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Abstract

We discuss some issues regarding the accuracy of a quantile-based estimation of risk
capital. In this context, extreme value theory (EVT) emerges naturally. The paper sheds
some further light on the ongoing discussion concerning the use of a semi-parametric
approach like EVT and the use of specific parametric models such as the g-and-A. In
particular, we discusses problems and pitfalls evolving from such parametric models when
using EVT and highlight the importance of the underlying second-order tail behavior.
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1. Introduction

Over recent years, we have witnessed a growing interest in the theory and applications
of extreme value theory (EVT). For instance, textbooks such as [2], [11], or [26] discuss new
methodological developments together with specific applications to such fields as environmental
statistics, telecommunication, insurance, and finance. In applying EVT we still run into
theoretical issues which need further study. In this paper we present such a problem, discuss
some partial solutions, and indicate where more research is needed.

Our starting point is a problem from the regulatory framework (the so-called Basel II) of
banking and finance. The reader interested in this more applied background is referred to
Chapter 1 of [23]. For the purposes of the present paper, we concentrate on the quantitative
modeling of operational risk (OR). OR is defined as the risk of losses resulting from inadequate
or failed internal processes, people and systems, or from external events. This definition includes
legal risk, but excludes strategic and reputational risk. OR can be viewed as complementary to
the widely studied risk classes of market risk and creditrisk. Without going into a full description
of OR data, it suffices to know thatrisk capital for OR has to be calculated (statistically estimated)
using the concept of value at risk (VaR) at the extreme level of 99.9% and for losses aggregated
over a one-year period; see Section 3 for a definition of VaR. Because of this, early on EVT
was recognized as a canonical tool (see [24]) but also criticized for the possible instability of its
output; see [13]. Degen et al. [10] highlighted some of the main problems in applying EVT to
OR data and, moreover, compared and contrasted EVT with the alternative g-and-h approach,
as championed in [13]. One of the main conclusions of these earlier analyses of OR data is that
in standard loss severity models used in OR practice, it is the asymptotic behavior of the tail
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distribution (in particular the associated slowly varying function in a Pareto-type model) that
may cause problems. In the present paper we highlight these issues in more detail. In particular,
we show that, for a simple distribution such as the g-and-h, EVT-based estimation for ranges
relevant for practice may give answers which differ significantly from the asymptotics.

In Section 2 we give basic notation, model assumptions, and review some standard facts from
EVT. In Section 3 we discuss rates of convergence for quantiles and penultimate approximations.
In Section 4 we look more carefully into the second-order tail behavior under specific model
assumptions for EVT applications to OR. We show that the slowly varying function underlying
the g-and-h model has second-order properties which may give rise to misleading conclusions
when such data are analyzed using standard EVT methodology. We conclude in Section 5 and
give hints for further research.

2. Univariate EVT—background and notation

We assume that the reader is familiar with univariate EVT, as presented, for instance, in [14].
Below we review some basic facts. Throughout, we assume that our loss data X are modeled by
a continuous distribution function (DF) F (x) = P(X < x) and we standardly write F=1-F.

We use the notation MDA (Hg) for the maximum domain of attraction of a generalized
extreme value DF Hg; see [14] for details. Throughout the paper, we restrict our attention
to the case in which § > 0. Then F € MDA (Hg) is equivalent to F e RV _y/g, the class of
regularly varying functions with index —1/£; see, for instance, [14, Theorem 3.3.7]. In terms
of its tail quantile function U(x) = F (1 — 1/x), this is equivalent to U € RVe. Here F
denotes the generalized inverse of F; see Definition 3.1, below. We standardly use the notation
F e RV _1¢ for F(x) = x~'§ L(x), where L is some slowly varying function in the sense of
Karamata, i.e. for all x > 0,

L(tx)
im =1
t—oo L(t)

2.1)

We write L and Ly for the slowly varying functions associated with F and U, respectively.
The functions F and U are always assumed to be continuous and sufficiently smooth where
needed.

Often, it turns out to be more convenient to work on a log-log scale for F and U. As such,
for F € RV_j s with density f, we will write

F(x) —e VO — exp(—é + \I’LF(S)), s = logx,

where W and W, .. denote the log-log transform of F and L, respectively; see Appendix A
for details. Similarly, we define U (1) = e?") = exp(&r + o1, (r)) with r = logt. Note that
L varies slowly if W} vanishes at co.

For I € MDA (H¢), the result below yields a natural approximation for the excess DF F,,
defined by F,(x) = P(X —u < x | X > u), in terms of the generalized Pareto distribution
(GPD) function G g, defined by G¢ g(x) = 1 — (1 + &x/B) /5, where 1 + £x/8 > 0.

Proposition 2.1. (Pickands-Balkema—de Haan.) For & € R, the following statements are
equivalent.

(i) F € MDA(Hy).

https://doi.org/10.1239/aap/1222868182 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1222868182

698 M. DEGEN AND P. EMBRECHTS

(ii) There exists a strictly positive measurable function 8 such that

lim sup  |Fyu(x) — Gg gauy(x)| = 0. 2.2)
U=XF xe(0,xp—u)
The defining property of the scale function 8 is given by the asymptotic relationship B(u) ~

ué as u — oo. Moreover, if (2.2) holds in the case in which & > 0 for some function 8 > 0
then it also holds for B(u) = &u; see [11, Theorem 1.2.5].

Remark 2.1. A key property (and, hence, data assumption) underlying EVT estimation based
on Proposition 2.1 is that of stability. The class of GPDs is stable under successive conditioning
over increasing thresholds, and this with the same parameter &; see [14, Theorem 3.4.13(c) and
subsequent Remark 5]. All EVT-based estimation procedures are based on this tail-stability
property. It may typically hold for environmental data; whether or not it is tenable for socio-
economic data is an issue of current debate.

