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Abstract
High energies emissions observed in X-ray binaries (XRBs), active galactic nuclei (AGNs) are linearly polarised. The prominent mechanism
for X-ray is the Comptonization process. We revisit the theory for polarisation in Compton scattering with unpolarised electrons and note
that the (k× k′)-coordinate (in which, (k× k′) acts as a z-axis, here k and k′ are incident and scattered photon momentum, respectively) is
more convenient to describe it. Interestingly, for a fixed scattering plane the degree of polarisation PD after single scattering for randomly
oriented low-energy unpolarised incident photons is ∼0.33. At the scattering angle θ = 0 or θ ≡ [0,25◦], the modulation curve of k′ exhibits
the same PD and PA (angle of polarisation) of k, and even the distribution of projection of electric vector of k′ (k′

e) on perpendicular plane
to the k indicates same (so, an essential criteria for detector designing). We compute the polarisation state in Comptonization process using
Monte Carlo methods with considering a simple spherical corona. We obtain the PD of emergent photons as a function of θ-angle (or
alternatively, the disc inclination angle i) on a meridian plane (i.e. the laws of darkening, formulated by Chandrasekhar (1946, ApJ, 103, 351)
after single scattering with unpolarised incident photons. To explore the energy dependency we consider a general spectral parameter set
corresponding to hard and soft states of XRBs, we find that for average scattering no. 〈Nsc〉 ∼1.1 the PD is independent of energy and PA
∼ 90◦ (k′

e is parallel to the disc plane), and for 〈Nsc〉 ∼5 the PD value is maximum for i= 45◦. We also compare the results qualitatively with
observation of IXPE for five sources.
Keywords: Polarisation- radiation mechanisms: thermal; X-rays: binaries; X-rays: individual: 4U 1630-47; Cyg X-2; GX 9+9; XTE
J1701-462; Cyg X-1
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1. Introduction

Active galactic nuclei (AGNs), X-ray binaries (XRBs) comprise a
system of a compact object and an accretion disc, where the com-
pact object (black hole BH, or neutron star NS) accretes material
via a disc. The high energy emission (mainly X-ray <100 keV) is
highly variable and is generated at the inner region of the disc. The
different spectral states suggest the Comptonization process (i.e.
up-scattering of low-energy photons by hot electron gas) for gen-
erating the high energy emission. The spectral features, variability
timescales, and the nature of variability over different energy band
provide insight into, in general, the radiative process and the
geometry of the emission region, hence constrain the existing the-
oretical model (see for review Done, Gierliński, & Kubota 2007;
McClintock&Remillard 2006). Three parameters, the seed photon
source temperature Tb, Comptonizing medium/corona tempera-
ture Te, and optical depth of medium (τ ) or the average scattering
number 〈Nsc〉 that experienced by photon inside the corona are
mainly determined the Comptonization. The generated spectrum
generally degenerates over physically motivated emission region
geometries which are differed by, mainly, the location & geometry
of, either the seed photon source, or corona, or both. The combine
constraint due to the spectral and energy-dependent variability is
not sufficient to lift out these degeneracy concretely (e.g. Kumar &
Misra 2016b, references therein). In literature, the widely studied
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corona geometries are lamp-post corona situated at the rotation
axis of the BH, spherical corona, an extended corona on top of
the disc or other disc-corona geometry differed by shape and size.
In addition, a static vs dynamic corona (meant, the corona has a
bulk motion) has been also invoked. For example, the observed
high energy (>100 keV) power-law tail emission in XRBs has
been described by both static and dynamic corona, like energet-
ically coupled disc-corona, or hybrid electron distribution (e.g.
Done et al. 2007), or bulk Comptonization (BMC) with relativis-
tic inflow onto compact object, or BMC with relativistic conical
outflow (Kumar 2017, references therein). There is also an uncer-
tainty over the location of the seed photon source, for example,
in NS XRBs two different types of seed photon source have been
advocated, one is boundary layer (Hot-seed), and other one is
accretion disc (Cold-seed photon model) (e.g. Lin, Remillard, &
Homan 2007).

X-ray polarisation measurement provides two different inde-
pendent parameters, degree of polarisation PD and the angle of
polarisation PA; thus, it will provide extra constraints on the exist-
ing theoretical models along with parameter – spectra and time
variability. Many another fields, like particle acceleration physics,
the prompt emission of gamma-ray bursts (GRBs), hard X-ray
emission from millisecond pulsar, magnetised white dwarf (WD),
and neutron stars, are target of opportunity for X-ray polarime-
try (e.g. Fabiani 2018; Krawczynski et al. 2019; Chattopadhyay
2021). In this work, the main focus is the X-ray polarised emission
from XRBs. In literature, X-ray spectra along with polarisation
have been computed for different aspects of disc-corona geome-
try (for XRBs, or AGNs) with or without taking account of general

c© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia.

https://doi.org/10.1017/pasa.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.8
https://orcid.org/0000-0002-3473-8957
mailto:nagendra.bhu@gmail.com
https://doi.org/10.1017/pasa.2024.8
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/pasa.2024.8&domain=pdf
https://doi.org/10.1017/pasa.2024.8


2 N. Kumar

relativistic effect (e.g. Dovčiak et al. 2011; Tamborra et al. 2018). Li,
Narayan, & McClintock (2009) have discussed the X-ray polarised
emission from the geometrically thin disc and commented that the
degree of polarisation decreases with decreasing disc inclination
angle and the angle of polarisation for low energies scattered pho-
ton is parallel to the disc plane. Schnittman & Krolik (2010) have
computed the X-ray polarisation for the hard/SPL (steep power
law) state of black hole XRBs with three different corona geome-
tries and found that for photon energies above the disc thermal
peak the angle of polarisation transits to perpendicular to the disc
plane from parallel at low energy while the maximum degree of
polarisation is obtained at higher energy band (∼100 keV) and
high inclination angle, for example, the maximum PD ∼10% for
wedged corona geometry,∼4% for clumpy geometry and∼4% for
spherical geometry. Beheshtipour, Krawczynski, & Malzac (2017)
have predicted that the polarisation fraction and angle depend on
the shape and size of corona geometry (e.g. wedge and spherical)
for a fixed energy spectrum.

For astrophysical sources, it is expected that the high energy
emission generated by the Compton scattering process would
be linearly polarised as in most cases the orientation of elec-
tron spin is random. The linearly polarised X-ray emission has
been observed in X-ray bright sources. First source is the Crab
nebula, which is measured by Weisskopf et al. (1978), almost 45
years ago, using the OSO 8 graphite crystal polarimeters at 2.6
and 5.2 keV (see references therein for other sources Weisskopf
2018; and for review Lei, Dean, & Hills 1997). The Crab polari-
sation has been measured by instruments, INTEGRAL/IBIS keV;
e.g. Forot et al. 2008), INTEGRAL/SPI Jourdain & Roques 2019),
AstroSat/CZTI Vadawale et al. 2018), PoGO +, a balloon-borne
polarimeter 20–160 keV Chauvin et al. 2018),Hitomi/SGD 60–160
keV Hitomi Collaboration et al. 2018), IXPE 2–8 keV Bucciantini
et al. 2023), PolarLight 3–4.5 keV Feng et al. 2020). The lin-
ear X-ray polarisation of Cygnus X-1 has been measured by
the PoGO + balloon-borne polarimeter in energy band 19–181
keV (Chauvin et al. 2018), here authors favour the extended
spherical corona geometry over the lamp-post corona model for
high energies emission (see also for gamma-ray linear polari-
sation of Cygnus X-1 measured by INTEGRAL Laurent et al.
2011; Jourdain et al. 2012). The linear gamma-ray polarisation
for many bright GRBs sources has been detected AstroSat/CZTI
(e.g. Sharma et al. 2020; Chattopadhyay et al. 2019; Chand et al.
2019), by INTEGRAL/SPI (McGlynn et al. 2007) /IBIS (G.tz et al.
2014), by POLAR (Zhang et al. 2019), by other instruments, for
example, GAP (see in details Chattopadhyay et al. 2019). Recently,
IXPE has measured polarisation properties of many XRBs, AGNs,
pulsar in 2-8 keV energy band (Weisskopf et al. 2022; Rawat,
Garg, & Méndez 2023; Marshall et al. 2022; Jayasurya, Agrawal, &
Chatterjee 2023; Pal et al. 2023; Marinucci et al. 2022; Doroshenko
et al. 2022), and for few sources the polarisation is an energy-
dependent. Long et al. (2022) quantified the polarised emission of
Sco X-1 using PolarLight observations in 3–8 keV and noted an
energy-dependent polarisation. The X-ray polarimetry is mainly
based on three techniques diffraction, photoelectric effect, and
Compton scattering (Fabiani 2018, see for review for working, and
forthcoming dedicated mission), for example, POLIX, a Compton
scattering based X-ray polarimetry and one of instrument of
recently launched XPoSata (Paul, Gopala Krishna, & Puthiya
Veetil 2016).

ahttps://www.isro.gov.in/XPoSat.html.

In this work, we explore the polarisation properties of
Comptonized photons.We first revisited the theory of plane/linear
polarisation in Compton scattering. We noticed that the scattered
photon with the scattering angle θ = 0 (or,<25◦) exhibits the same
polarisation properties of incident photon. We obtain the laws of
darkening of single scattered unpolarised photons (originally for-
mulated by Chandrasekhar 1946) by discussing the step by step
simple cases. We estimate the energy dependency of polarisation
for single-/multi- scattered unpolarised photons with consider-
ing a simple spherical geometry, we also compare the results with
observations. In the next section, we revisit the theory of polar-
isation for Compton scattering and in Section 3 we describe the
Monte Carlo (MC) method for Compton scattering with polari-
sation. In Section 4, we compare the MC results with theoretical
results for single scattered photon. Section 5 presents the modu-
lation curve of single scattered photon in perpendicular plane of
fixed incident photon’s direction. Section 6 presents the polarisa-
tion of emergent single scattered photons from a given meridian
plane. In Section 7, we present the energy dependency of polar-
isation for multi scattering events and make a comparison with
the observations, followed by our summary and conclusions in
Section 8.

2. Revisited theory of polarisation in Compton scattering

The Compton scattering with unpolarised electrons generates
linearly or plan polarised scattered photons. For a polarised elec-
tron the scattered photon is mainly circularly polarised (Tolhoek
1956). The unpolarised electron means that the electrons spin are
pointed isotropically in all directions. In this work, we consider
only unpolarised electron for the Compton scattering process, The
Klein–Nishina differential cross section for the plane polarisa-
tion for free electron at rest is expressed as (e.g. McMaster 1961;
Akhiezerr & Berestetskil 1965)

dσ
d�

= 1
4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− 2+ 4 cos2 �

]
(1)

Here, k= hν
c is the incident photon momentum, k′ = hν′

c is the
scattered photon momentum, ν and ν ′ are incident and scattered
photon frequency, h is the plank constant, c is the speed of light,�
is the angle between electric vector of scattered (k′

e) and incident
(ke) photon, ro = e2

mc2 is the classical radius of the electron, e is the
elementary charge, m is the mass of the electron, and d� is the
differential element of solid angle. The angle � can be determined
in terms of angle made by respective electric vectors with (k ×
k′)-axis (or perpendicular direction to the scattering plane) as, see
Fig. 1,

cos� = cos θe cos θ ′
e + sin θe sin θ ′

e cos(φe − φ′
e) (2)

Here, θe and θ ′
e are the θ-angle of electric vector of incident and

scattered photon with (k × k′) direction (which acts as a z-axis),
respectively; and φe and φ′

e are corresponding φ-angles, which
are related to the scattering angle θ as φe − φ′

e ≡ ±π + θ . The
scattered frequency is determined in electron rest frame as

ν ′

ν
= 1

1+ hν
mec2 (1− cos θ)

(3)

The polarised radiation is uniquely described by four Stokes
parameters, I, Q, U, and V , with constraint I = √

Q2 +U2 +V2.
It is defined as I ≡ Ix + Iy; Q≡ Ix − Iy; U ≡ Ix+45 − Iy+45, and V is
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Figure 1. A schematic diagram for computation in local (k× k′) coordinate where the
(k× k′) acts as z-axis. In this coordinate the (x,y)-plane is a scattering plane, shown by
the gray area. The perpendicular plane to k is a red quarter circle (or, plane containing
ke and (k× k′)), and the blue quarter circle is a perpendicular plane of k′ (or, plane
containing k′

e and (k× k′)). The polarisation angle is θe and θ ′
e for k and k′, respectively,

andmeasured with respect to (k× k′). The� is the angle between ke and k′
e, the plane

containing ke and k′
e is shown by the green dotted lines. The direction of ke and k′

e are
(θe, φe) and (θ ′

e, φ′
e), respectively; thus, the scattering angle θ is θ = (φe − φ′

e)− π .

a measured of the circular polarisation, thus for the present study
V = 0. Here, Ix, Iy are the intensity measured along the one of
polarised direction, say, along the x-axis and perpendicular to it
(or along the y-axis, as here we assume that the photon is travel-
ling along the z-axis); Ix+45, Iy+45 are the intensity measured along
the direction which obtains by rotating the x- and y-axis with 45
degree, respectively. The degree of polarisation P and the angle
of polarisation χ are defined as (e.g. Lei et al. 1997; Bonometto,
Cazzola, & Saggion 1970)

P =
√
Q2 +U2 +V2

I
tan (2χ)= U

Q
. (4)

For an unpolarised radiation, P= 0, as Ix = Iy = Ix+45 = Iy+45. For
a partially polarised radiation, and P =Q/I, the P varies from −1
to 1, here P = 1 is for the completely polarised radiation with elec-
tric vector along the x-axis and P = −1 is for the electric vector
along the y-axis.

