC1, the drag grows. On the other hand, the drag rises with increasing BRC1 at θC1 = 55°
and 120°, �CD reaching 17 % and 29 % at BRC1 = 6.3, respectively. Secondly, when C2
is operated at θC2 = 30°, BRC2 produces little influence on the drag (figure 6b). This
is not the case at θC2 = 90°and 150° where the drag increases by 16 % and 51 % at
BRC2 = 9.1, respectively. Thirdly, there appears one critical blowing ratio BRC3

cr = 1.9
under C3 (figure 6c), regardless of θC3; the drag drops initially, reaching its minimum
at BRC3 = BRC3

cr , and then rises with increasing BRC3. The maximum DRs are 2 %, 3 %
and 5 % for θC3 = 0°, 55°and 120°, respectively. Fourthly, like C2, C4 achieves little
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Cases BRCi 〈Cp〉r 〈Cp〉b 〈Cp〉 �〈Cp〉r �〈Cp〉b �〈Cp〉 DR

Base flow — −0.34 −0.27 −0.24 — — — —
C1 BRC1 = 5.7 −0.43 −0.16 −0.21 −27 % 43 % 13 % 9 %
C2 BRC2 = 4.0 −0.38 −0.24 −0.23 −9 % 14 % 2 % 1 %
C3 BRC3 = 1.9 −0.29 −0.27 −0.22 15 % 2 % 7 % 5 %
C4 BRC4 = 1.9 −0.34 −0.27 −0.23 0 % 2 % 1 % 1 %
C5 BRC5 = 2.5 −0.30 −0.24 −0.21 12 % 14 % 12 % 7 %

Table 4. Spatially averaged pressure coefficients 〈Cp〉r, 〈Cp〉b and 〈Cp〉, their variations, and the corresponding
DR under C1 (θC1 = 0°), C2 (θC2 = 30°), C3 (θC3 = 120°), C4 (θC4 = 30°) and C5 (θC5 = 45°).

14
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D
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%
)

Cm (×10–3)

Figure 7. Dependence of DR on Cm under the combination of C1, C2, C3, C4 and C5.

DR at θC4 = 30° (figure 6d). Finally, C5 achieves its maximum DRs of 2 % and 7 % at
BRC5 = 2.5 for θC5 = 0° and 45°, respectively (figure 6e), but no DR for θC5 = −45°,
irrespective of BRC5. Table 4 shows 〈Cp〉r, 〈Cp〉b and 〈Cp〉 under each actuation, along
with their variations and corresponding DR.

Individual C1, C2, C3, C4 and C5 may have difficulty in controlling all or most of
the predominant coherent structures, thus achieving rather limited DR. The DR under
the combinations of C1 (θC1 = 0°), C2 (θC2 = 30°), C3 (θC3 = 120°), C4 (θC4 = 30°) and
C5 (θC5 = 45°) is examined given the same blowing coefficient (Cm) for every actuation,
which is defined by

Cm = Q
U∞A

, (4.2)

where Q is the volume flow rate (Fan et al. 2020a). The dependence of �CD on Cm is
presented in figure 7. The maximum DR reaches 11 % at Cm = 4.0 × 10−3, slightly larger
than that (9 %) achieved under individual actuations. One issue arises, that is, can we find
a combination of these five actuations so that all the coherent structures can be effectively
and simultaneously manipulated, producing a significantly more pronounced DR? In this
section, we explore based on the AI control system introduced in § 3.1 the best strategy of
the combined actuations for DR at Re = 1.7 × 105.

The ACA-based AI system searches for the optimal blowing ratios of all the five
actuations. In the learning process, the cost of each ant was tested for 25 s, which is
a compromise between the duration for time averaging and the converged cost function
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Figure 8. Learning curve of ACO control for the combined actuations of C1 (θC1 = 0°), C2 (θC2 = 30°), C3
(θC3 = 120°), C4 (θC4 = 30°) and C5 (θC5 = 45°). Each colour bar consists of 100 values of J in a cycle. The
square symbol highlights the smallest J or Jn of the best ant An in the nth cycle.

or cost. The learning curve of the AI control is presented in figure 8. Each cycle consists
of 100 ants, corresponding to 100 costs, which form one colour bar. The square symbol
highlights the best ant (An) of a cycle, corresponding to a minimum cost Jn, and the
remaining costs of this cycle are arranged monotonously, following an ascending order.
The trend shown by the square symbols reveals the evolution of the best ant from cycle
n = 1 to 20, and the corresponding control parameters are shown in table 5. Here, A1
is associated with BR = [6.0, 6.5, 4.3, 1.9, 1.8]T, which produces a cost of J1 = 0.243.
This cost is 3 % higher than J0 in the absence of forcing; �〈Cp〉 associated with A1 is
approximately 2 %, corresponding to a DR of 1 %. This is not unexpected in view of (3.1)
as βp is relatively large, about 5 % of J0. J2 drops substantially by 8 % relatively to J0,
the corresponding �〈Cp〉 and DR being 13 % and 8 %, respectively. In the third cycle, J3
decreases further to 0.212, with a DR of 9 %. The control parameters of A4, A5 and A6
are unchanged with BR = [6.1, 4.1, 4.6, 2.5, 1.6]T. The maximum deviation in the cost
between A4, A5 and A6 is less than 1 %, within the measurement uncertainty, 2 %J0, of J.
A7 corresponds to BR = [5.4, 3.7, 5.1, 2.1, 2.1]T, yielding a drop in J by 20 % or a DR of
13 %. After that, J8 drops substantially to 0.166 and remains unchanged for n ≥ 9, implying
a convergence of the cost that produces the highest �J of −29 %, that is, the optimal or
minimal cost Jopt is achieved. The optimized control law Bopt is [5.8, 3.5, 4.9, 1.3, 1.8]T,
yielding an impressive DR of 18 %, significantly higher than any previously reported DR
for a low-drag Ahmed body. The maximum DR obtained experimentally so far is only 4 %
(Jahanmiri & Abbaspour 2011).