_ Asaconsequence of Proposition 2.1, for F € MDA (H), a natural approximation of the tail
F(x) for x > u and sufficiently large u is provided by F(u)G¢ guy(x —u). For & > 0, we
may, without loss of generality, take 8(#) = £u and, hence, consider the approximation

F(x), X <u,

Fw)Ge gy(x —u) = cw)x™ 5, x>u, @3)

K (u,x) := {
where c(u) = u/$ F(u) = Ly ().

For practical purposes, in order to appreciate the goodness of the tail approximation (2.3)
for x > u, it is important to quantify the rate at which K converges to F, i.e. to determine the
rate of convergence in (2.2)—or, equivalently, in (2.1).

In an OR context, rates of convergence for loss severity distributions are discussed in [10].
In [10] the authors focused on the so-called g-and-A distribution recently proposed by Dutta
and Perry [13] to model OR losses. Recall that a random variable X is said to have a g-and-h
distribution if X satisfies

e8Z

—1 hz?
expl — ), a,g,heR, b>0,
g 2

X=a+b

where Z ~ N (0, 1). The linear transformation parameters a and b are of minor importance for
our analysis. Unless stated otherwise, we therefore restrict our attention to the standard case in
which a = 0 and b = 1. This class of DFs was introduced in [28] and studied from a statistical
point of view, for instance, in [18] and [22].

Degen et al. [10] showed that, for g, & > 0 (typical for OR data), the g-and-A distribution
tail is regularly varying with index —1/h, ie. F(x) =x"Y"Lp(x). The corresponding
slowly varying L r is, modulo constants, asymptotically of the form exp(/Iog x)/+/log x (see
also (4.2), below) and turns out to be a particularly difficult function to handle from a statistical
data analysis point of view. Indeed, below we show that the behavior of L in ranges relevant
for practice is very different from its limit behavior, which may cause EVT-based estimation
methods of & to be very inaccurate over such ranges.

3. Convergence of quantiles

In quantitative risk management, risk capital charges are often based on estimates of high
quantiles (VaR) of underlying profit-and-loss distributions; see Chapters 1 and 2 of [23] for
details.
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Definition 3.1. The generalized inverse of a DF F,
F<(g) =inf{x € R: F(x) > g}, 0<gqg<l,

is called the quantile function of F. In a financial risk management context, for given ¢, F < (gq)
is referred to as the ¢ 100% VaR, denoted by VaR, (F).

The tail approximation, (2.3), suggests estimating the VaR of an (unknown) underlying DF
F € MDA(Hg), i.e. estimating F < (g) for some level g € (0, 1), typically close to 1, by its
approximating counterpart K < (u, g). By the properties of inverse functions (see, for instance,
[25, Proposition 0.1]), the quantiles K < (-, g) converge pointwise to the true value F < (g) as
u — 00, but the convergence need not be uniform.

Definition 3.2. We say that, for some DF F' € MDA (H¢), uniform relative quantile (URQ)
convergence holds if

lim sup
U= 4e(0.1)

K (u,q) 1’ _o
F<(q) ’

see also Makarov [21], who gave a necessary condition for URQ convergence.

According to Makarov [21], failure of URQ convergence may lead to unrealistic risk capital
estimates. Another possible reason for the discrepancy between an EVT-based methodology
and certain parametric approaches for high quantile estimation is provided by the fact that the
excess DFs of many loss models used in practice (for instance, log-normal, log-gamma, and
g-and-h) show very slow rates of convergence to the GPD. At the model level, this is due
to the second-order behavior of the underlying slowly varying functions. Consequently, tail
index estimation and also quantile (i.e. risk capital) estimation using EVT-based methodology
improperly may yield inaccurate results; see [10]. Below we combine both lines of reasoning
and embed URQ convergence in the theory of second-order regular variation.

3.1. Rates of convergence for quantiles

Assume that F € RV _y/¢ for some & > 0 or, equivalently, U € RVg, in terms of its
tail quantile function U(r) = F* (1 — 1/t). In order to assess the goodness of the tail
approximation, (2.3), the rate at which K < (u, ¢) tends to the true quantile F < (g) as u — o0
has to be specified. We are thus interested in the rate at which

Ul(tx) £
—Xx
U(t)

3.1)

tends to 0 as t — o0.

In the sequel we focus on the rate of convergence in (3.1) within the framework of the
theory of second-order regular variation, as presented, for instance, in [11, Section 2.3 and
Appendix B] or [12].

The function U is said to be of second-order regular variation, written U € 2RV¢ ,, & > 0
and p <0, if, for some positive or negative function A with lim;_,,, A(t) =0,

U(tx)/U(t) — x¢
1m
t—00 A(t)

= He ,(x), x>0, (3.2)

exists for some Hg , which is nontrivial. In this case we necessarily have Hg ,(x) = x5 (xP —
1)/p for x > 0. Note that, for§ > 0, U € 2RV¢ , is equivalent to ' € 2RV _y/¢ p/¢.
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In order to find sufficient conditions for (3.2) to hold, consider the following intuitive
reasoning in terms of log-log transforms. Let U € RV, and assume that U’ exists. This
ensures that we may write U as

er
v =e 0y = [y,
1

where ¢(y) = yU'(y)/U(y) and ¢ = log U(1); see Appendix A. The log-log plot of U depicts
the graph of ¢. With s = logx and r = log?, we may write (3.1) in terms of log-log transforms
as

U(tx) _

R0 1 = e?UH)=0W=ES _ 1~ o(r +5) — @(r) — &s, r =logt — oo.

The expression ¢(r + s) — @(r) — &s may be approximated by (¢'(r) — &)s and, therefore,
the convergence rate of U(tx)/U(t) — x5 to 0 is of the same order as the rate at which
go/LU (logt) = ¢'(logt) — & =tU'(¢r)/U(t) — & tends to 0 as r — oo. This motivates the next
result.