In Compton scattering, to define the Stokes parameters, cus-
tomary we choose one linear polarisation direction is perpendic-
ular to the plane of scattering (or along the (k× k′) direction)
and another one is parallel to the scattering plane (i.e. the electric
vector of scattered/ incident photon lies on the scattering plane)
and the corresponding measured intensity is denoted in terms
of differential cross section by σ⊥ (I⊥) and σ‖ (I‖), respectively.
In present notation, the θ ′

e = 0 and π/2 for σ⊥ and σ‖, respec-
tively. Since, for unpolarised electrons, we have one of Stokes
parameter V = 0, also in next section we will show that either
U = 0 (for unpolarised incident photons) or U �Q (for polarised
low-energy incident photons). Therefore, in general, for the par-
tial polarised photons (a mixture of polarised and unpolarised
photons) the degree of polarisation for Compton scattering with
unpolarised electrons can be written as (e.g. Lei et al. 1997; Dolan
1967)

P = Q
I

= I⊥ − I‖
I⊥ + I‖

= σ⊥ − σ‖
σ⊥ + σ‖

(5)

The angle of polarisation χ of the scattered photons also mea-
sures the angle between two consecutive scattering planes (e.g.
McMaster 1961). In other words, the angle between (k× k′) and

(k× k′)next is χ . Since, the k′
e, (k× k′) and (k× k′)next all are lied in

perpendicular plane to k′, therefore for next scattering:
(θe)next = θ ′

e ± χ . (6)
However for incident photons, there is no information of previous
scattering, only one has k and ke. In computation, for first scat-
tering one has to define the scattering plane freshly, without loss
of generality we assume that the angle of polarisation (χprevious) of
incident photons is θe with considering (θ ′

e)previous = 0. Here, the
subscript previous and next is used for the quantity related to the
previous and next scattering, respectively. For clarity, we denote
the angle of polarisation of the incident photons by φ.

2.1. Compton scattering of unpolarised photons

For an unpolarised incident photons, the σ⊥ and σ‖ can be deter-
mined by averaging the cos2 �-term of equation (1) over θe using
equation (2) for θ ′

e = 0 and π/2, respectively, and it is expressed as
(see, e.g. McMaster 1961):

dσ unpol
⊥ = 1

4
r2o

(
k′

k

)2 [
k
k′ + k′

k

]
,

dσ unpol
‖ = 1

4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− 2 sin2 θ

]
,

here, 〈cos2 θe〉 = 〈sin2 θe〉 =0.5; and 〈cos θe〉 = 〈sin θe〉 =0, as for
the unpolarised photons the θe is distributed isotropically.

The angle of polarisation: Similarly, we estimate the
σ
unpol
⊥+45 and σ

unpol
‖+45 with having θ ′

e = π/4 and 3π/4, respectively, its
values are σ

unpol
⊥+45 = σ

unpol
‖+45 = 1

4 r
2
o
( k′
k
)2 [ k

k′ + k′
k − sin2 θ

]
. Thus, the

Stokes parameter U is zero, which gives χ = 0. Therefore, after
single scattering, the scattered photons are polarised along the
(k× k′) direction or in another words, the plane of polarisation
of scattered photons is along the perpendicular to the scattering
plane.

The degree of polarisation: The degree of linear polar-
isation of the scattered photons after single scattering of unpo-
larised photons is written (using equation (5)) as (see, e.g.
McMaster 1961; Matt et al. 1996; Lei et al. 1997):

P = sin2 θ
k
k′ + k′

k − sin2 θ
. (7)

Here, P= 0, for θ = 0, and P = 1
k
k′ + k′

k −1
for θ = 90◦. In Thomson

limit (precisely defined as hν
γ mec2 � 1, here γ = 1/

√
(1− v2

c2 ) is the
electrons Lorentz factor, v is the speed of electron), one has k

k′ ∼ 1
(see equation (3)), thus P= 1 for θ = 90◦. Hence, in Thomson
regime the single scattered unpolarised (incident) photons at
θ = 90◦ are completely polarised in a perpendicular plane to the
scattering plane.

Modulation curve: The modulation curve is a distribution
of the (θ ′

e)-angle. The differential cross section for unpolarised
incident photons can be expressed by using equations (1) and (2)
as:

dσ = 1
4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− 2 sin2 θ sin2 θ ′

e

]
,

here, we consider once again 〈cos2 θe〉 = 〈sin2 θe〉 =0.5, and
〈cos θe〉 = 〈sin θe〉 =0. The above expression after rearranging the
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term can be written as (using, cos 2θ ′
e = 1− 2 sin2 θ ′

e)

dσ = 1
4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− sin2 θ

]
(1+ P cos 2θ ′

e) (8)

By comparison to the above expressed modulation curve from
the commonly used expression for modulation curve in litera-
ture (e.g. equation (4.10) of Lei et al. 1997, or, equation (2) of
Chattopadhyay et al. 2014, note there, authors have measured the
corresponding θ ′

e with respect to the scattering plane), we again
find that the angle of polarisation for scattered photons after sin-
gle scattering of unpolarised incident photons is zero, that is,
the linear polarisation is along the perpendicular direction to the
scattering plane.

For polarisation-insensitive detector: The cross
section for a polarisation-insensitive detector can be written (by
using equations (1) and (2), and now with having additional
〈cos2 θ ′

e〉 = 〈sin2 θ ′
e〉 =0.5) as:

dσins−detct = 1
4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− sin2 θ

]
(9)

Also, here dσins−detct = (dσ unpol
⊥ + dσ unpol

‖ )/2= (dσ unpol
⊥+45 +

dσ unpol
‖+45 )/2.

2.2. Compton scattering of polarised photons

For a completely polarised incident photons with polarisation
angle φ (i.e. θe = φ) the cross section can be obtained by averag-
ing the equation (1) over θ ′

e (see, e.g. Lei et al. 1997, and reference
therein), and it is written as:

dσ
d�

pol

= 1
4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− 2 sin2 φ sin2 θ

]
, (10)

here we consider 〈cos2 θ ′
e〉 = 〈sin2 θ ′

e〉 = 0.5, and 〈cos θe〉 = 〈sin θe〉
= 0. However, it is expected that the distribution of θ ′

e is no longer
isotropic but depends on the cross section, equation (1) (see, e.g.
Matt et al. 1996). Similar to the unpolarised incident photons case,
we compute the dσ⊥ and dσ‖ for polarised incident photons with
having θ ′

e = 0 and π/2, respectively, which is written as (see, e.g.
McMaster 1961):

dσ pol
⊥ = 1

4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− 2+ 4 cos2 φ

]

dσ pol
‖ = 1

4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− 2+ 4 sin2 φ cos2 θ

]

The angle of polarisation: The dσ⊥+45 and
dσ‖+45 for polarised incident photons are dσ pol

⊥+45 =
1
4 r

2
o
( k′
k
)2 [ k

k′ + k′
k − 2+ 2( cos2 φ + sin2 φ cos2 θ + sin 2φ cos θ)

]
,

and dσ pol
‖+45 = 1

4 r
2
o
( k′
k
)2 [ k

k′ + k′
k − 2+ 2( cos2 φ + sin2 φ cos2 θ−

sin 2φ cos θ)]. Here, θ ′
e = π/4 and 3π/4 for dσ pol

⊥+45 and dσ pol
‖+45,

respectively. The Stokes parameters U & Q are expressed as:

U = 1
4
r2o

(
k′

k

)2

[4 sin 2φ cos θ)]= dσ pol
⊥+45 − dσ pol

‖+45

Q= 1
4
r2o

(
k′

k

)2 [
4 cos2 φ − 4 sin2 φ cos2 θ

] = dσ pol
⊥ − dσ pol

‖

The angle of polarisation can be obtained by using expression (4).
In practice, the average angle of polarisation 〈χ〉 is interested, it is

written as (e.g. Li et al. 2009):

tan 2〈χ〉 = 〈U〉
〈Q〉 , (11)

here, 〈U〉 and 〈Q〉 are averaged ofU andQ over angle, respectively.
In Thomson limit, we find that the magnitude of 〈U〉 is almost one
order less than themagnitude of 〈Q〉, that is, |〈U〉| << |〈Q〉|. Thus,
〈χ〉 ∼ 0 or π/2 for a positive or negative value of 〈Q〉, respectively.

The degree of polarisation: On average |〈U〉| <<

|〈Q〉|, but we notice also U >Q for a range of θ , for example, see
Fig. A1. Hence we define the PD with considering two extreme
cases, case A: |Q| >> |U| and case B: |Q| ∼ |U|. For case A, the
degree of polarisation for single scattered photons of polarised
incident photons is expressed by using equation (5) as:

PA = Q
I

= 2− 2 sin2 φ(1+ cos2 θ)
k′
k + k

k′ − 2 sin2 φ sin2 θ
(12)

For case B, it is expressed by using equation (4) as (see, e.g. Matt
et al. 1996; Lei et al. 1997):

PB =
√
Q2 +U2

I
= 2− 2 sin2 φ sin2 θ

k′
k + k

k′ − 2 sin2 φ sin2 θ
(13)

In Thomson regime, PB = 1.
Some interesting facts: (i) θ = 0: For θ = 0,Q∝ cos(2φ) and

U ∝ sin (2φ). Since for θ = 0 one has k= k′ which gives PB = 1 for
all φ. However,U = 0 for φ = 0, π/2, π , and in this case PD would
be determined by PA. Here, PA = 1 for φ = 0, π , and PA = −1 for
φ = π/2. Conclusively, |P| = 1 for θ = 0. (ii) φ = 0, π/2: For
φ = 0 or π/2, U = 0. The PD is PA = 2

k
k′ + k′

k
and −2 cos2 θ

k
k′ + k′

k −2 sin2 θ
for

φ = 0 and π/2, respectively (for φ = 0, see McMaster 1961). In
Thomson limit, PA = 1 and −1; χ = 0 and π/2 for φ = 0 and π/2,
respectively (see also Fig. 5), also by definition of Q, here θ ′

e = 0
and π/2, respectively. And in words, the polarisation properties
of scattered photons are same to the incident photons. (iii) φ

= π/4: For φ = π/4, it is expected that the incident polarised
photons behave like unpolarised photons. It means that the degree
of polarisation of scattered photons will be described by expres-
sion (7). We note that for φ = π/4 the only PA reduces to the
expression (7).