As shown in Zhou et al. (2020), a careful analysis of proximity maps may provide a good
picture on the control laws identified and their distributions along with insight into the
optimization process. Following Zhou et al. (2020) and Fan et al. (2020a), the considered
ensemble of BRj is represented as data points in the two-dimensional plane of the feature
vectors γ j = (γ j,1, γ j,2), where j = 1, 2, . . . , N × M, so that the distance between the feature
vectors is an indicator of the difference between the control laws. The r.m.s.-averaged
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Cases BRC1 BRC2 BRC3 BRC4 BRC5 J �J �〈Cp〉 DR

A1 6.0 6.5 4.3 1.9 1.8 0.243 3 % 2 % 1 %
A2 4.8 6.6 4.0 3.5 2.9 0.215 −8 % 13 % 8 %
A3 5.9 7.1 4.2 2.5 1.7 0.212 −10 % 16 % 9 %
A4–A6 6.1 4.1 4.6 2.5 1.6 0.202 −14 % 18 % 11 %
A7 5.4 3.7 5.1 2.1 2.1 0.189 −20 % 23 % 13 %
A8–A20 5.8 3.5 4.9 1.3 1.8 0.166 −29 % 32 % 18 %

Table 5. Control parameters and performances of the best ants Ai (i = 1, 2, . . . , 20), as marked by square
symbols in figure 8.

Euclidean distance Mjk (j, k = 1, 2, . . . , N × M) between BRj and BRk is given by

Mjk =
√√√√ 5∑

i

(
BRCi

j − BRCi
k

BRCi
mx

)2

, (4.3)

where the subscript ‘mx’ denotes the maximal BRCi (i = 1, 2, . . . , 5) in tests. Figure 9
presents the proximity map of the 1000 control laws found in the first 10 cycles in a
two-dimensional plane, where the underlying metric between two control laws BRj and
BRk is given by D = (Djk), viz.

Djk = Mjk + λ|Jj − Jk|, (4.4)

where λ is the penalty coefficient. The parameter λ is chosen so that the maximum
actuation distance of Mjk is equal to the maximum difference in the performance terms.
The classical multi-dimensional scaling (Cox & Cox 2001) is used to determine γ 1 and γ 2
for the matrix D so that the length of a feature vector or distance between different control
laws can be preserved, yielding

N×M∑
j=1

N×M∑
k=1

(||γj − γk|| − Djk)
2 = min, (4.5)

where min denotes the minimum value. Control landscape or proximity map is constructed
from the three-dimensional data points (γ j,1, γ j,2, Jj), j = 1, 2, . . . , N × M. An unstructured
grid from the Delaunay triangulation is used to connect the two-dimensional feature
vectors (Kaiser et al. 2017). The J-values in each mesh triangle j1, j2, j3 ∈ {1, . . . , N × M}
are interpolated from the known values at the vertices Jj1, Jj2, Jj3. For n = 1, the best ant
occurs at (γ 1, γ 2) = (0, −0.09). As n increases, An is seen to move toward its optimum,
reaching A8 at (γ 1, γ 2) = (−0.24, 0.12). The searching path from A1 to A8 follows a rather
straight line, indicating an effectiveness and efficiency of the ACA in searching the optimal
control law. The AI control takes only 800 test runs to find the optimal combination of
actuations.

The γ 1 and γ 2 have technically no a priori meaning. However, a careful analysis of the
variation in BR with the optimal control performance may cast light upon the sensitivity of
the control performance to individual actuations and associated input energies. Figure 10
shows the dependence of the upper and lower limits for BRCi (i = 1, 2, 3, 4 or 5), denoted
by BRCi

upp and BRCi
low, respectively, on a small departure of J from its optimal value Jopt,

say Jopt +δ, Jopt +2δ and Jopt +3δ, where δ = 0.01Jopt. This dependence may indicate
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Figure 9. Control landscape produced from the 1000 control laws, each corresponding to a white circle,
obtained in the first 10 cycles of the learning process. The yellow circle denotes the best control law of each
cycle.

whether the lowest J or optimal control is sensitive to BRCi. Then, the maximal interval of
BRCi is given by

�BRCi = BRCi
upp − BRCi

low. (4.6)