Theorem 3.1. Suppose that U (t) = e*1°2") js twice differentiable, and let A(t) = ¢’ (logt)—&.
If, for some & > 0 and some p <0,

() im0 ¢’ () = &,
(i1) ¢'(t) — & is of constant sign near 0o, and
(iii) lim;—o0 " (1)/(¢'(t) — &) = p,

then, for x > 0,
U(tx)/U(t) — xt

=% AQ) = oo ()
with
xP —1
x§ , p<0,
HE,p(x) = 14

x¢ log x, p=0.

Proof. Recall the definition of A(r) = ¢’(logt) — &, and observe that

U@x)/U (1) —x5 @ +s) —e(r) —&s S
% At) =He, ) = ¢ =e T Hp o),

where s = logx and » = logz.

By assumption (iii) we have lim;_, o t A’(t) /A(t) = p, which, by the representation theorem
for regularly varying functions (see, for instance, [4, Theorem 1.3.1]), guarantees that |A| €
RV ,. In particular, A(tx)/A(t) — x” locally uniformly as t — co, and we obtain, for every
seRasr — oo,

(49— o) —&5 _ @00 —5)du ; Lol <o
— — - <
or +5) —@(r s _Jole N /epuduz , p <0,
0

o) — & o) — & s oo

This completes the proof.
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Note that in smooth cases the rate of convergence is thus uniquely determined by the
underlying slowly varying function Ly, i.e. A(t) = <p/LU (logt) = tL’U (t)/Ly ().

Remarks 3.1. (URQ convergence.) (i) Define
W(s) = —log F(e*) and W“(s) = —log K (u,e)

for s € [logu, 0co) (and ¥ = W* on (—o0, log u) by definition of K). With this notation, URQ
convergence holds for F if and only if |¥ " (s) — (V*) () |loo — 0 on (—00, 0) as u — oo.
It is not difficult to see that URQ convergence holds for F' if and only if the log-log transform
W, . of L satisfies W . (s) — cF as s — oo for some constant cr € (0, 00).

(ii) For U satisfying the assumptions of Theorem 3.1 with p < 0, we have ¢'(logx) — & ~
Cx?, x — oo, for some constant C > 0, and, hence, ¢, (t) = ¢(t) — t& (or, equivalently,
Wy (s) = s/& — W(s)) tends to a finite limit. In particular, a strictly negative second-order
parameter p implies URQ convergence for U (or, equivalently, F). In the case in which p = 0,
Ly belongs to the so-called de Haan class I1, which is a subclass of the class of the slowly
varying functions; see [11, Theorem B.3.6]. For Ly € I, limy_, oo Ly (x) =: Ly (00) exists,
but L (co) may be infinite; see [11, Corollary B.2.13].

For F € RV_ 1/¢, Theorem 3.1 gives the rate at which K~ tends to the true quantile ', or,
equivalently, the rate at which the corresponding properly scaled excess quantiles F,~ converge
to G; - For A() =tU "(t)/ U (¢) — & satisfying the conditions of Theorem 3.1, we obtain, for
every x > 1,

I[P (= 1/x)/u— G (A —=1/x)] 1

s A(L/Fw)) = et

where—for sufficiently smooth F—the corresponding convergence rate satisfies

1 Fu) oL
A<F(u)> iE

asu — oQ.

Cuf(u) Lr(u)

Whereas, for distributions with p < 0, this convergence is rather fast; it may be very slow
in the case in which p = 0. The log-gamma distribution, for instance, is well known for its
slow convergence properties with A(1/ F) = 0(1/ logu). The situation for the g-and-h
distribution is even worse, with A(1/F (1)) = O(1//Togu).

Summing up, in terms of the second-order parameter p, the tail F (or, equivalently, U) will
be ‘better’ behaved if p < 0 than in the case in which p = 0. In the former case the convergence
in (3.2) is not ‘too slow’, in the sense that the rate function |A| is regularly varying with index
o < 0, i.e. the influence of the nuisance term Ly, or, equivalently, L ¢, vanishes fast enough
in terms of Ly (or L r) behaving ‘nicely’ and tending to some positive constant (thus implying
URQ convergence for F). In the case in which p = 0 the rate function |A| is slowly varying
and, hence, the excess quantiles typically converge very slowly. However, in certain cases the
slow convergence rate may be improved using the concept of penultimate approximation.

3.2. Penultimate approximations

So far we have been concerned with the ultimate approximation, i.e. for every x > 0 and
for large values of 7,

Utx) ~ x5U(1).
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One method to improve the rate of convergence in the above approximation goes back to the
seminal work of Fisher and Tippett [15]. More recent accounts on this are found, for instance,
in [7], [16], or [29].

The basic idea behind penultimate approximations is to vary the shape parameter £ as a
function of the threshold ¢, i.e. to consider

Utx) ~ x5DU 1)

with £(r) — & for t — oo, where one hopes to improve the convergence rate by choosing &(-)
in an appropriate way.

In order to illustrate how to find a feasible function &(-), consider the following. In terms of
log-log transforms, the ultimate approximation uses the fact that, for large values of r,

p(r +s) = @(r) +§s,

where » = logt and s = logx, i.e. ¢ is approximated linearly by a straight line with slope &.
A better approximation might be achieved if, for large values of r, ¢ is still approximated
linearly, but now by its tangent line in the respective points r = log¢, i.e. by a straight line with
slope ¢’, leading to

@(r +5) = @(r) + ¢'(r)s.

Thus, a reasonable choice of a threshold-dependent shape parameter is £(r) = ¢'(logt) =
tU'(t)/ U ().

At this point it is worth noting that there is a close connection between the theory of
penultimate approximations and the theory of second-order regular variation. Suppose that
U satisfies the conditions given in Theorem 3.1. Then we obtain, for large values of ¢,

Ul(tx) = U(t)(x¥ + A(t) Hg, p (x)),
or, equivalently, for large values of r = log 1,
O(r +5) ~ @(r) +&s + (¢'(r) —&)e ¥ He (),

which, by definition of Hg , for p = 0, is the same as ¢(r +5) =~ @(r) + ¢'(r)s. As a
consequence, in the case in which p = 0 the theory of second-order regular variation yields
(asymptotically) the same approximation as the penultimate theory. Note, however, that we may
easily construct examples where the second-order theory does not apply but the penultimate
theory does.