Modulation curve: The expression for modulation curve is
written by using equation (1) as:

dσ
d�

pol

= 1
4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− 2+ 4( cos2 φ cos2 θ ′

e

+ sin2 φ sin2 θ ′
e cos2 θ − 1

2
sin 2φ sin 2θ ′

e cos θ)
]
. (14)

After rearranging the term, the above equation can be written as:

dσ
d�

pol

= 1
4
r2o

(
k′

k

)2 [
k
k′ + k′

k
− 2 sin2 φ sin2 θ

] [
1+ PA

(
cos 2θ ′

e

− sin 2φ cos θ

cos2 φ − 2 sin2 φ cos2 θ
sin 2θ ′

e

)]
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2.3. A special case for polarisationmeasurement at θ = 0

For θ = 0, the cross section (1) can be written simply as:
dσ
d�

= r2o cos
2 (θe + θ ′

e), (15)

here we use k′
k = 1, for θ = 0, which is true for a electron is in either

rest or motion. In this case, k′
e will also lie on the perpendicular

plane to the k, and thus for a plane the solid angle becomes d�
= dθ ′

e. Hence, dσ ∝ cos2 (θe + θ ′
e)dθ ′

e, which has properties that
the distribution of θ ′

e replicates the polarised distribution of θe. It
can be understood as (i) for unpolarised incident photons, θe is
isotropically distributed; thus, the averaged cross section over θe
for θ ′

e is simply a constant, or
dσ
dθ ′

e
= constant.

(ii) for polarised incident photons, θe = constant = φ, and the
cross section becomes

dσ
dθ ′

e
= r2o cos

2 (θ ′
e + φ)= r2o

2
(
1+ cos(2(θ ′

e + φ))
)
,

which is a modulation curve for the scattered photons with degree
of polarisation P= 1 and the angle of polarisation χ = φ.

In general for the partially polarised incident photons, in which
P fraction is the polarised photons with polarisation angle φ and
(1− P) fraction is the unpolarised photons, the modulation curve
can be written as:

dσ
dθ ′

e
=A+ B cos(2(θ ′

e + φ)) (16)

here, A and B are a normalisation factor, and clearly, P = B/A and
χ = φ. The above expression is similar to the equation (4.10) of
Lei et al. (1997).

2.4. Lorentz invariance of the Stokes parameters

We know that the field of the radiation is transverse in any ref-
erence frame, and the Lorentz boost subjects to an aberration
effect of radiation. Since the electric vector always lies on the per-
pendicular plane to radiation propagation direction, and these
electric vectors will be transformed from one frame to another
Lorentz-boosted frame with the same rule. Thus, if the radiation is
completely polarised in one reference frame, then it will be com-
pletely polarised in any Lorentz-boosted frame. In other words, the
degree of polarisation of photons in any Lorentz-boosted frame
is same to the magnitude of PD in the electron rest frame. Later,
we will argue that in Compton scattering the angle of polarisa-
tion for photons remains the same in any Lorentz-boosted frame.
Hence, the Stokes parameters are invariant under Lorentz trans-
formations (see, e.g. Landau & Lifshitz 1987; Krawczynski 2012,
references therein).

3. Monte Carlo method

The Klein–Nishina differential cross section for unpolarised rest
electrons expressed by equation (1) depends mainly on momen-
tum of incident photon k, �-angle, and scattering angle θ . For a
given incident photon direction and polarisation angle φ (=θe by
assumption), in principle, without affecting the cross section one
can take any direction of (k× k′) on the perpendicular plane to k
with maintaining the ke direction such that the angle between ke
and (k× k′) is θe. Hence, for a known incident photon direction

and polarisation, any scattering plane is permissible according to
the cross section unless the direction of ke is not fixed in space
(say, global coordinate). In case of the fixed ke in space, the pho-
ton can scatter onto two planes only, as there are only two possible
ways for the (k× k′) presentations, left and right side of the ke.
Next, for a known incident photon direction, polarisation angle
and fixed ke in space (i.e. fixed scattering plane) if the �-angle is
known then according to the cross section the electric vector of
scattered photon k′

e lies on the surface of cone with opening angle
� and cone-axis along the ke. Since, the scattering plane is fixed, so
(k× k′) also. And the k′ direction can be determined in a perpen-
dicular direction to the plane containing k′

e and (k× k′), in which
k′
e is any one of vectors which lies on that cone. Simply, if one takes
(k× k′) as a z-axis then the intersection of φ-plane and that cone
gives k′

e and the normal to this φ-plane (which cuts that cone) will
give k′ (see Fig. 1, however for clarity, the cone containing possi-
ble k′

e is not shown). It can be understood easily when ke lies on
the scattering plane (i.e. (x,y)-plane), and here one can note that
for a particular value of � either some definite range of θ or, θ ′

e
is possible. In another example when ke is along the (k× k′), in
this case, the photon can scatter in all possible directions of the
scattering plane, and obviously θ ′

e = �. Hence, for a given polar-
isation characteristics of incident photon, and for given �-angle,
only the definite range of θ and θ ′

e is permissible, where θ and θ ′
e

both are related each other by equation (2).
There are mainly two unknown quantities �-angle and scat-

tering angle θ for determining the Klein–Nishina cross section, as
we know k and ke prior to scattering (at least, in MC calculation).
But, to describe the scattered photon polarisation properties one
needs the angle θ ′

e, which can be obtained by using equation (2)
for a known �-angle and θ . Therefore, to examine the polarisa-
tion in Compton scattering, one have three unknown quantities
�-angle, θ and θ ′

e, in which two quantities would be extracted
from Klein–Nishina cross section and remaining one would be
obtained by using equation (2). In above paragraph we note that in
(k× k′)-coordinate one can easily know the possible range of θ (or
θ ′
e) value for a given �-angle and ke. So, it is more convincing, if

one describe the Compton scattering in (k× k′) coordinate system
(where the z−axis is along the (k× k′)) with expressing the cross
section as a function of θ and θ ′

e (see Fig. 1). In the present study
for MC calculations, we consider the cross section, equation (1), as
a function of θ and θ ′

e and describe the Compton scattering locally
in (k× k′)-coordinate system. The algorithm for MC method is
similar to the algorithm of Kumar &Misra (2016b) with additional
inclusion of polarisation properties. Below we have described the
important steps involved in MC calculations.

To describe the different steps involved in MC calculations we
consider, for simplicity, a spherical corona of radius L and temper-
ature Te. The seed photon source is situated at the origin of spher-
ical corona which illuminates in all directions. The optical depth
τ is defined along the radial direction of the corona/medium,
the electron density inside the corona is ne = τ

LσT
, where σT is

Thomson cross section. We assume that the seed photon source is
a black body with temperature Tb. We track a photon till it leaves
the medium after single/multiple or zero scattering. We repeat
the process for a large number of photons to make the statistics
analysis.

• In the first step, we determine the incident photon’s energy
E= hν from a black body distribution and the electron’s
velocity from the velocity distribution of temperature Te.
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We consider an isotropic distribution for the photons and
electrons direction. The mean free path λ of photon of
energy E is computed for a given Te and ne. We com-
pute the above quantities in global coordinate using the
scheme developed by Hua & Titarchuk (1995) (see also
Krawczynski 2012 for the polarisation scheme).

• Next, we determine the collision free path of the photon lf
in the medium with an exponential pdf (probability distri-
bution function), exp

(−lf
λ

)
, and obtain the condition for

occurrence of scattering. If lf > L then the photon escapes
the medium without scattering and for lf < L the scatter-
ing will be happened at distance lf from the origin (or in
general, from the previous site of scattering) in direction
of the incident photon.

• Next, we specify the polarisation properties of the inci-
dent photon locally in (k× k′)-coordinate of global (say,
(k× k′)global-coordinate). For this we first assign the (k×
k′) direction on the perpendicular plane to k. For an unpo-
larised incident photon, we select the (k× k′) direction
uniformly, also θe angle uniformly to determine the polar-
isation vector. For a polarised photon, we first fix ke and
then determine the (k× k′) direction either left or right
side of ke at angle θe on the perpendicular plane to k.

• In second step to describe the Compton scattering, we
transform the quantities from global coordinate to elec-
tron rest frame.

– As the Stokes parameters are invariant under the
Lorentz transformation, we assume that the polari-
sation angle also does not change. In electron rest
frame, due to the aberration effect the incident pho-
ton direction will change in the plane containing k& v
(say, kab). Consequently, the polarisation vector will
lie now in a plane perpendicular to kab, denoted as
kabe . The direction of kabe can be determined as. Since
the scattering plane is assigned in global coordinate,
so to determine the scattering plane in electron rest
frame, we consider an another incident photon direc-
tion on global scattering plane and transformed it into
electron rest frame, thus the plane containing kab, and
this transformed photon direction would be the scat-
tering plane in electron rest frame. Therefore, (k× k′)
in electron rest frame can be determined, and con-
sequently one can fix the kabe for a known θe in this
(k× k′)rest frame-coordinate.With having θ ′

e and θ from
the cross section in electron rest frame one can deter-
mine the scattered photon direction k′

ab and its k
′ab
e . In

a similar way, these two quantities transferred back to
the (k× k′)global-coordinate. We again emphasise that
one have to transform the k

′ab
e into k

′
e with the con-

dition of θ ′
e
∣∣
lab frame = θ ′

e
∣∣
rest frame due to the Lorentz

invariance of Stokes parameters.
– The condition of θe|lab frame = θe|rest frame can be under-

stood as. Suppose, the incident photons are fully
polarised with θe = 45◦. The degree of polarisa-
tion for scattered photons with almost rest elec-
tron will be described by the equation (12) for φ

=45◦ (see also Fig. 5). Since the degree of polari-
sation is a Lorentz invariant quantity. Therefore, if

these completely polarised photons scatter with mov-
ing electron then PD will still describe by equation
(12) for φ =45◦, which can be only possible when
θe|labframe = θe|rest frame. Hence, in Compton scattering
process the PD and θe both are invariant over the
Lorentz-boosted frame.

• As the cross section depends only θ ′
e we skip the all

steps which involve to determine the kabe , k
′ab
e , and (k×

k′)rest frame, and simply extract θ and θ ′
e from the cross

section in electron rest frame.
• Next, we compute the scattered photon frequency (using

equation (3)), and transform back this frequency to global
(lab) coordinate by computing the angle between scat-
tered photon and incident electron. In addition, after the
reverse aberration effect the scattered photon has to lie
on the pre-defined scattering plane. We first compute the
scattered photon’s propagation direction (k′) and polari-
sation vector k′

e (i.e. on perpendicular plane to k’) in local
(k× k′)global-coordinate and then transform back to those
in the global coordinate.

• Next, we estimate the collision free distance lf for the scat-
tered photon (of energy E′ = hν ′) and find the distance of
next site of scattering from the origin, say rn. If rn < L then
next scattering will occur otherwise photon will escape the
medium.

• For next scattering, we first determine the angle of polar-
isation, say χs of scattered photon using equation (11).
Since for double scatterings or two consecutive scatter-
ings the angle between previous and next scattering planes
is χs (e.g. McMaster 1961), so using this we compute the
(k× k′)next for next scattering on perpendicular plane to
the k’. And, for a known k′

e in global coordinate we com-
pute the polarisation angle θe wrt (k× k′)next . We proceed
the calculations for next scattering with treating k’ of pre-
vious scattering as an incident photon, and follow the same
steps until the scattered photon escapes the medium.

4. MC results verification

We verify the polarisation results of MC calculations with a the-
ory which is revisited in Section 2, that is, for single scattering,
and almost rest electron. Since, the theoretical results are derived
for a given scattering plane, so in MC calculation we obtain the
results without bothering about orientation of the scattering plane.
However, later we consider the orientation of the scattering plane,
see Section 6. In the following sections we show the MC results for
polarised/unpolarised incident photons. But we will first discuss
the way of computing the PD and PA for scattered photons with
arbitrary scattering numbers using the results of Section 2.3.

4.1. General modulation curve to estimate the PD & PA

In Section 2.3, we showed that one can know the polarisation
properties of incident photons P & χ by mapping the distribu-
tion of θ ′

e of scattered photons at θ ∼ 0 after single scattering. In
general, one can estimate the polarisation properties of scattered
photons with any average scattering no., say 〈Nsc〉 by mapping the
distribution of θ ′

e of scattered photons of 〈Nsc + 1〉 scattering no.
at θ ∼ 0. Mathematically, we are essentially using here a probabil-
ity ∝ cos2 (θe|〈Nsc+1〉 + θ ′

e|〈Nsc+1〉) for constructing the distribution
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Figure 2. The degree of polarisation after single scattering of unpolarised (incident)
photons as a function of scattering angle for five different photon energies. Here, the
curves 1, 2, 3, 4, and 5 are for incident photon energies 3, 300, 900, 3 000, and 9 000 keV,
respectively. The gray solid curves are analytic one expressed by equation (7).

of θ ′
e|〈Nsc+1〉 for a known θe|〈Nsc+1〉 (see equation (15)). From equa-

tion (6), we can write θe|〈Nsc+1〉 = (θ ′
e ± χ)|〈Nsc〉, here the subscript

with vertical bar is used for the quantity related to that scattering
number, χ is computed using equation (11). Hence, now without
going for the calculations of 〈Nsc + 1〉th scattering we can estimate
the polarisation properties of 〈Nsc〉th scattered photons by con-
structing the modulation curve of η-angle for a known value of
(θ ′

e ± χ)|〈Nsc〉 using the probability p(η):

p(η)∝ cos2 (η + (θ ′
e ± χ)|〈Nsc〉)dη. (17)

We have used this p(η) in the MC calculations to estimate the
polarisation properties of the scattered photons.