A small change in BRC1 from 5.9 to 5.0 may lead to a deteriorated J from Jopt to Jopt +δ.
The range grows substantially to BRC1 from 4.0 to 6.0 as J is relaxed from Jopt to Jopt
+2δ. When J is further relaxed to Jopt – (Jopt +3δ), the BRC1 range grows to 2.8–6.0.
A similar trend of the blowing ratio range is also observed for BRCi (i = 2, 3, 4 or 5).
The observation suggests that a small sacrifice in J may lead to a substantial reduction
in BRCi or saving in the input energy. The �BRC1 is approximately 0.9 from Jopt to Jopt

+δ, which is comparable to �BRC5 (1.0) but is appreciably smaller than �BRC2 (1.5),
�BRC3 (2.2) or �BRC4 (1.4). The �BRC3 is the largest, exceeding 2�BRC1 or 2�BRC5.
The results indicate that the DR, when approaching its maximum, is less sensitive to BRC3

than the other four blowing ratios. A relaxation in J from Jopt to Jopt +2δ leads to a
moderate increase in �BRCi (i = 1, 2, . . . , 5) from 0.9, 1.5, 2.2, 1.4 and 1.0 to 2.0, 3.2, 3.5,
2.8 and 2.0, respectively. When this relaxation is further raised to Jopt +3δ, �BRC1 and
�BRC5 rise to 3.2 and 2.8, respectively; however, �BRC2, �BRC3 and �BRC4 grow more
significantly to 6.4, 4.3 and 4.2, respectively, �BRC2 being the largest. The observation
implies that the near-optimal control is quite sensitive to BRC1 and BRC5, but less so to
BRC2, BRC3 or BRC4. It seems plausible that one way to enhance the control efficiency is
to reduce to a certain extent the power input of control while maintaining a near-maximum
DR. Evidently, being sensitive to the maximum DR, BRC1 and BRC5 should be kept near
their optimal values in order to maximize the DR. On the other hand, we may reduce BRC2,
BRC3 or BRC4, without sacrificing much the DR, for the purpose of a rather substantial
saving in the power input.
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Figure 10. Dependence of the upper and lower limits for BRCi (i = 1, 2, 3, 4 or 5) on a small departure of J
from its optimal value Jopt, i.e. Jopt +δ, Jopt +2δ and Jopt +3δ, where δ = 0.01Jopt.

4.2.2. Control efficiency
The active control requires energy input to produce DR. Therefore, it is important to
determine the ratio of the power saved from the DR to the control input power PCi (i = 1,
2, . . . 5) which is an important indicator to evaluate the efficiency of the control (Choi,
Jeon & Kim 2008). The control efficiency η is defined by

η = �FDU∞
5∑

i=1

PCi

, (4.7)

where �FD denotes the decrease in drag under control (e.g. Choi et al. 2008; Zhang et al.
2018) and PCi may be calculated from (3.3). From (4.7), the power saved from reduced
drag exceeds the control input power if η exceeds unity.

Figure 11 presents the dependence of η on individual blowing ratios for C1 (θC1 = 0°),
C2 (θC2 = 30°), C3 (θC3 = 120°), C4 (θC4 = 30°) and C5 (θC5 = 45°). For all actuations,
the maximum η occurs at small BR and then declines continuously with increased BR. At
BR ≈ 0.6, η reaches approximately 2.6, 31.8 and 4.5 under C1, C3 and C5, respectively.
Nevertheless, η becomes smaller than unity when BRC1, BRC2 and BRC3 exceed 1.3, 2.5
and 3.1, respectively, that is, the power saved from reduced drag is less than the control
input power. On the other hand, the maximum η is only 0.2 and 0.6 for C2 and C4,
respectively, indicating inefficient controls.

To gain an overall picture on how DR and η vary with increasing n and how they could
be connected to each other, let us examine the proximity maps (figure 12) of control laws
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Figure 11. (a) Dependence of the control efficiency η on BR under individual C1, C2, C3, C4 and C5.

(b) Zoom in plot for 0 <η < 6. The uncertainty bars of η are calculated by |�FD − �FD| U∞/
∑5

i=1 PCi.

for cycles 1, 7, 12 and 15 along with the normalized control power input, viz.

P∗
c =

5∑
i=1

PCi

U∞FD
. (4.8)

Note that the J-contours in the figure are generated from 2000 control laws in 20 cycles.
The diameter of white circles in the figure indicates the magnitude of P∗

c . There appears
a correlation between the level of J and γ 1; the former displays in general a growth with
the latter increasing. However, γ 2 correlates with neither J nor P∗

c . The control laws occur
largely in the right half of the phase plane in the first cycle; they shift gradually toward
the left or the negative γ 1 direction and take place within a narrower range of γ 1 with
increasing n. The learning process is converged at n = 8 in terms of J when the maximum
DR (18 %) is obtained. This maximum is, however, associated with a very small η, only
0.13. However, with n increasing further, both DR and the corresponding η continue to
evolve in spite of a negligible change in J. Define En (n = 1, 2, . . . , 20) as the control law
with the highest η in the nth cycle; E7 corresponds to BR = [0.7, 0.4, 0.5, 0.7, 0.6]T with
P∗