Example 3.1. Consider U (r) = e?1°¢9 with p(r) = &£r + @, (r) = &r + sin /r. Inthis case
@1, changes sign infinitely often as we move out, and, thus, Theorem 3.1 does not apply.
A penultimate approximation ¢(r 4+ s) = ¢(r) + ¢’(r)s may nevertheless be considered. In
particular, the approximation error, e, (s) = @(r +s) — @(r) — ¢’(r)s, is of the order O (s?) for
s — 0, whereas the error in the ultimate case, ¢(r + s) — @(r) — &s, is of the order O(s).

The above example shows that, although no second-order improvement exists in that par-
ticular case, the penultimate approximation may locally still lead to an improvement over the
ultimate approximation. In addition, we will show below that in the case in which p = 0 the
rate of convergence in the penultimate approximation may indeed (asymptotically) improve
compared to the ultimate approximation.
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Intuitively, it is clear that the rate at which U (tx)/U(t) — x5® tends to 0 is of the same
order as the rate at which the linear approximations (i.e. the tangent lines in points ¢) approach
the straight line with slope £. Hence, the speed at which the penultimate convergence rate a(-)
tends to 0 is of the same order as the speed at which the slope ¢’ tends to its ultimate value &,
which is measured by ¢”. So, as a candidate for the penultimate convergence rate, we choose
a(t) = ¢"(logt) = t&'(t). Theorem 3.1(iii) implies that, for this choice of a, the convergence
rate may asymptotically be improved only in cases where p = 0, and we have a(t) = o(A(¢))
for t — o0. Indeed, under the conditions discussed above and under the additional condition

9" (x) , 1§ (1)

— 0 or, equivalently, — —1, x =logt — oo,

@"(x) E@)
the (improved) penultimate rate of convergence may be given as follows.

Theorem 3.2. Let U satisfy the conditions of Theorem 3.1 with p = 0, and define £(t) =
tU'()/U@) = A(t) + &. Iflim, oo tE" (1) /€' (t) = —1, and if & is of constant sign near oo,
then, for all x > 0,

C U@x)/U@) — x5O
lim
=00 tA'(t)

= Je (x),

where
Je(x) = $x* (logx)™.

Proof. Following the lines of the proof of Theorem 3.1, first note that, for s = log x and

r =logt,
Utx)/U(t) — x5® - —¢ 1
g VENVO =50 i 2O 0 =g/ (s 15
t— 00 tA'(1) r—00 " (r) 2

For every s € R, we have
@(r +5) — o) —¢'(r)s / / ”(" + z)
¢ (r) R

Moreover, by assumption, t£”(¢)/&'(t) — —1 (or, equivalently, ¢”’(x)/¢” (x) — 0), which
implies that |¢”| € RV, which guarantees that ¢” (r + s)/¢”(r) — 1 locally uniformly for
r — 00, and, hence, for r — o0,

/S./ //(V+Z)ddy_)//ldzdy__
0 "(r)

which completes the proof.

dzdy.

Remarks 3.2. (i) We want to stress again that it is important to distinguish between the second-
order theory, which is an asymptotic theory (i.e. is concerned with the limit behavior), and the
penultimate theory, which is a local theory. Only for the special case in which p = 0 and
under certain additional conditions do the second-order theory and the penultimate theory yield
asymptotically the same approximation.

(i) From the proof of Theorem 3.2 it is clear that, although the original rate is improved
asymptotically, i.e. tA'(t) = o(A(t)) for t — oo, the improvement is not spectacular, as
the new rate rA’(¢) is again slowly varying. Nevertheless, locally the improvements may be
considerable, as we show in the next paragraph.
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3.3. Implications for practice

To illustrate the above results, we compare the (theoretical) relative approximation
error
K~(u,1—-1/x) _1

F<(1—-1/x)

for the 99.9% quantiles (confidence level required under Basel II) as a function of the threshold
u in the ultimate and penultimate approximations for certain frequently used OR-loss severity
models. Besides the well-known Burr and log-gamma distributions (see, for instance, [14,
Chapter 1]), we consider the g-and-%, the modified Champernowe, and the generalized beta
distributions.

The modified Champernowne distribution was recently proposed by Buch-Larssen et al. [5]
in an OR context. Its tail DF is given by

(M + )% — ¥
(x 4+ )+ (M +c)* —2c%’

e(u) :=

F(x) =

a,M,x >0, c>0;

hence, F € RV_,. The density of a generalized beta (GB2) distribution is given by
xap—l

T T G

a,b,p,q,x >0,
so that f € RV _,,1; see, for instance, [13] for its use in OR.

In Figure 1 we show the approximation errors e(-) in percentages for the g-and-4 and the
log-gamma distributions (left) and for the Burr, the modified Champernowne, and the GB2
distributions (right). To enable a qualitative comparison across different distributions, we take
the thresholds as quantile levels g and scale the horizontal axis by the 99.9% quantile.

In order to compare quantitatively and to check how the GPD approximation for high
quantiles performs, we fix a relative error level of ¢*°%(u) = 5%, say, and compute the
excess probabilities over the corresponding u levels. In practice, in order to estimate a 99.9%
quantile using the peaks over threshold (POT) method, a certain amount N,, of data exceeding
this threshold u is needed (we take u such that e®*°%(u) = 5%), so as to come up with
reasonable estimates. For illustrative purposes, we choose N, to be 100. From this we may
infer the number n of data points we would expect to have to generate, in order to have N, = 100

o 15 151
<
5 101 101
=IO
£° \
5 54 54
2
o
<

0.4 0.6 0.8 1.0

q

FIGURE 1: Approximation error for the 99.9% quantile of the g-and-# distribution (g = 2, 1 = 0.2; labels

u1 and p1), the log-gamma distribution (¢« = 5, B = 5; labels u> and p3), the Burr distribution (o = 3,

T=1,k = %; labels u3 and p3), the modified Champernowne distribution (0« = 5, M =1, ¢ = %;
labels u4 and p4), and the GB2 distribution (a =5, b =1, p =1, ¢ = 1; labels u5 and ps).
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TABLE 1: Expected number of data points n needed to obtain N, = 100 exceedances over a fixed threshold
u for the distributions of Figure 1 with parameter values as specified in the caption.