4.2. MC results for unpolarised incident photons

In Fig. 2 we show the PD as a function of scattering angle for
the unpolarised monochromatic incident photons for five differ-
ent energies 3, 300, 900, 3 000, 9 000 keV. The solid gray curves are
for analytic PD expressed by equation (7), the MC results are con-
sistent with analytic ones. Clearly in Thomson regime, at θ = 90◦
the single scattered unpolarised (incident) photons are completely
polarised. In Fig. 3, the modulation curves for a given θ have been
shown for two different photon energies 3 (in left panel) and 300
(in middle panel) keV. In both cases, the MC results match with
analytic one, equation (8) for a given θ which is shown by gray
curve. By comparing with equation (16) for all curves of left and
middle panels we have φ = 0◦, which signifies that the scattered
photons are polarised in a perpendicular direction to the scattering
plane. In the right panel we show the averaged modulation curve
over θ for two photon energies 3 and 300 keV. The gray curves
for 3 and 300 keV are for equation 4.5× 106(1+ 0.33 cos 2θ ′

e)
and 4.45× 106(1+ 0.28 cos 2θ ′

e), respectively. By comparing with
equation (16) the estimated PD of single scattered 3 and 300 keV
unpolarised photons are∼0.33 and 0.28. Since we know the distri-
bution of θ and know the PD as a function of θ , we have computed
the averaged PD weighted over the θ . And we find the PD for 3
and 300 keV photons are ∼0.28 and 0.24, respectively; thus, the
both methods almost agree with each other. In addition, for 3
keV photons (which is in Thomson regime) we compute the aver-
aged PD analytically as 〈P〉 =

∫ π

0 P(1+cos2 θ)dθ∫ π

0 (1+cos2 θ)dθ = 1/3 with considering

dσ ∝ (1+ cos2 θ) in Thomson regime. Here, we reemphasise that
the high value of PD of single scattered unpolarised (incident)
photons is due to the fixed scattering plane (see also case I with
θi ≡ [0, π] of Section 6) and if one accounts the effect of orien-
tation of the scattering plane, then the PD magnitude will get
reduced, see the Section 6 for details.

4.3. MC results for polarised incident photons

In Section 2.2, we argue that the cross section for a completely
polarised incident photon of polarisation angle φ is obtained with
an assumption of isotropic distribution of θ ′

e. We examine this
assumption in MC calculations. We compute the averaged cross
section over θ ′

e as a function of θ (using the equation (1)) for pho-
ton energies 3 and 300 keV, the results are shown in Fig. 4. We
find that the computed cross sections are significantly deviated
from the equation (10) except for φ ∼0 and 90◦, where it shows a
slight deviation. Actually in case of φ ∼0 and 90◦, the equation (1)
nearly reduces to the equation (10), as here also θ ′

e = 0 and 90◦ (see
the facts (ii) of Section 2.2) for φ ∼0 and 90◦, respectively. Hence,
the distribution of θ ′

e-angle is no longer isotropic (e.g. Matt et al.
1996), as stated in the previous section.

In Fig. 5, we show the PD as a function of θ for single scat-
tered completely polarised photons of energy 3 keV. We find
that the MC results agree with the corresponding theoretical PD
(shown by gray solid curve) expressed by equation (12). Here we
remind that the positive value of PD signifies that the scattered
photons polarisation is perpendicular to the scattering plane while
the polarisation is along the scattering plane for negative value. In
Fig. 6, we show the modulation curves of single scattered polarised
photons for a fixed θ . We have computed the results for four dif-
ferent polarisation angles of incident photons of energy 3 keV.
For φ = 0, the equation (14) predicts that the modulation curve
is independent of θ in Thomson regime, we find same here see
the top left panel. In general, these modulation curves will be
described by the equation (14).

5. Modulation curve in perpendicular plane of incident pho-
ton for θ < 25◦: A detector working principle

In this section, we examine the result of Section 2.3, and are inter-
ested to find the range of θ in which the polarisation properties
of incident photons can be derived from the modulation curve
of scattered photons. Motivation for this exercise is that the cross
section is maximum for θ = 0 for polarised/unpolarised photons
of any energy (see Figs. 3, 4, respectively). Thus, it is expected
practically that on average upto some range of θ (> 0), the polari-
sation properties of scattered photons at θ = 0 will dominant over
that range of scattered photons. We find that for θ < 25◦ (or θ ≡
[0, 25◦]) one can adequately predict the polarisation properties of
k with using the modulation curve for the k′.

In view of practice, we also examine the same by construct-
ing the distribution of projection of k′

e on the perpendicular plane
to k. For this we fix the direction of the incident photon, say k
lies along the z-axis. For a polarised photon, the direction of the
electric vector is fixed in space, so (k× k′) is also fixed. Without
loss of generality, we consider (k× k′) along the x-axis, that is the
scattering plane is a (z,y)-plane. It is shown in Fig. 7. Clearly for
θ = 0, the k′

e will lie on the (x,y)-plane. For θ > 0, the k′
e will not

always lie on (x,y)-plane. And, we measure the direction of pro-
jection k′

e on (x,y)-plane or the φ-angle of k′
e. The distributions
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Figure 3. The modulation curves after single scattering of unpolarised (incident) monochromatic photons. The left and middle panels are for the fixed θ and for the incident
photon energy 3 and 300 keV, respectively, while the right panel is for the averaged θ . In left and middle panels the blue, orange, green, red, and cyan curves are for θ = 0, 30, 45,
60, and 90 degree, respectively. The gray solid curves are the analytical one expressed by equation (8) for a given θ . In right panel, the red and green curves are for photon energies
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e), respectively, which reflects the PD= 0.33 and 0.28

by comparing the equation (16) for 3 and 300 keV, respectively.
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Figure 4. The Klein–Nishina cross section as a function of θ for a completely polarised incident photon of polarisation angle φ = θe. The dashed curves are calculated one by
MC method using the equation (1) while the gray solid curves are analytic one expressed by equation (10) and the observed mismatched is due to the approximation involved
in equation (10), see the text for details. The left and right panels are for incident photon energy 3 and 300 keV, respectively, and the dashed green, orange, blue, red, and black
curves are for θe = 0, 30, 45, 60, and 90 degree, respectively.

of φ-angle of k′
e for 3 and 300 keV completely polarised incident

photons have been shown in upper panel of Fig. 8 for polarisa-
tion angle φ = 45◦ for five different ranges of θ = [0,7.5◦], [0,15◦],
[0,22.5◦], [0,30◦], [0.45◦]. We also map the distribution of the φ-
angle of k′

e for three different polarisation angles φ = 30◦, 45◦, and
60◦ for a fixed θ range [0,15◦], which is shown in the lower panel
of Fig. 8. We find that for θ range ≈ [0, 25◦] the distribution of
projection of k′

e on the perpendicular plane to k after single scatter-
ing can estimate the polarisation properties of incident photons k
adequately.

As understood, the detector has to estimate the polarisation
properties of the observed photons. And, for Compton/ Thomson
scattering based detector (like, AstroSat/CZTI, PoGo+, POLAR,
POLIX, etc Fabiani 2018) the observed photons are essentially an
incident photon, and so the above analysis is more relevant for a
detector as a working principle. However, the above discussed are
only the essential criteria for the detector designing and for the
general mechanism for a specific detector please see the relevant
references, like (Lei et al. 1997; Fabiani 2018; Chattopadhyay et al.
2014, and references therein).

6. Polarisation measurement along a meridian plane after
single scattering

We aim to estimate the degree of polarisation and angle of polari-
sation for the emergent photons from a given meridian plane after
single scattering where unpolarised incident photons lie on any
appropriate plane. For this we consider a simplistic (without loss
of generality) geometry a semi-spherical shell where the incident
photon generates at center of the shell and we specify its direction
in spherical coordinate by (θi, φi), that is, on meridian φi-plane.
We are interested to compute the P and χ for the scattered pho-
ton (θs, φs), or in general, to compute the P & χ as a function of θs
on the meridian φs-plane.

Before discussing the general results, we first discuss, for clar-
ity, a few simplistic cases in terms of incident photon direction
(k), or scattering plane (or (k× k′)), or combination of both in
the following sections. To measure the angle of polarisation one
needs a reference direction of (k× k′) for the next scattering, we
consider that (k× k′)-next lies on the same scattered meridian
plane, and we take its direction as (θs + π/2, φs). However, we
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are described analytically by equation (14).

will first discuss the way of computing the averaged PD and PA
of the scattered photons, as we are caring now the orientation of
the scattering plane.

6.1. Averaged degree of polarisation

The partially polarised incident photons of degree of polarisation
pI and the angle of polarisation φI can be an average behaviour of
total n type of incident photons which have different degree and
angle of polarisation, say pj and φj for jth type incident photons,
respectively. In context of Compton scattering, it can be expressed
for ξ -angle variable as (using equation (16)):

pI cos(2(ξ + φI))+ 1=
n∑

J=1

1
n
[pj cos(2(ξ + φj))+ 1], (18)

Figure 7. A schematic diagram for calculating the modulation curve in perpendicular
plane of incident photon. Here, k is along the z-axis, (k× k′) is along the x-axis; thus,
the (z,y)-plane is a scattering plane. ke with fixed θe and k′ for scattering angle θ are
shown.
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Figure 8. φ-angle distribution of k′
e after single scattering when the completely

polarised photons incident along the z-axis. The upper panel is for the polarisation
angle θe = 45◦, and the curves 1, 2, 3, 4 and 5 are for the different ranges of θ ≡ [0,7.5◦],
[0,15◦], [0,22.5◦], [0,30◦], and [0,45◦], respectively. The lower panel is for three differ-
ent θe at a given range of θ ≡ [0,15◦], where the solid red, blue and cyan curves are for
θe = 30, 45 and 60◦, respectively, and the orange curves are for unpolarised incident
photons. In both panels, the solid and dashed curves are for incident photon energy 3
and 300 keV, respectively, and the dotted curve is simply a( cos(2(φ − θe))+ 1), a is the
normalisation factor.
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Table 1. The PD (P) and PA (χ ) of the emergent photons as a function of θs (or i) for cases I and II. The results for case II are presented for six different scattered
meridian planes φi + φis with φis = 15, 30, 45, 60, 75, and 90 degree. While the results for case I are true for any scattered meridian plane, as here φs-plane =
φi-plane, and computed for two different ranges of θi = 0 and [0,π ].

P (χ )

Case I Case II φ1si = (in degree)

cos(θs) θi=0 θi ≡ [0, π ] 15±2 30±2 45±2 60±2 75±2 90±2
0.0 0.99 (90.9) 0.28 (90.9) 0.036 (180.0) 0.137 (180.0) 0.315 (178.1) 0.569 (178.1) 0.844 (176.3) 0.660 (134.5)

0.1 0.96 (90.9) 0.27 (90.9) 0.030 (178.1) 0.132 (176.3) 0.314 (174.5) 0.570 (170.9) 0.833 (160.0) 0.948 (100.0)

0.2 0.90 (90.9) 0.27 (90.9) 0.029 (176.3) 0.128 (172.7) 0.302 (169.0) 0.543 (160.0) 0.787 (143.6) 0.905 (94.5)

0.3 0.81 (90.9) 0.26 (90.9) 0.027 (174.5) 0.120 (170.9) 0.280 (163.6) 0.499 (152.7) 0.715 (130.9) 0.815 (92.7)

0.4 0.70 (90.9) 0.26 (90.9) 0.025 (174.5) 0.109 (167.2) 0.253 (158.1) 0.442 (145.4) 0.623 (123.6) 0.704 (92.7)

0.5 0.58 (90.9) 0.26 (90.9) 0.022 (172.7) 0.096 (163.6) 0.219 (152.7) 0.375 (140.0) 0.519 (118.1) 0.581 (92.7)

0.6 0.45 (90.9) 0.26 (90.9) 0.019 (170.9) 0.080 (160.0) 0.180 (149.0) 0.302 (134.5) 0.409 (114.5) 0.455 (90.9)

0.7 0.32 (90.9) 0.26 (90.9) 0.015 (169.0) 0.062 (158.1) 0.137 (145.4) 0.224 (129.0) 0.298 (110.9) 0.328 (90.9)

0.8 0.20 (90.9) 0.26 (90.9) 0.010 (167.2) 0.042 (154.5) 0.091 (141.8) 0.147 (125.4) 0.191 (109.0) 0.210 (90.9)

0.9 0.09 (90.9) 0.27 (90.9) 0.005 (165.4) 0.021 (152.7) 0.045 (138.1) 0.070 (121.8) 0.090 (107.2) 0.098 (90.9)

1.0 0.00 (90.9) 0.29 (90.9) 0.000 (165.4) 0.000 (150.9) 0.000 (134.5) 0.000 (120.0) 0.000 (105.4) 0.000 (90.9)
1: here φsi is measured in anti-clockwise direction, if it is measured in clockwise direction then the angle of polarisation becomes π − χ .