c = 0.004, producing a large η of 25.7 and a DR of 10 %. As the present cost contains the
control power input (3.1), there is an overall decline in P∗

c with increasing n; for example,
the largest P∗

c drops from 11.9 in n = 12 to 6.7 in n = 15. Accordingly, η is 1.1 for E12
(BR = [2.6, 2.6, 0.2, 0.2, 0.3]T) and 5.8 for E15 (BR = [1.9, 0.3, 0.2, 0.5, 0.5]T), their
corresponding DR being 16 % and 15 %, respectively. The latter requires less than 20 %
of input energy consumed by the former with a sacrifice in DR by only 1 %. One may
surmise that the physical mechanisms must differ between the cases of a pronounced DR
but a small η and a less pronounced DR but a substantially increased η, which will be
discussed in the next two subsections.

Jahanmiri & Abbaspour (2011) attained a DR of only 4 % with a relatively large η

of 62.1, who deployed a combination of steady suction near the upper edge of rear
window and steady blowing at the mid-height of the base of a low-drag Ahmed body with
ϕ = 45°. Edwige et al. (2018) obtained a DR of 2 % with a η of 7.6, who applied pulsed
blowing along the two side edges of the base of an Ahmed body (ϕ = 47°). Evidently,
the combination of C1, C2, C3, C4 and C5 found by the AI control achieves a much
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Figure 12. Control landscape associated with cycles 1, 7, 12 and 15 (100 ants for each cycle). The contours of
J are produced from 2000 control laws in 20 cycles. Each circle represents a control law, whose diameter is
proportional to the power input

∑5
i=1 PCi/U∞FD0.

better performance in terms of both control efficiency and DR and may provide a valuable
guidance for the design of effective and efficient DR schemes for engineering applications.

4.2.3. Flow structure under the optimal control
Consider the optimal control when the largest DR is achieved under the optimized
combination of actuations (A8–A20). Figure 13 presents the distribution of Cp on the rear
window and the base with and without control. The uncertainty of Cp is estimated to be
0.005, approximately 2 % of 〈Cp0〉 (−0.24). The Cp distribution of the base flow displays a
pressure minimum near the lower edge of the rear window and at the upper edge of the base
(figure 13a), which is ascribed to the occurrence of a corner vortex (Liu et al. 2021). In the
symmetry plane, Cp declines from −0.34 to −0.36 with decreasing z* from 0.54 to 0.78
over the rear window, and from −0.21 to −0.34 with increasing z* over z* = 0.12–0.39.
Under the optimal control (figure 13b), a significant high-pressure region arises near the
lower edge centre of the rear window, where Cp rises by 287 %. As will be seen later,
this marked pressure rise is associated with the stagnated flow above the lower end of the
slanted surface about the symmetry plane. Furthermore, Cp near the middle of the side
edge of the rear window goes up by approximately 50 %. However, the pressure near the
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Figure 13. Distributions of Cp on the rear window and base of the Ahmed body: (a) the unforced flow,
(b) under the optimized combination of actuations. The red-coloured dotted line denotes the upper edge of
the vertical base.

upper edge of the rear window dips substantially, with �Cp being −87 % in the middle
region. The combined effect is an increase in 〈Cp〉r by 72 %. On the vertical base, Cp in
the symmetry plane rises by 30 %, 22 % and 7 % at z* = 0.39, 0.3 and 0.12, respectively.
At the lateral side of the base, the pressure near the mid-height of the base grows slightly
by 5 %, but drops by 19 % near the lower edge of the base. Overall, 〈Cp〉b increases by 4 %
as compared with the unforced flow.

Since the flow is highly three-dimensional, we examine the PIV data measured in three
orthogonal planes of the wake under the optimal control in order to understand the flow
physics and DR mechanisms. Figure 14 presents the time-averaged streamlines and the
contours of velocity magnitude Uxz

∗
in the (x, z) plane. Here, C1 yields a relatively

small separation bubble over the rear window (figure 14), which is distinct from the
unforced flow characterized by a full separation over the rear window (figure 5a). This
separation bubble creates a small low-pressure region near the upper edge of the rear
window (figure 13b). One saddle point, marked by ‘SC1’, occurs very close to the lower
end of the rear window, implying stagnated flow there, where the flow velocity is zero
(e.g. Zhou & Antonia 1994). This stagnated flow may be responsible for the impressive
increase, almost three times, in Cp near the mid lower edge of the slanted surface. The
streamlines (figure 14a) indicate that the attaching flow along the rear window interacts
with the upward and upstream blowing of C3, resulting in the stagnated flow near (x*,
z*) = (−0.04, 0.53). Also, C3 acts to force the flow, separated from the upper edge of
the base, to deflect upward, resulting in the elongation of the two recirculation bubbles
behind the base. The values of l∗u and l∗l reach 0.77 and 0.59, respectively, exceeding
substantially their counterparts (0.31 and 0.29) under C1. The elongated bubbles account
for a downstream shift in their centres, which is accompanied by an increase in the base
pressure. Behind the two bubbles, another saddle point (SC2) occurs at (x*, z*) = (0.62,
0.02), which is a result of interaction between the two bubbles (Zhang et al. 2015).
Meanwhile, the alternate emanation of coherent structures is eliminated, as supported
by the disappearance of the peak at f * = 0.3 in Eu (not shown). In the off-symmetry
plane of y* = 0.36 (figure 14b), however, the two bubbles contract longitudinally, taking
their centres, as well as the saddle point (SL2), close to the base, compared with those
in the symmetry plane. This is an indication that the legs of the two bubbles are tilted
upstream. The ‘legs’ refer to the vortical structures near the two lateral sides of the bubble
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Figure 14. Time-averaged streamlines superimposed with the Uxz
∗