Threshold u
Distribution such that e*°% () = 5% n
g-and-h (uq) 585.00 91540
g-and-h (p1) 221.00 27740
Log-gamma (u2) 15.60 47780
Log-gamma (p7) 8.87 6260
Burr (u3) 2.55 19070
Burr (p3) 2.13 9190
Modified Champernowne (u4) 2.41 4480
Modified Champernowne (p4) 2.15 2720
Generalized beta (u5) 1.28 440
Generalized beta (ps) 1.68 1440

excesses over the threshold u for a given relative error ¢”*°% (1) = 5%; see Table 1 for the
results.

From the five loss models considered above, the Burr, the modified Champernowne, and
the GB2 satisfy p < 0, whereas the log-gamma distribution and the g-and-% distribution have
second-order parameter p = 0. In the latter case, n increases vastly to about 47 780 and 91 540
for the log-gamma and the g-and-#, respectively, reflecting the slow convergence properties of
these distributions.

Using penultimate approximations above a reasonably high threshold, the number of data
points needed to achieve the same level of accuracy may be lowered significantly in all cases but
for the GB2 distribution. Note, however, that in the GB2 case the convergence is rather fast and
the approximation error e(u) is negligible for high threshold values u anyway. Though the theory
of penultimate approximations seems to be very promising with respect to the (theoretical)
improvement of high-quantile estimation accuracy, its practical relevance may be limited since
the slope ¢’ has to be estimated from the data. More statistical work would be highly useful
here.

Remark. The above examples are of course idealized since we assume the underlying distribu-
tions F to be known and, hence, also the corresponding tail index & of the GPD G¢. In practice,
we will encounter an additional error source owing to estimation errors of the parameters.

From an applied risk management point of view, our analysis admits the following con-
clusion. The closer the second-order parameter p is to 0, the slower EVT-based estimation
techniques converge. Thus, if data seem to be modeled well by a DF F with second-order
parameter p = 0, the amount of data needed in order to come up with reasonable results
may be prohibitively large. In an OR context this is also one of the main reasons why banks
have to combine internal loss data with external data and expert opinion, leading to further
important statistical issues; see [20]. In addition, for distributions with ‘bad’ second-order
behavior (i.e. p = 0), the exact shape of the associated slowly varying function L r may make
things worse and give rise to misleading conclusions about the underlying data. As we already
saw, a prime example of this situation, important for practice, is provided by the g-and-% slowly
varying function (g, & > 0), which is analyzed in more detail in the next section.
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4. A slowly varying function with a sting in its tail

According to Dutta and Perry [13], the typical parameter values of a g-and-h DF F used
to model OR-loss severities are in a range around g € (1.7,2.3) and & € (0.1,0.4). In the
sequel we therefore always assume that g and & are strictly positive; hence, F € RV_; Jh-
Adopting the notation of [10], we consider X ~ g-and-h with DF F(x) = ®(k~!(x)), where
k(x) = (e —1)/g exp(hx?/2) and ® denotes the standard normal DF. In Figure 2 we plot F
on a log-log scale for OR-typical parameter values. As F € RV_; /h» a straight line with slope
—1/h is to be expected as we move out in the right tail.

According to Figure 2, the log-log plot is almost linear over a large region of practical
interest (for quantile levels of 90% up to 99.99%). Therefore, over such ranges, the g-and-h
tail behavior is close to an exact Pareto and, thus, the influence of the slowly varying part seems
to be minimal. Figure 2 is fallacious however, as the slope of a linear approximation /(-) implies
a tail index of around 0.8, whereas the theoretical tail index was chosen to be &4 = 0.2. The
consequences for statistical estimation of this may be better understood by the concept of what
we will call local heavy tailedness.

4.1. Local heavy tailedness

Consider F(x_) =xViLpx) e RV _1/¢, & > 0, where F has a density f. Recall that we
then may write F as

I:"(x) —e VO = exp(—é + \IILF(S)>, s = logx,

with W and Wy . denoting the log-log transforms of F and L, respectively; see Appendix A.
As a graph of —W corresponds to the log-log plot of F, the total amount of heavy tailedness at
a point x is measured by W’(log x). It consists of the ultimate heavy tailedness of the model
(tail index &) and an additional source of local heavy tailedness owing to L. The local heavy
tailedness is measured by the slope of log L ¢, which is given by

V() = 2 - () = 2 - )

s =logx. “.1)

£ £ Fx)'

0.00500

0.00100
Flx) 0.00050

0.00010
0.00005

200 500 1000 2000 5000 10000
X

FIGURE 2: Log-log plot of the tail of a g-and-h distribution with g = 2 and & = 0.2. The straight dashed
line /(-) with slope —1.2 is plotted as a reference line.
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FIGURE 3: Log-log plot of the g-and-/ slowly varying function L with g = 2 and & = 0.2 (left) with
corresponding slope (right) as defined in (4.1).

Clearly, depending on the underlying model F', the amount of local heavy tailedness owing to
the shape of its associated slowly varying function L r may be significant. As indicated above,
this is particularly evident in the case of the g-and-h slowly varying function, for which it
turns out that the behavior of F (or L) in ranges relevant for risk management applications is
very different from its ultimate asymptotic behavior. Neglecting this issue for data of (or close
to) g-and-h type may lead to problems when applying standard EVT methodology. Whereas
this issue is well known from a theoretical point of view within the EVT community (see, for
instance, [25, Exercise 2.4.7]), it is somewhat surprising that it manifests itself so clearly in a
fairly straightforward, and increasingly used, parametric model such as the g-and-# model.