For example, one has unpolarised photons which is a combina-
tion of two types of photon with p1 = p0, φ1 = φ0 and p2 = p0,
φ2 = φo + π/2. It would be true for any value of p0 (e.g. p0 = 1).
We use this characteristic to estimate the PD and PA for emergent
photons either after single scattering or multi scattering. For this
we compute the χj (PA of the jth type scattered photons) using
equation (11), as tan 2χj = U

Q , and compute the averaged pj (over
φ, PA of the incident photons) as a function of θ as, pj = 〈Q〉

〈I〉 .

6.2. Case I: Fixed k direction (along z-axis) for a given scatter-
ing plane

We first consider a simplistic situation in which the unpolarised
photons incident along the z-direction, and we fix the scattering
plane to φs-plane, that is, the (k× k′) direction is (π/2, φs + π/2).
Since, the scattering plane is the same as the interested merid-
ian φs-plane; thus, the scattering angle is θ = θs. And so P will
follow equation (7) with θ = θs. The χ is always 90 degree (with
the choice of (k× k′)-next), it means that the k′

e lies parallel to
the (x, y)-plane. The result (for θi=0) is shown in the 2nd col-
umn of Table 1. In addition, similarly, for a fully polarised incident
photons the PD will be determined by equation (12).

Instead of taking incident photons along the z−axis (or θi = 0),
we also consider any direction of k on incident meridian φi−plane,
that is, the range of θi is θi ≡ [0, π]. And we assume again that the
scattering plane is the same as the interested meridian φs-plane. In
this case, we expect a constant P ∼0.33, as shown by the red curve
in the right panel of Fig. 3. We find almost the same and show the
results in the 3rd column of Table 1.

6.3. Case II: (k× k′) lies on the meridian plane of k

In the previous case, the scattering plane and interested meridian
plane are the same. Next, we consider that incident photons and
the (k× k′) both lie on the same φi-meridian plane, so (k× k′)’s
direction for a given k is (θi + π/2, φi). Now the photons will
scattered any meridian (φi + φis)-plane, in which φis is the angle

between incident and scattered meridian plane and the range of
φis is ≡ [−π , π]. For θi = 0 and π/2, the scattering plane of k
is (φi ± π/2)-plane and (θ = π/2)-plane, respectively. In general,
the scattering plane of kwill must pass the line (π/2, φi + π/2) (i.e.
rotated y-axis with angle φi about z-axis, say y′-axis), or in other
words it is a rotation of (φi ± π/2)-plane about y′-axis with same
angle θi. Thus, except for scattered meridian (φi ± π/2)-plane, the
k′ arises uniquely on a different scattering plane with different θ .
For example, for the meridian (φi + π/6)-plane the θ varies from
π/6 to zero, and χ varies from zero to π/6, when θs varies from
π/2 to zero. The degree of polarisation will simply determine by
using equation (7), and in general, for a given scattered meridian
(φi + φis)-plane the P varies from P(θ = φis) of equation (7) to zero
for the variation of θs fromπ/2 to zero, respectively. The results for
P as a function of θs for 6 different meridian planes with φis = 15,
30, 45, 60, 75, and 90 degree are shown in Table 1.

6.4. Case III: Any fixed incident photon direction and a ran-
dom scattering plane

Next, we fix the k direction (θi, φi) and take all possible directions
of (k× k′) on a perpendicular plane to k. Like case II, the incident
photon is scattered in all directions. For a given meridian plane,
each k′ is arisen from a different direction of (k× k′), and clearly
the different θ . The PD can be determined using equation (7) for
known θ . Since, the scattering plane is unique for a given k′, like
PD, PA will be also unique. We have computed the P and χ for the
meridian plane ranges from φi to φi + π , and for each meridian
plane θi ranges from 0 to π/2. It should be noted that case III is
identical to case I for θi = 0.

6.5. Case IV: k lies on the surface of cone at centre with
opening angle θi and a random scattering plane

We extend the case III with considering that θi of k is still fix but
now φi can take any value in [0,2π], so essentially the vector k is
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Table 2. The PD and PA of the emergent photons for case IV along with fθs (total no. of the emergent photons for a given θs). The results are presented for seven
different opening angles of cone (on which incident photon lies), θi = 0, 15, 30, 45, 60, 75, and 90 degree.

P (χ , fθS ) for case IV when θi = (in degree)

cos(θs) 0 15 30 45 60 75 90

0.0 0.996 (90.9, 1.73) 0.866 (90.9, 1.87) 0.558 (89.0, 2.29) 0.220 (89.0, 3.13) 0.014 (180., 4.25) 0.132 (180., 6.71) 0.078 (180., 16.1)

0.1 0.969 (90.9, 1.76) 0.842 (89.0, 1.86) 0.536 (90.9, 2.37) 0.213 (89.0, 3.12) 0.020 (165., 4.48) 0.120 (01.8, 6.99) 0.124 (180., 9.75)

0.2 0.908 (90.9, 1.91) 0.783 (89.0, 2.06) 0.491 (89.0, 2.54) 0.180 (90.9, 3.18) 0.031 (07.2, 4.73) 0,100 (180., 8.18) 0.150 (180., 7.17)

0.3 0.816 (90.9, 2.04) 0.703 (89.0, 2.17) 0.431 (89.0, 2.61) 0.152 (87.2, 3.55) 0.040 (176., 5.12) 0.089 (01.8, 8.49) 0.155 (180., 6.03)

0.4 0.703 (90.9, 2.30) 0.596 (90.9, 2.46) 0.351 (89.0, 2.92) 0.112 (90.9, 3.81) 0.034 (05.4, 6.09) 0.114 (180., 5.75) 0.157 (180., 4.88)

0.5 0.581 (90.9, 2.59) 0.491 (89.0, 2.78) 0.275 (90.9, 3.23) 0.068 (89.0, 4.38) 0.026 (03.6, 9.32) 0.116 (180., 4.35) 0.150 (178., 3.98)

0.6 0.454 (90.9, 3.08) 0.374 (90.9, 3.18) 0.193 (90.9, 3.67) 0.027 (87.2, 5.31) 0.051 (05.4, 5.06) 0.100 (03.6, 3.39) 0.122 (180., 3.07)

0.7 0.328 (90.9, 3.50) 0.269 (89.0, 3.85) 0.125 (89.0, 4.40) 0.004 (69.0, 8.83) 0.056 (05.4, 3.61) 0.094 (180., 2.57) 0.109 (178., 2.22)

0.8 0.208 (90.9, 4.01) 0.160 (90.9, 4.24) 0.057 (90.9, 5.65) 0.006 (34.5, 4.43) 0.054 (174., 2.60) 0.075 (176., 1.90) 0.084 (03.6, 1.59)

0.9 0.098 (90.9, 4.63) 0.066 (89.0, 5.17) 0.017 (83.6, 5.64) 0.016 (169., 2.65) 0.035 (180., 1.64) 0.041 (01.8, 1.10) 0.035 (09.0, 0.98)

1.0 0.000 (90.9, 2.62) 0.003 (96.3, 0.16) 0.012 (170., .09)∗ 0.044 (101., .05)∗ 0.024 (76.3, .02)∗ 0.188 (112., .01)∗ 0.301 (158., .01)∗
∗the corresponding value is not reliable due to low statistics.
Note: for θi = θs , one has small P (in range of (0.002-0.08)) andmaximum fθs .

Table 3. The PD of the emergent photons for general case V from any givenmeridian plane after single scattering of the randomly
oriented unpolarised incident photons (or, the re-estimation of laws of darkening of Chandrasekhar (1946) with having a general
Klein–Nishina cross section, equation (1)).

cos(θs) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P 0.111 0.112 0.103 0.097 0.097 0.082 0.071 0.059 0.042 0.020 0.010

rotating on the surface of the cone of opening angle θi which is sit-
uated at the centre. Unlike Case II or III, here on a given meridian
plane the k′ is arisen by any k with appropriate scattering angle;
thus, PD and PA of k′ would be estimated by averaging method.
The averaged P and χ of the k′ are computed using equation (18)
for a given θs, where now, n is total no. of scattered photons with
θs, the pj is determined for each scattered photon for known θ by
using equation (7). Since, for unpolarised incident photons the k′

e
lies along the (k× k′) which gives φj = 0, but we have fixed the ref-
erence (k× k′)-next to measure the PA, so φj is the angle between
(k× k′) and meridian plane ((k× k′)-next). Expectedly, the varia-
tion of P, andχ as a function of θs is same for all scatteredmeridian
planes. In Table 2, we have noted the results for θi = 0, 15, 30, 45,
60, 75, and 90 degree along with fθs (a total no. of scattered emer-
gent photons with θs on a given meridian plane). For example, the
emergent photons along the z-axis (θs=0) are unpolarised for any
opening angle θi, as in this case for all incident photons the scat-
tering angle is θ = θi, and the electric vector of k′ is isotropically
distributed. In general, for a given θi, the emergent photons escape
maximally at θs ∼ θi, for example, for θi = 15◦ the maximum emer-
gent photons escape with θs ∼25◦ and have PD ∼ 0.06.

We compare the above results with the results of case III. Since
the given k′ can be arisen from the incident meridian (φs + φis)-
plane with φis ≡ [−π , π] of case III, or particularly n different
situations of case III in range of φi ≡ [0, 2π]. As the P and χ of
case III are uniquely determined for a given φis, the resultant P and
χ of case IV for a given θs can be obtained by weighted averaging
method, as defined in equation (18). For present case this equation
is rewritten as:

P cos(2(ξ + χ))+ 1=
n∑
j=1

fj
[
pj cos(2(ξ + χj))+ 1

]
, (19)

here, fj is the fraction of emergent scattered photons at θs to total
that arisen due to the jth incident meridian (φs + φis)-plane, and
pj, and χj are corresponding PD and PA, respectively. We find that
the results are similar in both ways.

6.6. Case V: General case

Finally, we consider a general case where there is no restriction
on k. That is, the scattered photon k′ is arising from all directions
of k. We compute the P as a function of θs for any meridian φs-
plane, We find P ≈ 11, 0 % for θs = 90, 0 degree, respectively.
The χ is ∼ 90 degree for all θs. Since we are measuring χ with
respect to (k× k′)-next, it signifies that k′

e is parallel to the (x,y)-
plane. Clearly, the all scattering planes (which generate the k′ on
φs-plane) are not a φs-plane, but we notice that on averaged the
scattering plane is mostly a scattered meridian plane; thus, the
results χ ∼ 90◦ confirm that the polarisation of single scattered
unpolarised (incident) photons is perpendicular to the scattering
plane. The results are shown in Table 3.

Like case IV, the results of case V are verified by a weighted
averaging method using the result of case IV. For convenience in
Table 2 we have also listed the fθs along with the P and χ . Thus,
fj = fθs

�n
j=1fθs

for a given θs and θi (here, i= j), and with having n= 7
we obtain the results of case V approximately using Table 2 and
equation (19).