contours in the (x, z) planes of (a) y* = 0
and (b) y* = 0.36 under the optimized combination of actuations, where the green dots denote the saddle points.
In (a), the blue symbols ‘+’ denote the focus and the blue broken lines indicate the bubble size in the unforced
flow determined from the streamlines in figure 5(a).

(Liu et al. 2021). The other saddle point (SL1) near the lower edge of the rear window is
also discernible in the plane of y* = 0.36, which accounts for a rise in pressure by 123 %
near the lower edge of the window in this plane (figure 13b).

The longitudinal structures may be well visualized from the time-averaged streamlines
and the contours of velocity magnitude Uyz

∗
and ω̄∗

x in the (y, z) planes of x* = −0.09
and 0.43. The C-pillar vortices appear enhanced appreciably in both size and strength
(figure 15a), compared with the unforced flow (figure 5d). However, their strength in terms
of ω̄∗

x,max is very small, only 2.9, at x* = −0.09, compared with that (20.6) under C1. This
is due to an overall increase in the surface pressure on the rear window, and the decreased
pressure difference between the flow over the window and that coming off the sidewall of
the body weakens the C-pillar vortex. Meanwhile, the blowing near the lower edge of the
rear window generates outboard one negatively signed vortical structure (figure 15a), as
denoted by ‘E’. This structure takes place below the C-pillar vortex and close to the slanted
surface, with its centre, identified with ω̄∗

x,min, at (y*, z*) ≈ (0.41, 0.57). Consequently, Cp
near the lower end of the side edge of rear window is 44 % higher than the unforced
flow (figure 13). The streamlines in the plane of x* = 0.43 behind the base (figure 15b)
show two foci at (y*, z*) = (−0.23, 0.40) and (−0.20, 0.08), which are connected to the
legs of the upper and lower recirculation bubbles, respectively. The rotation directions
of the streamlines around the upper and lower foci are anti-clockwise and clockwise,
respectively, conforming to the upstream tilting legs of the two bubbles, as evidenced in
the PIV-measured streamlines in the (x, z) planes of y* = 0 and 0.36 (figure 14). As shown
in the ω̄∗

x contours in the plane of x* = 0.43, the legs of the upper and lower bubbles are
characterized by the negative- and positive-signed vorticity concentrations, respectively.
On the other hand, the trailing legs of the upper recirculation bubble tilt downstream in
the base flow (Liu et al. 2021). The change in the two bubbles may be largely responsible
for the decrease by 19 % in Cp near the bottom of side edge of the base.

It is also insightful to examine the flow structure in the (x, y) plane. The streamlines
in the plane of z* = 0.67 of the unforced flow display a reverse flow at −0.27 < x* < 0
above the rear window (figure 16a), which is linked to the upstream motion from the
vertical base to the rear window within the upper recirculation bubble (figure 5a).
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Figure 15. Time-averaged streamlines, superimposed with the Uyz
∗

contours, and ω̄∗
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planes of (a) x* =−0.09 and (b) 0.43 under the optimized combination of actuations, where the thick purple
closed contours correspond to the time-averaged swirling strength λ2

ci

∗ = 0.001.

For x* > 0, the flow moves downstream. The ω̄∗
z contours show a strip of positively signed

vorticity concentration near the side edge of the rear window (figure 16a), which appears
deflected toward the symmetry plane at x* ≈ 0. This ω̄∗

z concentration is ascribed to the
side vortices wrapped around the C-pillar vortex (Liu et al. 2021). In the (x, z) plane
of z* = 0.24, the flow separates from the side edge of the base and rolls up, forming one
recirculation bubble behind the vertical base whose centre occurs at (x*, y*) = (0.45, 0.42)
(figure 16b), as confirmed by the positive ω̄∗

z concentration behind the lateral side of the
base. This structure may be associated with the lower recirculation bubble as supported
by the streamlines in the (x, z) plane of y* = 0.36, where this bubble spans z* = 0–0.35 at
x* = 0.56. When the optimized combination of actuations is applied, the reverse flow in
the plane of z* = 0.67 above the rear window disappears (figure 16c), due to the diminished
flow separation over slanted surface (figure 14). Furthermore, the ω̄∗

z concentration near
the lateral side of the rear window contracts longitudinally, though its inward tilting is
strengthened. This is not unexpected since the C-pillar vortex is significantly enhanced
in strength by control. The recirculation bubble behind the base shrinks longitudinally
(figure 16d), cf. figure 16(b). The shear layer separated from the side edge of the base is
inward deflected (figure 16d). The separation angle β between the streamwise direction
and the local tangential velocity of the streamline through the flow separation point rises
from 7.5° to 24.5° with increasing x* from 0 to 0.5 under control, substantially larger than
those (from 3.5° to 9.7°) in unforced flow. The ensuing boat tailing effect contributes to
an increase in the surface pressure on the base. The combined effects lead to an increase
in 〈Cp〉b by 4 %.