To get a feeling for the behavior of the g-and-4 slowly varying function L, we show in
Figure 3 a log-log plot of L (left) with corresponding slope (right) for g and /& parameter
values typical for OR (the function & is inverted numerically using a Newton algorithm with an
error tolerance level of 10~13).

The almost linear log-log plot suggests that the function L r behaves approximately like a
power function x!/7 for some 1 > 0 and with 1/ given in the slope plot. The asymptotic
behavior of the log-log transform of F is given by

wy =Ly Y28

1 1
; Wﬁ—zlogs—c—i—O — ), s =logx — 00, (4.2)

s
with ¢ = L logdn/h + g2/ h% + log g/ h; see (A.1) in Appendix A.

The deviation from the exact power-law decay (i.e. the deviation from linearity in a log-log
plot) is due to the slowly varying part. The amount of local heavy tailedness is measured by
the slope ‘IVLF of log L , which behaves like

1 1 1
\IJ’LF(S) = — + 0(@)’ s =logx — oo. 4.3)

8
S2h32 s 2s
Therefore, the rate at which the influence of L g vanishes, i.e. the rate at which WiF tends to O,
is of the order O (1/4/logx), x — oc.

Equation (4.3) gives us a first impression of how unpleasant the g-and-A slowly varying
function might be. Indeed, its slow convergence properties together with its (power-like)
behavior in ranges relevant for OR practice may lead to serious difficulties in the statistical
estimation of extremes based on EVT, given that the data follow such a model. At this point
we wish to stress that this is not a weak point of EVT but should rather be viewed as a warning
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against ‘gormless guessing’ of a parametric model, in the words of Richard Smith and Jonathan
Tawn; see [14, Preface, p. VII]. In the next paragraph we study EVT estimation within a g-and-h
model, i.e. for g-and-h generated data.

4.2. Tail index estimation for g-and- data

In [10] the problem of the estimation of the tail index / within a g-and-2 model was pointed
out using the Hill estimator. To emphasize that EVT-based tail index estimation for g-and-h
data may be problematic whatever method one uses, we will work below with the increasingly
popular POT-MLE (maximum likelihood estimate) method for which the statistical basis was
laid in the fundamental papers of Davison [8], Davison and Smith [9], and Smith [27]. For
further background reading, see [14]. We additionally implemented other tail index estimators
such as the moment estimator, a bias-reduced MLE, and an estimator based on an exponential
regression model as discussed in [3]. As might be expected from the discussion in the previous
paragraphs, all these estimators led to similar conclusions and, therefore, we refrain from
showing those results.

In Figure 4, based on n = 10* observations from a g-and-h model (g = 2, h = 0.2), we
plot the POT-MLE of the tail index /4 as a function of the number of exceedances used, together
with the 95% confidence bounds.

At first glance, Figure 4 suggests that the DF of the underlying data follows nearly perfectly
an exact Pareto law, or at least converges rather fast towards an exact Pareto law. Indeed, the
deviation from the exact power-law behavior seems to vanish quickly as the MLE behaves stably
and is flat over a large region of thresholds (as was of course to be expected from Figure 2). As
a consequence, we would accept an estimate of the tail index of around h ~0.85 (compare this
value to the 0.8 implied by Figure 2). Thus, EVT-based estimation significantly overestimates
the true parameter 2 = 0.2, suggesting a rather heavy-tailed model (& = 1/ h ~ 1.2, i.e.infinite
variance), whereas the data are simulated from a model with 1/ = 5, which has finite moments
up to order five. The reason behind this lies in the behavior of the underlying slowly varying
function over moderate ranges. More precisely, for g-and-h data (g = 2, h = 0.2) with for
practice reasonable sample sizes, a number of k = 500, say, largest order statistics is taken
into account for the estimation of 4. For this realistic choice of parameter values of g and 4,
the values of such order statistics will typically range from around 10 to around 103. Over

2.0

Tail index
= =
=) in

o
W

0.0
0 100 200 300 400 500
Exceedances

FIGURE 4: Theoretical tail index (straight solid line) and POT-MLEs of & = h for g-and-h data with
g=2and h =0.2,basedonn = 10* observations.
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FIGURE 5: Slope of the log-log plot of the g-and-A slowly varying function (g = 2, & = 0.2) in a range
relevant for OR.

such ranges the slope of Wy ,. is nearly constant and, hence, L grows approximately like a
power x /7 with (averaged) 1/ ~ 3.8; see Figure 5. Therefore, in ranges relevant for practical
applications, the ‘regularly varying’-like slowly varying part Lr adds a significant amount of
local heavy tailedness to the model. Together with the asymptotic tail decay of F € RV _s, the
local power-like growth of L ¢ leads to a regular variation index of around —1.2, i.e. to a ‘local’
tail index hjo of F of around 0.83.

Remark 4.1. The notion of regular variation is an asymptotic concept, hence, our emphasis
on the distinction between local (i.e. finite ranges relevant for practice) and asymptotic tail
behavior. Owing to its slow convergence properties, the (asymptotic) tail index for the g-and-h
distribution is significantly overestimated by standard (i.e. ultimate) EVT estimation methods.
On the other hand, after a penultimate correction accounting for the local heavy tailedness
owing to the behavior of the slowly varying part, the behavior of F over ranges relevant for
practice is well captured by EVT methods (the MLE in Figure 4 is rather stable and flat). This
is due to the extremely slow decay of \IJ’LF, which is close to constant over large ranges. Over
such ranges, the g-and-# distribution therefore behaves approximately like an exact Pareto, for
which EVT-based estimation methods are known to perform well.