The results are qualitatively agreed with almost century old
calculations of Chandrasekhar (1946) (see also, Chandrasekhar
1960). Chandrasekhar (1946) had solved the radiative transfer
equations, which is governed by the Thomson scattering by free
electron, for the intensities of two states of polarisation, one Il
is along the meridian plane and other one Ir is perpendicular to
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it, with no incident radiation. In defining the source function
for Il or Ir , the considered cross section for the polarisation in
perpendicular to and parallel to the scattering plane is either for
unpolarised photons, or combinations of two polarised photons
with polarisation angle φ and φ + π/2, see equations (2) and (3)
of their paper and table 2 for the results (and for refined results
see table XXIV in Chandrasekhar 1960). So, the laws of darkening
for the PD of the emergent photon is only for the single scattering
event in Thomson regime for unpolarised incident photons. In
the next section, we compute the laws of darkening for multi
scattering events.

For all cases, we have estimated the PD and PA by two another
methods, (i) we perform second scattering and construct the mod-
ulation curve for either θ = 0 or θ ≡ [0, 25◦] to estimate the P as
discussed in Section 2.3, (ii) we construct the modulation curve
using the probability p(η) (of equation (17)) and estimate the P, as
discussed in Section 4.1. We find that in all cases the results match
qualitatively with these two methods.

7. General results and comparison with observations

In the previous section, we estimate the polarisation for a single
scattering event in Thomson regime and for a almost rest elec-
tron. In this section we consider a multi scattering event with
arbitrary electron Lorentz factor. We explore the general results
for spectro-polarimatric measurement for XRBs source and make
a comparision for few XRBs observed by IXPE. In general, a
detailed accretion disc + corona geometry is required for the
spectro-polarimatric study for XRBs (e.g. Beheshtipour et al. 2017;
Schnittman & Krolik 2010). However, here to estimate the polar-
isation for multi scattering events and the energy dependency
of polarisation, for completeness we consider the same spherical
corona geometry (as described in Section 3). Therefore, our results
will describe the observed polarisation properties qualitatively
only.

7.1. Multi-scattering

To verify the MC calculations for multi scattering we consider the
case I with θi ≡ [0, π], as in this case the scattered photon has PD
∼0.33 in all directions of θs. We first compute (say, first method)
the P value of 2nd times scattered photon for this case. Next, we
consider (say, 2nd method) a partially polarised incident photon
with P= 0.33, χ = 90 degree and (k× k′) lies either on the merid-
ian plane or perpendicular to the meridian plane (and here, for
0.66 fraction of unpolarised photons, the (k× k′) lies randomly)
and estimate the P after single scattering. We find that for both
methods the result qualitatively agrees, with P ∼ 0.1− 0.12 on a
given meridian plane.

Interestingly, we find that for all cases, I−V, after 3-4 numbers
of scattering, the maximum P value is reduced to ∼0.02− 0.05 on
any meridian plane. Here, again we consider a Thomson regime
and almost rest electron. Therefore, for all cases and average scat-
tering number > 4, the emergent scattered photon is mainly
unpolarised with averaged maximum P ∼ 0.035. Here, we like to
point out that if these emergent photons again freshly scatter in
optically thin corona with average scattering number ∼1 then the
P & χ will be described like case V.

7.2. Energy dependency of polarisation

The prime focus is here to study the polarisation properties for
XRBs, and XRBs frequently transit from soft spectral state to hard
state and vice versa. To understand and to explore the energy
dependency of polarisation for Comptonised photons, we con-
sider two different steady spectral states with unpolarised seed
photons. The first is a soft spectrum (Model 1) with low elec-
tron medium temperature kTe = 2.5 keV (see, e.g. Kumar &Misra
2014). In view of neutron star NS low-mass XRBs, we consider
two different seed photon source (black body) temperatures cor-
responding to Hot-seed and Cold-seed photon model (see, e.g.
Kumar &Misra 2016a, references therein) which are kTb = 1.5 and
0.7 keV, respectively. We refer Model 1a with temperature kTe =
2.5 keV and kTb = 1.5 keV and for Model 1b kTe = 2.5 keV and
kTb = 0.7 keV. Since, for consistency we consider only a spheri-
cal corona geometry, but these two models are defined based on
the seed photon source geometry (e.g. Lin et al. 2007); thus, our
study does not give physical insight of the model but only pro-
vides the dependency of PD and PA on kTb variations. The second
is a hard spectrum (Model 2) with high electron medium temper-
ature kTe = 100 keV and kTb = 0.3 keV. To explore the general
results we take two optical depth values in such a way that the cor-
responding average scattering number 〈Nsc〉 ≈ 1.1 and 5.0. Thus,
conclusively to explore the energy dependency of PD and PA, we
take mainly three Models 1a, 1b, and 2 with two values of 〈Nsc〉
≈ 1.1 and 5.0. PD and PA have been computed for four values
of θs = 30◦, 45◦, 60◦, 75◦. In considered spherical geometry, if one
assumes, the z-axis is along the radio-jet direction, then the (x,y)-
plane will mimic the accretion disc and so the angle θs is equivalent
to the disc inclination angle i (or the angle between the line of sight
and the normal to the disc plane). Thus, we also study the variation
of PD and PA with disc inclination angle i. And now, in present
convention, PA= 90◦ signifies that the electric vector is parallel to
the disc plane.

The general results forModel 1a and 1b are shown in Fig. 9. The
upper and lower panels are for 〈Nsc〉 ≈ 1.1 and 5, respectively. In
the left panel, the seed photon flux is shown by dashed curve and
Comptonized photon flux by solid line. As expected for 〈Nsc〉 ≈ 1.1
the PD as a function of θs (or, i) is slightly lower than the respec-
tive values listed in Table 3. The PD values for given i are almost
constant over the energy bin, also qualitatively independent from
the seed photon source temperature kTb. Due to the low photons
statistics, the PD and PA are computed upto photon energy 8 and
16 keV for Model 1a and 1b, respectively, and we also notice that
their values are fluctuated around this energy bin. Since for unpo-
larised incident photons and for single scattering, it is expected
that the electric vector of Comptonized photons will lie normal to
the scattering plane. And for 〈Nsc〉 ≈ 1.1 we find almost the same,
here for all i values, the PA lies from 89◦ to 95◦.

In model 1, the spectral parameters are in Thomson regime,
so the distribution of scattering angle will be ∝ (1+ cos2 θ). In
considered spherical corona geometry, the Comptonized photons
after any number of scattering follow the same scattering angle
distribution of Thomson regime. But the Comptonized photons
which escape the medium (corona) do not follow it for 〈Nsc〉 >

∼ 1.1. The deviation from Thomson cross section for escaped
Comptonized photons can be understood as. Supposed, before
escaping the medium the scattered photon is at scattering site
whose distance is 0.7L from the centre, then to escape the medium
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Figure 9. Comptonized photons density distribution, degree of polarisation and angle of polarisation are shown in left, middle, and right panels, respectively, when the seed
photons (shown by dashed line in left panel) are unpolarised. The upper and lower panels are for the average scattering number≈ 1.1 and 5, respectively. PD and PA are computed
for four θs (or, alternatively the disc inclination angle i) values= 30, 45, 60, and 75 degree, which are shown by dashed-dotted, solid, dotted, and dashed lines, respectively. PA is
computed on perpendicular plane to the escaped photon directions, not on the sky plane, here PA= 90◦ signifies that the electric vector parallel to the (x,y)-plane or accretion
disc, see the text for details. The energy bins are 0.8, 1, 2, 4, 6, 8, 10, 14, 18, 22, 26, and 30 keV.

in forward direction the photon has to travel collision free path of
length 0.3L but in case of backward direction the collision free path
length is 1.7L.With having the exponential distribution for the col-
lision free path it is more likely, on average (as the probability for
travelling the scattered photon in forward or backward direction is
same), that the photon will escape the medium in a forward direc-
tion in comparison to the backward direction. In addition, the
trend for escaping the photons in forward direction increases with
〈Nsc〉, as the mean free path for photons decreases with increasing
optical depth. For a given medium, it is also expected that after
some value of 〈Nsc〉 the scattering angle distribution will get satu-
rated, we find, the saturation occurs around 〈Nsc〉 = 25. The results
are shown in Fig. 10.

For 〈Nsc〉 ≈ 5 (in lower panel of Fig. 9), the PD and PA are
calculated upto photon energy 14 and 22 keV for Model 1b and
1a, respectively. Like, 〈Nsc〉 ≈ 1.1, the PD and PA are independent
of the kTb. PD is almost constant over the photon energies (<10
keV). The fluctuation in PD and PA values above 10 keV is due to
the low photons statistics. PA values range from 80◦ to 120◦ when
the i ranges from 30◦ to 75◦. We observe that the θ-angle distribu-
tion for escaped Comptonized photons for a given i has an extra
small hump (by a factor∼ 1.1− 1.2 from the corresponding values
of cyan curve of Fig. 10) around θ = i, which leads to a maximum
value of PD for i= 45◦. Here, we find the maximum value of PD
∼ 0.025 for i =45◦. In general, in the soft state of XRBs the opti-
cal depth is relatively high, to characterise this we consider Model
1a with 〈Nsc〉 ≈ 26.7. The results are shown in Fig. 11. Here, the
magnitude of PD values is similar to the case of 〈Nsc〉 ≈ 5, only the
dependency of PD value on i has changed. The range of PA values
is wider now and for i= 75◦ PA is ∼ 150◦.

In Fig. 12, the general results forModel 2 have been shown. The
upper and lower panels are 〈NSC〉 ≈ 1.1 and 5. For 〈NSC〉 ≈ 1.1,
the PD and PA have been computed upto 30 keV. Like Model 1,
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Figure 10. The θ -angle distribution of escaped Comptonized photons in spherical
corona after experienced of average scattering number 〈Nsc〉. The blue, red, orange,
cyan, magenta, and green curves are for 〈Nsc〉 = 1.1, 2.0, 3.0, 5.0, 26.7, and 44.1, respec-
tively. The Klein–Nishina cross section in Thomson regime is shown by black dotted
curve. Note, the Comptonized photons which are inside the medium always follows
Klein–Nishina cross section for any given 〈Nsc〉.

PD is constant over photons energy (<10 keV), and PA is ∼90◦
and independent to the photons energy (<6 keV). The magnitude
of PD is slightly lower in comparison to the Model 1, for exam-
ple, for i= 75◦ PD= 0.07 and 0.05 for Model 1 and 2, respectively.
Also, for above 6 keV photons energy the PA ranges 95◦ - ∼100◦.
Here, the decrement in PD values and the deviation of PA from
90◦ is mainly due to the multi scattering. Since, in Model 2 due
to the large kTe = 100 keV and low kTb = 0.3 keV, the photons of
energy >2 keV on average experienced a large scattering number
from the averaged value 1.1. For example, for 2–10 keV photons
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Figure 11. For spectral parameter Model 1a and the average scattering number≈ 26.7. The rests are same as Fig. 9.
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Figure 12. For spectral parameter Model 2 and the upper and lower panels are for average scattering number≈ 1.1 and 5.0, respectively. The energy bins are 0.8, 1, 2, 4, 6, 8, 10,
14, 18, 22, 26, 30, 40, 50, 100, and 200 keV. The rests are same as Fig. 9.

the averaged scattering number varies from 1.1 to 1.5, while for
10–70 keV it varies from 1.5 to 2.5. For 〈NSC〉 ≈ 5, as expected
the PD value is slightly lower in comparison to the corresponding
value of Model 1. The increasing behaviour of PD for low photons
energy (< 10 keV) is mainly corresponded to the θ-angle distri-
bution for escaped photons, as the photons with energy less than
7 keV have average scattering number less than 5. The PA values
range from 80◦ to 150◦.

For completeness, we have also computed the PD and PA
for the Wien spectrum of Model 1 and 2, the results are shown
in Fig. 13. We know that the Wien spectrum does not depend
on the seed photon spectrum but only depends on the electron
medium temperature. In addition, for low kTe (or non-relativistic
electrons) one needs a large scattering number to generate the
Wien spectrum, while for large kTe (relativistic electron) one need
comparatively small scattering number (e.g. Kumar & Kushwaha
2021). We compute the Wien spectrum for Model 1 and 2 with
〈NSC〉= 170 and 45, respectively. For Model 1, the dependency of
PD on i, and the range of PD are similar to the case of Model
1a with 〈NSC〉= 26.7. While for Model 2 the magnitude of PD is

around 0.01 upto photon energy 1 000 keV. Since, in the case of
Model 2, in last, the seed photons are mainly ∼200 keV photons.
From equation (7) (or, see Fig. 2) we know that the PD value for
200 keV photons is comparatively smaller than the seed photon of
energy 10 keV (or <10 keV), as a result we obtain a smaller value
comparison to the Model 1. Conclusively, The dependency of PD
on i ofWien spectra for unpolarised seed photons does not behave
like case V, see Table 3. This also indicates that the emergent pho-
tons from thin accretion disc (in which, the emergent spectrum is
a black body due to the large optical depth by Thomson scatter-
ing Shakura & Sunyaev 1973) would be mainly unpolarised with
maximum PD ∼ 0.03 for i ∼ 45◦.