A conceptual model is proposed in figure 17 for the altered flow structure and hence
the DR mechanism under the optimized combination of actuations. There are a number
of significant changes in the flow structure over the window compared with the unforced
flow (Liu et al. 2021). The pair of C-pillar vortices grow markedly in strength, inducing
a downwash flow between them and resulting in flow reattachment over the rear window,
albeit with one small separation bubble near the upper edge of the rear window (figures 14
and 15). However, the C-pillar vortices remain greatly weaker than their counterpart in
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Figure 16. Time-averaged streamlines, superimposed with the Uxy
∗
-contours, and ω̄∗

z -contours in the (x, y)
planes: (a, c) z* = 0.67, (b, d) 0.24. The local maximum vorticity levels ω̄∗

z,max and ω̄∗
z,min are marked. The

thick purple closed contours correspond to the time-averaged swirling strength λ2
ci

∗ = 0.1. (a, b) Unforced
flow, (c, d) under the optimized combination of actuations. The green-coloured rectangle in (a, c) denotes the
region of the rear window projected to the plane of z* = 0.67. In (d), the blue symbol ‘+’ denotes the focus and
the blue broken lines indicate the bubble size in the unforced flow determined from the streamlines in (b).

the high-drag regime (Zhang et al. 2018), implying a small rise in the energy loss due
to the formation of the vortices. The reattached flow, interacting with the blowing of C3,
generates a patch of stagnated flow near the lower edge of the window. As a result, Cp near
the mid lower edge of the rear window is raised by 287 % (figure 13), accounting for a rise
in 〈Cp〉r by 72 %. Furthermore, a boat tailing effect is created by the inward deflection of
separated shear layers from the side edges of base (figure 16), causing a rise in 〈Cp〉b by
4 %. The present DR mechanism is distinct from those previously reported. Zhang et al.
(2018) cut down the drag by 29 % for a high-drag Ahmed body because the flow is changed
to the low-drag regime. In case of the square-back Ahmed body, the DR mechanism is
either ascribed to the suppressed wake bi-stability (e.g. Brackston et al. 2016; Li et al.
2016; Evstafyeva, Morgans & Dalla Longa 2017) or attributed to the modified shape of the
mean recirculation region behind the base such as the boat tailing effect (e.g. Barros et al.
2016; Fan et al. 2020a; Haffner et al. 2020) and an elongation of the recirculation region
(e.g. Barros et al. 2014; Lorite-Díez et al. 2020b).
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Figure 17. Conceptual model of flow structure under the optimized combination of actuations.
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Figure 18. Dependence of ηmax on DRsac at intervals [i %, i + 1 %] (i = 1, 2, 3, . . . , 8) from 38 control laws
with η > 1.

4.2.4. Flow structure associated with an efficient control
It has been found from a close examination of all the 2000 control laws that 38 individuals
produce an efficient control, i.e. η > 1, with η = 1.1–25.7 and corresponding DR is
10 %–16 %. Let us consider sacrificing some DR for a higher efficiency and denote
this sacrificed amount from the maximum (18 %) as DRsac and then DRsac = 2 %–8 %.
Figure 18 presents the variation in the maximum efficiency ηmax for each increment (i %,
i + 1 %, i = 1, 2, . . . , 8) in DRsac, and the corresponding control laws can be found in
table 6. The ηmax displays a continuous growth with increasing DRsac. The ηmax rises
moderately from 3.7 to 7.0 given a small DRsac from 2 % to 5 % but then rapidly from 9.6
to 25.7 from DRsac = 6 % to 8 %. The increase in ηmax with DRsac is mainly connected to
the decreasing BRC1, which drops from 2.1 to 0.7 from ηmax = 3.7 to 25.7 (table 6).

It is important to understand why an efficient control can be achieved. As such, we
take a close look at the flow around the body under the control law BRe that achieves
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Cases BRC1 BRC2 BRC3 BRC4 BRC5 DR DRsac η

Combination #1 2.1 0.3 0.5 0.3 1.3 16 % 2 % 3.7
Combination #2 1.4 1.1 1.1 0.5 1.0 15 % 3 % 5.8
Combination #3 1.0 0.3 0.1 1.5 1.2 13 % 5 % 7.0
Combination #4 0.4 0.2 0.2 0.3 1.5 12 % 6 % 9.6
Combination #5 0.8 1.1 0.3 0.2 0.3 11 % 7 % 13.7
Combination #6 0.7 0.4 0.5 0.7 0.6 10 % 8 % 25.7