Furthermore, as can be seen from (4.3), the accuracy of tail index estimation crucially
depends on the ratio g/h3/? of the g-and-h parameters. For parameter values of g and &
relevant for OR applications (see [13, p. 43]), g/ h3/? is relatively large and, thus, the slope of
W, .—the share of additional local heavy tailedness—is large.

For cases with g/h3/2 small, for instance, g = 0.1 and # = 0.5, \I//LF is less than 0.2
over a large range, which includes a major part of largest order statistics of reasonable sample
sizes, and, thus, the influence of L is minor, i.e. the difference between local and asymptotic
behaviors is marginal. Consequently, the accuracy of EVT-based tail index estimation increases
considerably and the estimate captures the structure of the data correctly; see, for instance,
Figure 6.

4.3. Risk capital estimation for OR

Based on the 2004 loss data collection exercise (LDCE) for OR data, Dutta and Perry [13]
noted that in the estimation of OR risk capital (VaR, 99.9%, one year) there seems to be a
serious discrepancy between an EVT-based approach and the g-and-4 approach. They found
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FIGURE 6: Theoretical tail index (straight solid line) and POT-MLEs of & = h for g-and-h data with
g=0.1and h = 0.5, basedonn = 10* observations.

that EVT often yields unreasonably high risk capital estimates whereas the g-and-A approach
does not. Fitting a g-and-h model to the 2004 LDCE data (aggregated at enterprise level), Dutta
and Perry [13] found that £ = h € (0.1, 0.4) for different banks. By contrast, applying EVT
methodology to the 2002 LDCE data (aggregated at business line level), Moscadelli [24] came
up with infinite-mean models (i.e. £ > 1) for six out of eight business lines. Based on this,
resulting risk capital estimates may be expected to differ widely for the two approaches. See
also [19] on this issue; in [19] it is claimed that, for typical OR data, the g-and-4 approach is
superior only from a confidence level of 99.99% onwards.

As we do not possess the data underlying these analyses, our findings below, based on
simulated data, may be academic in nature. However, even though EVT-based techniques may,
for simulated g-and-h data, lead to completely wrong estimates of the (asymptotic) tail index
h (see Figure 4), this does not need to carry over to estimates of relevant risk measures such as
VaR or return periods. Indeed, based on n = 10* simulated g-and- data (g = 2, h = 0.2),
the POT-MLEs of the 99.9% quantile seem to be rather accurate (though the 95% confidence
band is quite broad); see Figure 7.

The apparent incompatibility of Figures 4 and 7 can be explained by taking into account the
effect of local heavy tailedness caused by the slowly varying part. For g = 2 and 7 = 0.2, the
theoretical 99.9% g-and-h quantile is approximately 626. The amount of local heavy tailedness
in this point is \IJ’LF (626) &~ 3.7. Moreover, recall that over large ranges the g-and-4 distribution
behaves approximately like an exact Pareto distribution (with tail index # h), and, thus, the
situation is as if we were to estimate the 99.9% quantile of a distribution which seems to be
modeled well by an exact Pareto distribution with parameter « = —5 + 3.7 = —1.3 (i.e. with
tail index & ~ 0.77). This quantile is then estimated using k = 500, say, upper order statistics,
whose values will—for a sample of n = 10* observations—typically range from around 10 to
around 10°. Owing to the almost constant slope of W » (approximately equal to 3.8) over this
range, the 500 order statistics thus seem to be modeled well by an exact Pareto distribution with
parameter « = —1.2 (i.e. £ ~ 0.83). This may explain the good performance of the POT-MLEs
of the 99.9% quantile in Figure 7.

Clearly, these quantile estimates are likely to get worse in cases where we are estimating far
out-of-sample quantiles. Especially in an OR context, estimating at a level of 99.9% is a serious
issue as today’s OR-loss databases are rather sparse. But still, as the influence of L changes
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FIGURE 7: Theoretical 99.9% g-and-h quantile (straight solid line) and POT-MLEs for g = 2and h = 0.2,
based on n = 10* observations.

only very slowly over large ranges (we are in the p = 0O case), the size of estimation errors is
not nearly as large as in the case for tail index estimation. In this sense, the p = 0 case for high
quantile estimation based on EVT is not necessarily as troublesome as can be expected from the
well-known poor performance of tail index estimation in such a case. A more in-depth study
of this phenomenon would however be highly desirable and have important consequences for
quantitative risk management practice.

5. Conclusion

In this paper we have highlighted some issues regarding a quantile-based estimation of risk
capital motivated by the Basel II regulatory framework for OR. From a theoretical point of
view, EVT-based estimation methodologies of high quantiles arise very naturally. Our main
results are as follows.

First, according to [21], failure of URQ convergence may lead to inaccurate risk capital
estimates. We complement these findings by showing that, for sufficiently smooth F €
RV _1/¢, & > 0, the asymptotic behavior of the associated slowly varying function L  deter-
mines whether or not URQ convergence holds. This then allows us to embed URQ convergence
in the framework of second-order regular variation for quantiles; L r(x) — ¢ € (0, oo) implies
a second-order parameter p < 0, whereas L (x) — oo (or 0) implies that p = 0. In the latter
case, the slow convergence properties together with the possibly delusive behavior of L r may
cause serious problems when applying standard EVT methodology.

Second, we stressed the fact that, when using EVT methodology, the second-order behavior
of the underlying distribution, which (in smooth cases) is fully governed by its associated slowly
varying function, is crucial. If data are well modeled by a distribution with ‘bad’ second-
order behavior, i.e. with second-order parameter p = 0, EVT-based estimation techniques will
typically converge slowly. As a consequence, the amount of data needed in order for EVT to
deliver reasonable results may be unrealistically high and largely incompatible with today’s
situation for OR databases. The idea of penultimate approximations seems very promising
in this respect. So far this concept has been of a more theoretical nature and further applied
research would be desirable.
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Third, the g-and-A distribution of Dutta and Perry [13] corresponds to a class of loss DFs
for which the slowly varying function Lr (g, & > 0) is particularly difficult to handle. Owing
to its slow convergence properties (o = 0), its behavior in ranges relevant for OR practice is
very different from its ultimate asymptotic behavior. For broad ranges of the underlying loss
values, the slowly varying function L r behaves like a regularly varying function, putting locally
some extra weight to the tail F. As a consequence, standard EVT-based tail index estimation
(asymptotic behavior matters) may result in completely wrong estimates. However, this poor
performance need not carry over to high-quantile estimation (finite-range behavior matters).