7.3. Geometry dependency

With having spherical corona we compute PD and PA for two
extreme sets of spectral parameters. Particularly for large opti-
cal depth, the PD values are always less than 0.03 for photons of
energy <10 keV. Recently IXPE has measured PD for many XRBs
sources, and for a few sources the estimated PD is greater than
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the 0.03 in 2–8 keV energy band (e.g. Krawczynski et al. 2022;
Jayasurya et al. 2023). Authors explained the comparatively large
PD mainly in terms of different possible geometry for scattering
medium in the disc. In Section 6, we had noticed that the PD also
depends on incident photon direction, see the Table 2 for Case
IV; also see, for example, Case I for the variation of PD as a func-
tion of θ . Therefore, the dependency of PD on the geometry can
be happened in terms of either distribution of incident photon
direction or distribution of θ-angle for the escaped Comptonized
photons, or both. To understand the dependency of PD on geom-
etry for simplicity we ad-hocly exclude the some range of θ of the
Comptonized escaped photons in estimation of PD without both-
ering about the spectra. However, in Appendix B we argue that
in Thomson limit the Comptonized spectrum is independent of
θ , and thus the spectra would not get changed in these cases. The
results are shown in Fig. 14. The left and right panels are for the
Model 1a and 2, respectively. For Model 1a, we consider two sets
of θ range, [30,180◦] and [0,150◦], while [45,180◦] and [0,135◦]
for Model 2. We find that PD values after excluding the backward
direction are smaller than the PD obtained by excluding the for-
ward direction for both models. This is because of the θ-angle
distribution of escaped photons, in which the maximum photons

escape the medium with θ = 0, see Fig. 10. Hence, for considered
geometry for both models the magnitude of PD is around 0.04 or
above when we exclude the forward direction of escaped photon.

7.4. Comparison with observations

In this section, we briefly discuss the polarisation properties of a
few sources observed by IXPE. However, these explanation would
be a purely qualitative, as we have a simple spherical corona geom-
etry, and also the present calculations have not been implemented
in the general relativity formalism. Moreover, the main motive of
this exercise is to what extent one can learn in understanding of
polarisation properties with having simple spherical corona geom-
etry. We select five sources, in which two are black hole XRBs and
three are neutron star XRBs.

4U 1630-47: IXPE had observed 4U 1630-47 from 23-Aug-
2022 to 02-Sept-2022, when the source is in high soft spectral
state. The polarisation properties have been analysed by three
groups (Rawat et al. 2023; Kushwaha et al. 2023; Ratheesh
et al. 2023), and they found that PD is an energy-dependent
which increases significantly with energy. In 2–8 keV band
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PD is ∼0.08 and PA in the sky plane is ∼18◦. They argue that
the observations can explain in thin accretion disc withmildly
relativistic outflowing medium.
In the present scenario, the observed flux is described almost
by Model 1a with 〈Nsc〉 = 1.1 (see left upper panel of Fig. 9).
Therefore, PD is energy-independent and PD= 0.08 for
i= 75◦. PA is always around 90◦, that is, the electric vector is
parallel to the (x-y) plane or accretion disc. The energy depen-
dency of PD can be arose by fresh scattering in optically thin
(〈Nsc〉= 1) medium (possibly, wind) where large fraction of
high-energy photons experience scattering in comparison to
the low-energy photons, which will increase the PD value to
0.1 for high-energy photons (see Table 3 and text).
Cyg X-2: Farinelli et al. (2023) measure the polarisation
properties of Cyg X-2 (a Z-source), in 2–8 keV band the
PD= 0.018 and PA= 140◦ where the polarisation is in the
direction of radio jet (possibly on the sky plane). They argue
that the observed PD cannot be explained with accretion
disc geometry and suggest another geometry related to the
neutron star surface. The observed flux of Cyg X-2 can be
described nearly with Model 1a and 〈Nsc〉=26.7. Thus for the
inclination angle i ≈ 60◦, PD ≈ 0.015 and PA ≈ 120◦; here,
we remind that PA is measured in a perpendicular plane to
the escaped photon direction. Hence, our calculation indi-
cates that the observed PD can be explained, in general, with
accretion disc + corona geometry.
The similar range of PD (≈ 0.017) is measured for atoll source
GX 9+9: by Chatterjee et al. (2023). The reported PA is ∼
63◦ where the range of i is 40− 60◦. The observed flux can
be described here by Model 1a with 〈Nsc〉 lies in range 5–26.
In our calculations, like Cyg X-2, the observed PD of GX 9+9
can be described in the accretion disc scenario. The calculated
PA is around either (90–120◦) or (60–90◦) for a given range
of i (here, 180◦ differences in PA is due to the two possible
definitions for modulation curve, see equation (16)).
XTE J1701-462: IXPE had observed XTE J1701-462 during
an outburst two times, Sept-2022 (epoch 1) and Oct-2022
(epoch 2). Jayasurya et al. (2023) measure a significant PD
∼ 0.045 for epoch 1 and a negligible PD < 0.01 for epoch
2 in 2–8 keV band. The PA is ∼143◦, while the source has i
close to 70◦. The observed flux can be described with Model
1a with 〈Nsc〉 > 26 for epoch 1 while ∼25 for epoch 2 (see
Fig. B1 for epoch 1 modeled flux). In present study with sim-
plistic spherical geometry we can not explain the observed
PD for epoch 1, one needs other geometry. However, if we
exclude some fraction of forward directed escaped photons
in this geometry, then we can explain the observed magni-
tude, see left panel of Fig. 14. Moreover the observed PD for
epoch 2 can be explained in present study for i∼ 70◦. The cal-
culated PA for i∼ 70◦ is around 150◦. Therefore, in present
observations, the polarisation properties of XTE J1701-462
indicates that the corona geometry changes in month scale.
For a spectro-polarimatric study in details, we consider this
source, see Appendix B.
Cyg X-1: Krawczynski et al. (2022) estimate the polarisation
properties for hard state of Cyg X-1, the reported mag-
nitude is PD ≈ 0.04 and PA ≈ 20◦ in the plane of sky.
They also find that the X-ray polarisation almost aligns with
radio jet in the plane of sky, which is consistent with the
previous results of Chauvin et al. (2018) using the PoGO+

balloon-borne polarimeter in 19–181 keV. Chauvin et al.
(2018) had measured PD ≈ 0.045 and PA= 154◦ in 19–
181 keV. The observed flux can be described by Model 2
with 〈Nsc〉 ≈ 5, thus the estimated PD < 0.025. Krawczynski
et al. (2022) found the PD < 0.03 for a spherical lamp-post
corona and non-spinning black hole. Therefore, our calcu-
lations are consistent with the result of Krawczynski et al.
(2022). Although, Krawczynski et al. (2022) argue that the
observed high PD can be explained with sandwich corona
with i ∼ 45◦ (see theirs Fig. 3).
Clearly, like epoch 1 of XTE J1701-462, in present study with
having spherical corona we can not explain the observed high
PD. However, if we exclude the some fraction of forward
escaped photons in spherical geometry then we can explain
the observed high PD in broad band 2–181 keV (see right
panel of Fig. 14).

8. Summary and conclusions

The polarisation measurement provides two independent vari-
ables, the degree of polarisation PD and the angle of polarisation
PA. We observe a linearly polarised high energy emission (X-ray)
in XRBs, AGNs. The observed polarisation along with spectra,
and time variability may remove the existing degeneracy among
theoretical models mainly in terms of the radiative process and
the geometry of the emission region. We explore the linear/plane
polarisation properties in the Comptonization process using aMC
scheme with spherical corona geometry. We revisit the theory of
polarisation in the Compton scattering process with unpolarised
electrons.We argue that the (k× k′)-coordinate (in which, (k× k′)
acts as a z-axis) is more suitable to describe the polarisation for-
malism. The single scattered unpolarised (incident) photon is
polarised in perpendicular to the scattering plane. In Thomson
regime, it is completely polarised for scattering angle θ = 90◦, see
equation (7) for PD as a function of θ . The PD and PA can also
be extracted for a given θ from its modulation curve, see equation
(8). The cross section for completely polarised incident photons
of polarisation angle φ (or, θe), expressed by equation (10), is not
an exact expression (see the Fig. 4 for deviation and validation of
the approximation). The completely polarised low-energy incident
photon with φ = 0 and 90◦ retains its own polarisation properties
after scattering, the PD as a function of θ after single scattering
is expressed by equation (12) for a given φ. The Stokes parame-
ters are invariant under Lorentz transformations, particularly in
Compton scattering we argue that the value of PD and PA do
not change after transforming one frame to any Lorentz-boosted
frame.

For θ = 0, we find that the modulation curve of scattered pho-
ton exhibits same polaris3ation characteristic of incident photon,
it is also valid for the range of θ ≡ [0,25◦]. We use this property to
estimate the PD and PA of scattered photons with average scatter-
ing number 〈Nsc〉, by computing themodulation curve of scattered
photons of 〈Nsc + 1〉 scattering at θ = 0. We also compute directly
the PD and PA of 〈Nsc〉th scattered photons by using the pdf
(corresponding to the cross section at θ = 0, see equation 17) for
known θe angle of 〈Nsc + 1〉th scattering. Interestingly, we find that
for a fixed incident photon (k) direction and θ ≡ [0,25◦] the dis-
tribution of projection of k′

e (electric vector of scattered photon)
on perpendicular plane to the k also reveals the polarisation prop-
erties of incident photon, which can be a working principle for
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Compton scattering based detector of polarisation. We write an
expression (equation 18) for the resultant PD and PA of photons
in particular direction which are a mixture of nth type of photons
of different PD and PA.

Chandrasekhar (1946) has solved the radiative transfer equa-
tions, governed by scattering opacity by free electrons, for the two
states of polarisation one is along the meridian plane and another
one is normal to it. It is found that the emergent photons from a
given meridian plane are polarised normal to the meridian plane
and PD varies zero (at i= 0) to 0.11 (at i =90◦, i: disc inclination
angle). We obtain these results using theMC scheme in a step wise
way after single scattering by discussing four relevant cases for
unpolarised incident photons. We derive these results with con-
sidering a semi spherical corona in which seed photons source
situated at the centre. The different steps involved are, case I: the
incident photons are along the z-axis (i.e. θi = 0) and the scattering
plane is fixed to the considered emergent meridian plane; case III:
the incident photon direction is fixed, say (θi,φi) and all possible
scattering planes are considered; case IV: the incident photon lies
on the surface of cone of opening angle θi with having all possible
scattering planes; and last a general case, Case V. In particular the
case IVmay be relevant for the external Comptonization in blazars
of radio jet of opening angle θi (Kumar & Kushwaha 2021), for
example, here for θi = 15◦ the maximum emergent photons escape
with θs ∼25◦ and have PD ∼ 0.06.

In Thomson regime for the unpolarised incident photons,
the maximum PD in general case V (or law of darkening of
Chandrasekhar 1946) is ∼ 0.11. However, for a fixed scattering
plane and isotropic directions of k, the PD is ∼0.33 (see case I
with θi ≡ [0, π], also right panel of Fig. 3). In case of multi scatter-
ing we notice that after scattering number > 4, the maximum PD
reduces to 0.02–0.035 for all discussed cases. Here, it is noted that
this multi scattered photon is basically an unpolarised photon if
these photons scatter freshly with optically thin medium 〈Nsc〉 ∼ 1
then the PD as a function of i is again described by Table 3.