Table 6. Control parameters and performances for different combinations of C1 (θC1 = 0°), C2 (θC2 = 30°),
C3 (θC3 = 120°), C4 (θC4 = 30°) and C5 (θC5 = 45°), Re = 1.7 × 105.

the highest η of 25.7. There is an overall increase in pressure on the rear window and
base of the body under control, as is evident when comparing the Cp distribution without
control (figure 13a) with that under the control law BRe that achieves the highest η of
25.7 (figure 19), 〈Cp〉r and 〈Cp〉b rising by 12 % and 9 %, respectively. As a result, 〈Cp〉
goes up by 11 % under control. Note that the pressure distribution under BRe is quite
different from that under the optimal control. The low-pressure and very-high-pressure
regions near the upper and mid lower edges, respectively, of the window (figure 13b)
cannot be seen under BRe (figure 19). This is reasonable as the flow structure between
the two cases exhibits several distinct differences. Firstly, the pressure recovery on the rear
window near the symmetry plane under BRe, where Cp goes up by 14 %, 12 % and 11 % at
z* = 0.78, 0.62 and 0.54, respectively, is connected to a downstream shift in the centre of
the upper recirculation bubble (Zhang et al. 2018), as shown in figure 20(a) (cf. figure 5a).
A relatively small BRC1 (=0.7) fails to eradicate flow separation from the upper edge of
the window. Under the optimal control, on the other hand, the pressure recovery on the
window is mainly ascribed to the stagnated flow near the mid lower edge of the window,
resulting in a much higher rise (287 %) in Cp (figure 13b). Secondly, one strip of positive
ω̄∗

y concentration takes place in the lower part of the window and the upper part of the
base under BRe (figure 20b), where ω̄∗

y,max reaches 8.1, apparently due to the presence of
the corner vortex. However, the corner vortex is absent under the optimal control. This is
not unexpected in view of the much lower BRC3 (=0.5) under BRe than that (4.9) under
the optimal control. Thirdly, under BRe, the lower recirculation bubble covers most part
of the base (figure 20a), extending significantly both vertically and longitudinally, which
accounts for a rise in Cp on the base (y* = 0) by 7 % – 9 % (figure 19). In contrast, it is
the upper recirculation bubble that covers almost the entire base under the optimal control
(figure 14a), and the high-pressure stagnated flow near the lower edge of the window
contributes to a pressure recovery near the upper edge of the base, which is supported by
a significant rise in Cp near the mid upper edge of base by 30 % (figure 13b).

The C-pillar vortex remains discernible under BRe, as suggested by the ω̄∗
x -contours in

the (y, z) plane of x* = 0.43 (figure 21a) where a vorticity concentration, superimposed by
the contour of λ2

ci

∗ = 0.001, is evident near (y*, z*) = (0.48, 0.78). It is worth mentioning
that, in the (y, z) plane of x* =−0.09 above the rear window, ω̄∗

x,max associated with the
C-pillar vortex is 1.4 (not shown), approximately one half of that (2.9) under the optimal
control (figure 15a), indicating a substantially weakened C-pillar vortex. As a result, no
low-pressure region is present near the side edge of the window (figure 19). There exist two
ω̄∗

x concentrations behind the upper and lower edges of the base (figure 21a), the signatures
of the legs of the two recirculation bubbles, as is evident in the time-averaged streamlines.
The time-averaged streamlines in the (x, y) plane of z* = 0.24 show one recirculation
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Figure 19. Distributions of Cp on the rear window and vertical base of the Ahmed body under the control law
BRe that achieves the highest η of 25.7. The red-coloured dotted line denotes the upper edge of the vertical
base, while the grey area falling between the two horizontal black-coloured lines is the region where the surface
pressure could not be measured due to the presence of actuators.
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Figure 20. Time-averaged streamlines (a) superimposed with the Uxz
∗
-contours, and the ω̄∗

y -contours (b) in
the (x, z) plane of y* = 0 under BRe. The blue symbol ‘+’ in (a) denotes the focus and the thick blue broken
line indicates the bubble size in the unforced flow determined from the streamlines in figure 5(a); the thick
purple closed contours in (b) correspond to the time-averaged swirling strength λ2

ci

∗ = 0.1.

bubble behind each lateral part of the base under BRe (figure 21b). The centre of this
bubble is shifted appreciably downstream as compared with the base flow, producing an
increase in Cp by 8 % near the centre of the base (figure 19). In comparison, under the
optimal control, the separated shear layer from each side edge of the base is deflected
inward by C4 (figure 16d), resulting in a boat tailing effect. This effect creates a higher
surface pressure recovery near the base centreline, with Cp near the base centre rising by
22 % (figure 13b), almost triple that (8 %) under BRe (figure 19). The BRe fails to produce
this boat tailing phenomenon since its blowing strength BRC4 of C4 is small, only 0.7 (cf.
BRC4 = 1.3 under the optimal control).