For risk management applications in general and OR in particular, a key property to look
for is the second-order behavior of the underlying loss severity models. Models encountered
in practice often correspond to the case in which p = 0. Especially in the latter case, more
research on the statistical estimation of high quantiles using EVT is needed; see, for instance,
[17] and the references therein for some ideas.

Finally, as already discussed in Remark 2.1, EVT assumes certain tail-stability properties of
the underlying loss data. These may or may not hold. In various fields of application outside
of finance and economics these properties seem tenable and, hence, EVT has established itself
as a most useful statistical modeling tool. Within financial risk management, discussions on
stability are still ongoing and may lie at the basis of critical statements on the use of EVT;
see, for instance, [6], [13], and [19]. In their discussion on the forecasting of extreme events,
Christoffersen et al. [6] stated:

Thus, we believe that best-practice applications of EVT to financial risk management will
benefit from awareness of its limitations, as well as the strengths. When the smoke clears,
the contribution of EVT remains basic and useful: it helps us to draw smooth curves through
the extreme tails of empirical survival functions in a way that is consistent with powerful
theory. Our point is simply that we should not ask more of the theory than it can deliver.

We very much hope that our paper has helped in lifting a bit of the smokescreen and will
challenge EVT experts to consider in more detail some of the statistical challenges related to
the modeling of extremes in financial risk management.

Appendix A

By our standing assumption, F and F < are throughout assumed to be continuous. Further-
more, we will always assume sufficient smoothness for F and F <~ where necessary. Consider
Fx)=x"YéLpx) € RV _1/¢, & > 0, and denote by f the density of F. This is equivalent
to assuming F to be normalized regularly varying with index —1/& (see [4, Section 1.3]), and
ensures that we may write F as

eS
Flx)=e %00 (s = / 10 4y .
1 y

with 7(y) = yf(y)/F(y) and ¢ = log F(1). So the graph of —W corresponds to the log-log
plot of F, and we have W(s) = xf(x)/F(x), where s = logx. As F e RV _1 /¢, the slope
W’(s) converges to 1/& as s — o0o. The log-log transform of the associated slowly varying
function L is given by Wy . (s) = s/& — W(s). Its slope \IJ}‘F tends to 0 and measures the
speed at which the influence of the slowly varying nuisance part vanishes.
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Analogously, for the tail quantile function U(t) = F*< (1 — 1/t), we obtain U(t) =
eV (logr ). where W< denotes the generalized inverse of W (see Definition 3.1), and we write

eV
U(t) = e¥losn) p(r) =¥ (r) = / E(y—y)dy +c,
1

with e(y) = yU’(y)/U(y) and ¢ = log U (1).

As o(W(r)) = r, simple calculus shows that the sufficient first- and second-order conditions
in the ultimate and penultimate approximations (see Theorems 3.1 and 3.2) may be equivalently
expressed in terms of F or U.

A.1. Asymptotics for the g-and-/ distribution
A random variable X is said to have a g-and-h distribution if X satisfies

z

8Z 1 hz?
X:a+bk(Z):a+be exp(T), a,g,heR, b>0,
g

where Z ~ N (0, 1). We concentrate on the case in which @ = 0 and b = 1. Degen et al.
[10] _showed Ehat, for g, h > 0, the g-and-h distribution is regularly varying with index —1/h,
ie. F(x) = CD(k’](x)) = x~ V"L p(x). Since F is differentiable, we may write

F(x) = dk (x)) = e Vlogn),

where, as above, W denotes the log-log transform of F.
By the definition of k we have y := logk(s) = hs?/2 + gs —logg + O(e™%%), s — oo.
We rewrite this as s> = 2y/h — 2gs/h +2logg/h + O(e™%%), s — 00, and, hence,

_ 2y g, 1 g’ log ¢ 1
— k 1 Yy = _— = — | = — 0 .
s (e”) T h + NG ((2h)3/2 + 7 + 7 asy — 00

Recall the standard asymptotic expansion for the normal distribution tail given by ®(x) =
exp(—x2/2)/«/2rrx(l —1/x* + 0(1/x4))_,x — o0; see [1, p. 932]. Hence, we obtain the
following asymptotics for the g-and-h tail F':

—W(r) =log d(k~' (")

1 —1/.1\\2 —1 /.t 1
Z_E(k e )N —logk " (e') —log2n + O W ast — o9,
which then leads to
1 2 1 1
_\Il(t):—zt—i—Wﬁ—zlogt—c#—O(?) ast — oo, (A.1)

with ¢ = L logdm/h + g%/ h* 4+ log g/ h.
A.2. Asymptotics for the log-gamma distribution

A random variable X follows a log-gamma distribution with parameters « and g if its density
satisfies
aP

r'(8)

(logx)P~1x—o—1, a,B>0,x>1,

fx) =
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where I" denotes the gamma function. The corresponding tail is given by

F(x) _ F(ﬂi_‘o(‘;?gx) _ e—\l»'(logx)7

x> 1,

where ~
F(ﬂ,oelogx):/ Ple " ds, x> 1,

alogx

denotes the upper incomplete gamma function. Therefore, we obtain —W(¢) = logI' (8, at) —
logI'(B). For B = 1, we are in the Pareto case with —W () = —at. For 8 € R \ {1}, using the
standard asymptotic expansion for the upper incomplete gamma function given in [1, p. 263],
we obtain

1
—V(t)=—at+(B—1)logt +c+ 0(;) ast — 00,

where ¢ = (8 — 1) loga — log ' (B).
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