We explore the energy dependency of polarisation for unpo-
larised incident photons by considering mainly two different spec-
tral sets of parameters corresponding to the hard (larger electron
medium temperature, kTe = 100 keV) and soft (kTe = 2.5 keV)
states. For calculations, we take a simple spherical corona geom-
etry and estimate the polarisation of scattered photons with two
average scattering numbers 〈Nsc〉 ∼ 1.1 and 5 for each spectral
set. We compute for four inclination angles of disc i = θs = 30◦,
45◦, 60◦, and 75◦; here, we have considered the (x,y)-plane as an
accretion disc. With spherical corona geometry, we find that the
PD is independent of seed photon source temperature kTb, and
for 〈Nsc〉 ∼ 1.1 the PD is independent of energy in 2–8 keV band
for both spectral sets. Since, in Thomson regime the Comptonized
flux is independent of θ , thus for the unpolarised incident photons
and non-relativistic corona temperature, the PD of the scattered
photons would be independent of E (see Appendix B) atleast after
single scattering. The magnitude of PD as a function of i is slightly
lower than the values listed in Table 3 for 〈Nsc〉 ∼ 1.1 as expected.
For 〈Nsc〉 ∼ 5, the maximum value of PD is ∼0.03 at i= 45◦. In
present convention, PA= 90◦ means that the electric vector is par-
allel to the accretion disc (or (x,y)-plane) for all i. We find that for
both spectral sets with 〈Nsc〉 ∼ 1.1 the PA is ∼ 90◦ while for 〈Nsc〉
∼ 5, the PA at i= 75◦ is ∼120◦ and 140◦ for soft and hard spectral
sets, respectively.

We also estimate the polarisation for Wien spectra for both
spectral sets. We find that in Thomson regime PD has maximum
value ∼0.03 at i=45◦. Since the emergent photons spectra from
thin disc are a black body mainly due to the large optical depth
governed by Thomson scattering (e.g. Shakura & Sunyaev 1973,
see also Kumar & Mukhopadhyay 2021). Thus, these Wien spec-
tra calculations indicate that the polarisation of emergent photons
from the thin disc will not be described by Table 3, but it has
maximum value ∼0.03 for i=45◦, see also Fig. 13.

Recently, IXPE has observed many XRBs and AGNs sources
and the estimated PD for few sources is larger than 0.03, which
can not be explained with considered simple spherical geometry.
To understand the geometry dependency for polarisation within
this, we ad-hocly exclude the some range of the scattering angle.
For a soft spectral set we obtain PD ∼ 0.045 at i= 45◦ with θ

range [30,180◦], and so we qualitatively obtain the observed PD
value for source XTE J1701-462 (Jayasurya et al. 2023). Similarly,
to explain the observed PD (∼0.04) for Cyg X-1, Krawczynski
et al. (2022) conclude that it can not be obtained with simple
spherical corona, which is consistent with our conclusions. We
qualitatively understand the estimated polarisation properties for
five sources observed by IXPE within spherical corona geometry,
and we almost align with the author’s conclusions, except a few. In
future, we intend to study the polarisation properties with proper
geometries of corona and also with implementation of general
relativity formalism in MC scheme.
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Dovčiak, M., Muleri, F., Goosmann, R. W., Karas, V., & Matt, G. 2011, ApJ,

731, 75
Fabiani, S. 2018, Galaxies, 6, 54
Farinelli, R., et al. 2023, MNRAS, 519, 3681
Feng, H., et al. 2020, NatAs, 4, 511

https://doi.org/10.1017/pasa.2024.8 Published online by Cambridge University Press

https://doi.org/10.3847/1538-4357/aa906a
https://ui.adsabs.harvard.edu/abs/2017ApJ...850...14B
https://doi.org/10.3847/1538-4357/aa906a
https://ui.adsabs.harvard.edu/abs/1970A&A.....7..292B
https://doi.org/10.1038/s41550-023-01936-8
https://ui.adsabs.harvard.edu/abs/2023NatAs...7..602B
https://doi.org/10.3847/1538-4357/ab0826
https://ui.adsabs.harvard.edu/abs/2019ApJ...874...70C
https://doi.org/10.1086/144816
https://ui.adsabs.harvard.edu/abs/1946ApJ...103..351C
https://doi.org/10.1093/mnrasl/slad026
https://ui.adsabs.harvard.edu/abs/2023MNRAS.521L..74C
https://doi.org/10.1007/s12036-021-09769-5
https://ui.adsabs.harvard.edu/abs/2021JApA...42..106C
https://doi.org/10.1007/s10686-014-9386-1
https://ui.adsabs.harvard.edu/abs/2014ExA....37..555C
https://doi.org/10.3847/1538-4357/ab40b7
https://ui.adsabs.harvard.edu/abs/2019ApJ...884..123C
https://doi.org/10.1038/s41550-018-0489-x
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..652C
https://doi.org/10.1007/BF00168792
https://ui.adsabs.harvard.edu/abs/1967SSRv....6..579D
https://doi.org/10.1007/s00159-007-0006-1
https://ui.adsabs.harvard.edu/abs/2007A&ARv..15....1D
https://doi.org/10.1038/s41550-022-01799-5
https://ui.adsabs.harvard.edu/abs/2022NatAs...6.1433D
https://doi.org/10.1088/0004-637X/731/1/75
https://ui.adsabs.harvard.edu/abs/2011ApJ...731...75D
https://doi.org/10.3390/galaxies6020054
https://ui.adsabs.harvard.edu/abs/2018Galax...6...54F
https://doi.org/10.1093/mnras/stac3726
https://ui.adsabs.harvard.edu/abs/2023MNRAS.519.3681F
https://doi.org/10.1038/s41550-020-1088-1
https://ui.adsabs.harvard.edu/abs/2020NatAs...4..511F
https://doi.org/10.1017/pasa.2024.8


18 N. Kumar

Forot, M., Laurent, P., Grenier, I. A., Gouiffès, C., & Lebrun, F. 2008, ApJ,
688, L29

Götz, D., Laurent, P., Antier, S., Covino, S., D’Avanzo, P., D’Elia, V., &
Melandri, A. 2014, MNRAS, 444, 2776

Hitomi Collaboration, et al. 2018, PASJ, 70, 113
Hua, X.-M., & Titarchuk, L. 1995, ApJ, 449, 188
Jayasurya, K. M., Agrawal, V. K., & Chatterjee, R. 2023, arXiv e-prints, p.

arXiv:2302.03396
Jourdain, E., & Roques, J. P. 2019, ApJ, 882, 129
Jourdain, E., Roques, J. P., Chauvin, M., & Clark, D. J. 2012, ApJ, 761, 27
Krawczynski, H. 2012, ApJ, 744, 30
Krawczynski, H., et al. 2019, arXiv e-prints, p. arXiv:1904.09313
Krawczynski, H., et al. 2022, Sci, 378, 650
Kumar, N. 2017, arXiv e-prints, p. arXiv:1708.04427
Kumar, N., & Kushwaha, P. 2021, arXiv e-prints, p. arXiv:2106.06263
Kumar, N., & Misra, R. 2014, MNRAS, 445, 2818
Kumar, N., & Misra, R. 2016a, MNRAS, 461, 2580
Kumar, N., & Misra, R. 2016b, MNRAS, 461, 4146
Kumar, N., & Mukhopadhyay, B. 2021, arXiv e-prints, p. arXiv:2106.06267
Kushwaha, A., Jayasurya, K. M., Agrawal, V. K., & Nandi, A. 2023, MNRAS,

524, L15
Landau, L., & Lifshitz, E. 1987, The Classical Theory of Fields (Fourth Revised

English Edition; Butterworth-Heinemann)
Laurent, P., Rodriguez, J., Wilms, J., Cadolle Bel, M., Pottschmidt, K., &

Grinberg, V. 2011, Sci, 332, 438
Lei, F., Dean, A. J., & Hills, G. L. 1997, SSR, 82, 309
Li, L.-X., Narayan, R., & McClintock, J. E. 2009, ApJ, 691, 847
Lin, D., Remillard, R. A., & Homan, J. 2007, ApJ, 667, 1073
Long, X., et al. 2022, ApJ, 924, L13
Marinucci, A., et al. 2022, MNRAS, 516, 5907
Marshall, H. L., et al. 2022, ApJ, 940, 70
Matt, G., Feroci, M., Rapisarda, M., & Costa, E. 1996, Radiation Physics and

Chemistry, 48, 403
McClintock, J. E., & Remillard, R. A. 2006, in Vol. 39, Compact Stellar X-ray

Sources, 157, doi: 10.48550/arXiv.astro-ph/0306213
McGlynn, S., et al. 2007, A&A, 466, 895
McMaster, W. H. 1961, RvMP, 33, 8
Pal, I., Stalin, C. S., Chatterjee, R., & Agrawal, V. K. 2023, arXiv e-prints, p.

arXiv:2305.09365
Paul, B., Gopala Krishna, M. R., & Puthiya Veetil, R. 2016, in 41st COSPAR

Scientific Assembly, E1.15–8–16
Ratheesh, A., et al. 2023, arXiv e-prints, p. arXiv:2304.12752
Rawat, D., Garg, A., & Méndez, M. 2023, ApJ, 949, L43
Schnittman, J. D., & Krolik, J. H. 2010, ApJ, 712, 908
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 500, 33
Sharmam V., Iyyani, S., Bhattacharya, D., Chattopadhyay, T., Vadawale, S. V.,

& Bhalerao, V. B. 2020, MNRAS, 493, 5218
Tamborra, F., Matt, G., Bianchi, S., & Dovčiak, M. 2018, A&A, 619, A105
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A. 〈U〉 and 〈Q〉 for polarised incident photons
Fig. A1 shows the Stokes parametersU andQ as a function of scat-
tering angle (see Section 2.2 for the expression) for three different

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

0.00 0.79 1.57 2.36 3.14

U
 (

d
o

tt
ed

 li
n

e)
; Q

 (
so

lid
 li

ne
)

θ

ϕ =30o

ϕ =45o

ϕ =60o

Figure A1. U(∝ sin 2φ cos θ ) and Q(∝ ( cos2 φ − sin2 φ cos2 θ )) of the single scattered
polarised (incident) photons as a function of θ . The dotted and solid curves are for
U and Q, respectively. The red, blue, and orange curves are for φ = 30, 45, and 60◦,
respectively.

values of polarisation angle of polarised (incident) photons φ = 30,
45, and 60◦. Here, one can notice that for a small range of θ the U
dominates overQ. However, for all cases we find that 〈U〉 << 〈Q〉.

B. XTE J1701-462: Spectro-polarimatric comparision

For a observed spectro-polarimatric comparision we consider the
source XTE J1701-462. The data points for flux are taken from
Jayasurya et al. (2023, see theirs Figure 3). Unlike the detail mod-
eling of Jayasurya et al. (2023), we describe the observed flux by
Comptonization only, with aiming to estimate the polarisation
properties. The result for flux modeling in spherical geometry is
shown in the upper panel of Fig. B1, and the model parameters
are kTe= 2.5 keV; kTb= 1.25 keV; 〈Nsc〉= 24.7. We compute the
PD as a function of E for two different ranges of θ ≡ [0, 180◦]
and [45, 180◦], which is shown in the middle and lower panels of
Fig. B1, respectively. We find that the variation of PA with energy
is similar to the case Model Ia with 〈Nsc〉= 26.7. As noted earlier
the observed PD of epoch 1 can not be explained in the spher-
ical corona geometry, but one needs a different geometry where
the θ-angle distribution of escaped Comptonized photons does
not follow the same variation as shown in Fig. 10. We also here
noted that for both ranges of θ the computed fluxes are same.
This is because of that in Thomson regime the scattered frequency
does not depends on θ but only on angle α and α′, where α is
the angle between incident photon and incident electron, α′ is the
angle between scattered photon and incident electron, and in the
lab frame it is determined as ν

′
ν

= 1− v
c cos α

1− v
c cos α

′+ hν
γmec2

(1−cos θ)
. Hence, in

general, in Thomson regime the Comptonized flux is independent
of θ . Further in Thomson regime and non-relativistic corona tem-
perature, for unpolarised incident photons, the PD of the scattered
photons would be independent of E atleast after single scattering
(as noted), since the PD as a function of θ is described by curve 1
of Fig. 2.
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Figure B1. Spectro-polarimatric measurement for source XTE J1701-462 in spherical
corona. The upper panel is for the flux, here the data points are taken from Jayasurya
et al. (2023), the solid curve is for Comptonized flux, the dotted curve is for seed black
body flux, and the dashed curve is Comptonized flux having different θ range [45, 180◦].
The parameters for Comptonization are kTe= 2.5 keV; kTb= 1.25 keV; 〈Nsc〉 = 24.7.
The middle and lower panels are for PD with having θ range [0,180◦] and [45, 180◦],
respectively.
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