In summary, under the most efficient control, the mechanism is completely different
from that under the optimally combined actuations. The blowing ratios of BRC1, BRC2

and BRC3 are reduced to no more than 15 %, and BRC4 and BRC5 drop by half, compared
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Figure 21. (a) Time-averaged streamlines, superimposed with the Uyz
∗
-contours (left half), and ω̄∗

x -contours
(right half) in the (y, z) plane of x* = 0.43; (b) time-averaged streamlines, superimposed with the Uxy

∗
-contours

(upper half), and ω̄∗
z -contours (lower half) in the (x, y) plane of z* = 0.24, where the blue symbol ‘+’ denotes

the focus and the thick blue broken lines indicate the bubble size in the unforced flow determined from the
streamlines in figure 16(b). Thick purple closed contours correspond to (a) the time-averaged swirling strength
λ2

ci

∗ = 0.1 or (b) 0.001. Flow is manipulated under BRe.

with the optimized combination, that is, the control energy is greatly reduced, resulting in
η = 25.7 (c.f. η = 0.13 under the optimally combined actuations). As a result, the C-pillar
vortices do not change significantly. However, the upper recirculation bubble contracts by
half vertically, while the lower bubble expands, covering most part of the base (cf. the
upper bubble covering almost the entire base under the optimally combined actuations,
figure 14). Furthermore, both bubbles are elongated longitudinally, with their centres
shifting downstream (figure 20). It is the contracted upper recirculation bubble size and
the downstream shift in the centres of the two bubbles that contribute to the rise in 〈Cp〉r

and 〈Cp〉b by 13 % and 9 %, respectively, or a DR of 10 %.
The present work is performed for a low-drag Ahmed body given a streamwise flow

of constant velocity. Nevertheless, the obtained optimization laws may provide a valuable
guidance for the DR of practical SUV and MPV vehicles, though more investigations are
required should the laws be applicable for real road vehicles subjected to cross-winds and
transient flow conditions.

5. Conclusions

A rather extensive investigation has been conducted on the active DR of a low-drag Ahmed
body (ϕ = 35°) using five independently operated arrays of steady blowing jets, Ci (i = 1,
2, . . . , 5), deployed around the rear window and vertical base of the body. The ACA is used
for the first time to search for the best combination strategy of the five jets or actuators.
Exhaustive flow measurements were performed in order to unveil the DR mechanisms
behind the optimized controls, with either the largest DR or a high efficiency given a small
sacrifice in DR. Major conclusions are drawn below.
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An AI control system is developed for maximizing the DR of the Ahmed body with
efficiency considered. The parameter search space comprises the blowing ratios of the
five independent actuators. The control target is to minimize the cost J that is linked
to the total drag with a penalization term related to control power input. The learning
process converges after eight cycles, with 800 control laws tested. The optimal control
law leads to a rise in �〈Cp〉 by 32 % and a DR by 18 %, greatly exceeding the maximum
DR (4 %) achieved in previous experiments for a low-drag Ahmed body (e.g. Jahanmiri &
Abbaspour 2011). It is worth noting that the DRs obtained by individual Ci (i = 1, 2, . . . ,
5) are 9 %, 1 %, 2 %, 1 % and 3 %, respectively, given the same BRCi as the optimized
combination. However, the DR achieved by their combination exceeds the summation
(16 %) of individual DRs.

The control efficiency is evaluated for the five individual actuations and their
combinations. The η is large for C1, C3 and C5, reaching 2.6, 31.8 and 4.5, respectively,
but not for C2 and C4, only 0.2 and 0.6, respectively. It is difficult for C4 to manipulate
the three predominant coherent structures, i.e. the separation bubble over the window,
C-pillar vortices and two recirculation bubbles behind the base. On the other hand, C2 may
produce two opposite effects on DR, i.e. weakening the C-pillar vortices and subsequently
enhancing flow separation from the window. The optimal control is associated with a small
η = 0.13. With the penalization term of control power input included in the cost (3.1), we
have captured solutions in the learning process of optimization, where a small sacrifice
in DR may lead to a large increase in η, and η rises with increasing sacrifice in DR, e.g.
reaching 3.7 and 25.7 when DR drops to 16 % and 10 %, respectively.

The flow modification and mechanism of the most efficient control differ markedly
from their counterpart for the optimal control. Under the optimal control, the two C-pillar
vortices grow significantly in strength and induce a downwash flow between them,
producing flow reattachment over the window. The reattached flow interacts with the
upstream and upward blowing of C3, generating a stagnated flow region near the lower
end of the window and hence a big rise (up to 287 %) in pressure in this region, which
contributes most to the increase in the averaged pressure 〈Cp〉r over the rear window by
72 %. Furthermore, the shear layers separated from the side edges of the base are deflected
inward, creating a boat tailing effect, accounting for a rise in in the averaged pressure 〈Cp〉b
on the base by 4 %. The two changes in the flow structure account for the substantial DR.
Under the most efficient control, the blowing ratios of BRC1, BRC2 and BRC3 are greatly
reduced, implying a large drop in the input energy. As such, there is little change with the
C-pillar vortices. Nevertheless, the upper recirculation bubble shrinks substantially and the
centres of the two recirculation bubbles shift downstream, resulting in increases in 〈Cp〉r

and 〈Cp〉b by 13 % and 9 %, respectively, and hence a substantial DR.
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