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Abstract The numerical range in the quaternionic setting is, in general, a non-convex subset of the
quaternions. The essential numerical range is a refinement of the numerical range that only keeps the
elements that have, in a certain sense, infinite multiplicity. We prove that the essential numerical range
of a bounded linear operator on a quaternionic Hilbert space is convex. A quaternionic analogue of
Lancaster theorem, relating the closure of the numerical range and its essential numerical range, is also
provided.
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1. Introduction

Let F be the field of complex numbers or the skew field H of Hamilton quaternions. Let
H be a Hilbert space over F and let T be a bounded linear operator on H. The numerical
range of T is the set

W (T ) = WF(T ) = {〈Tx, x〉 : ‖x‖ = 1, x ∈ H},
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2 L. Carvalho et al.

where 〈· , · 〉 : H × H → F is the inner product on H. This subset of F was introduced
and studied by Toeplitz in 1918, who proved that, when F = C, the outer boundary of
W (T ) is a convex curve and conjectured that the whole numerical range was convex, see
[14]. Shortly after, in 1919, Hausdorff [10] proved the conjecture. Since then, this result
is known as the Toeplitz–Hausdorff theorem.
Over the years, the investigation of the numerical range continuously increased, includ-

ing the cases of linear operators on infinite dimensional complex Hilbert spaces and
complex Banach spaces. In 1951, Kippenhahn [16] introduced the study of numerical
range for quaternionic operators, i.e. when F = H. Soon it became evident that, although
sharing many properties of its complex counterpart, the quaternionic numerical range
was no longer always convex.
The bild of an operator T, also introduced in [16], is the intersection B(T ) = WH(T )∩C.

Since every quaternion is, up to unitary equivalence, a complex number, many properties
of the numerical range are encoded in the bild, including convexity. In fact, WH(T ) is
convex if, and only if, B(T ) is convex, see [3]. However, the upper bild B+(T ), which is
the intersection of WH(T ) with the closure of the upper half-plane, is always convex.
The pursuit of convexity remained an important issue in the quaternionic setting, with

Au-Yeung establishing in [15] necessary and sufficient conditions for WH(T ) to be convex.
In a series of recent papers [1], [2], [3], [4], [5], the convexity and shape of the numerical

range of quaternionic matrices have been studied by the first three named authors. The
notion of S-spectrum (see [8, 9]) and its relation with the numerical range on infinite
dimensional quaternionic Hilbert spaces was addressed in the recent paper [6]. Another
geometric object in the realm of infinite dimensional Hilbert spaces is the essential
numerical range of an operator T. It is defined as the set

We(T ) = We,F(T ) =
⋂

K∈K(H)

W (T +K),

where K(H) denotes the set of compact operators on the F-Hilbert space H. Taking K

to be the zero operator in the above definition, we see that We,F(T ) ⊆ WF(T ).
This paper is devoted to the study of the essential numerical range in the quaternionic

setting. The main result is Theorem 4.2 where we show that, for F = H, the essential
numerical range We(T ) = We,H(T ) is always a convex set. Thus, at least convexity of this
essential part of the numerical range is guaranteed even in the quaternionic setting. We
emphasize that this is a surprising and unexpected result since the essential numerical
range is the intersection of non-convex sets and nothing indicates it is convex in its
formulation.
To secure this result, we use a general property (Lemma 4.1): given a pair of unitary

sequences x
(1)
n , x

(2)
n and T ∈ B(H), a judicious choice of N andM shows that the following

vectors are close to orthogonal

〈x(1)
N x

(2)
M 〉 ≈ 〈Tx(1)

N x
(2)
M 〉 ≈ 〈T ∗x

(1)
N x

(2)
M 〉 ≈ 0.

We can then form an essential sequence (see Definition 3.3) for the convex combination

α2ω(1) + β2ω(2), ω(1), ω2 ∈ We(T ), with elements of the form αx
(1)
N + βx

(2)
M . The referred
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On the convexity of the quaternionic essential numerical range 3

quasi orthogonality implies that

‖αx(1)
N + βx

(2)
M ‖2 ≈ α2〈x(1)

N x
(1)
N + β2〉x(2)

M x
(2)
M = 1

〈T (αx(1)
N + βx

(2)
M ), αx

(1)
N + βx

(2)
M 〉 ≈ α2〈Tx(1)

N , x
(1)
N 〉+ β2〈Tx(2)

M , x
(2)
M 〉 ≈ α2ω(1) + β2ω(2).

We finish the paper with Theorem 4.3, where we prove a quaternionic version of
Lancaster theorem relating the numerical range and the essential numerical range, see
[11]. Due to the non-convexity of the numerical range, we need to introduce the notion of
inter-convex hull (see 4.7). The result asserts that the closure of the quaternionic numer-
ical range is precisely the inter-convex hull of the quaternionic essential numerical range
and the quaternionic numerical range, i.e. W (T ) = iconv {We(T ),W (T )}. In spite of the
formal similarities with its complex counterpart, there are worth mentioning differences.
Foremost we can not infer that the numerical range is closed when it contains the essen-
tial numerical range (see Remark 4.5) as in complex Hilbert spaces [11, Corollary 1].
This is because the quaternionic numerical range lacks convexity and the quaternionic
Lancaster theorem uses the weaker notion of inter-convex hull. In addition, Remark 4.5
tells us that, even though the upper bild is convex, we still do not recover Lancaster
theorem in its complex form.

2. Notation and preliminaries

The division ring of real quaternions H, also known as Hamilton quaternions, is an
algebra over the field of real numbers with basis {1, i, j, k} and product defined by i2 =
j2 = k2 = ijk = −1. Given a quaternion q = q0 + q1i + q2j + q3k, its conjugate is

q∗ = q0−q1i−q2j−q3k. We call Re (q) = q+q∗
2 and Im (q) = q−q∗

2 the real and imaginary
parts of q, respectively. The norm of q is the non-negative real number |q| =

√
qq∗. Two

quaternions q, q′ ∈ H are similar if there is a unitary u ∈ H such that u∗qu = q′, in which
case we write q ∼ q′. This is an equivalence relation and we denote the equivalence class
of q by [q].
Let H denote an infinite dimensional two-sided Hilbert space over H. In particular,

the norm of x ∈ H is defined by the underlying H-inner product as ‖x‖ =
√
〈x, x〉. The

inner product verifies the usual Cauchy–Schwartz inequality: |〈x, y〉| 6 ‖x‖‖y‖, for every
x, y ∈ H. The space of bounded, right H-linear operators on H is denoted by B(H),
its closed ideal of compact operators by K(H) and the group of invertible operators by
B(H)−1.
Every linear operator T considered in the text will be a bounded linear operator in

B(H). Given q ∈ H and T ∈ B(H), we define the operator ∆q(T ) : H → H by

∆q(T ) = T 2 − 2Re (q)T + |q|2I,

where I is the identity operator. Clearly, ∆q(T ) ∈ B(H). The S-spectrum is the set

σS(T ) =
{
q ∈ H : ∆q(T ) /∈ B(H)−1

}
,

which seems to be the appropriate notion for spectral analysis of linear operators on
infinite dimensional quaternionic Hilbert spaces, see [8, 9].
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Let π : B(H) → B(H)/K(H) denote the canonical quotient map and C(H) =
B(H)/K(H) the Calkin algebra. Let π(T ) = [T ] denote the equivalence class T + K(H),
for T ∈ B(H). Then C(H) is a normed algebra with ‖[T ]‖ = infK∈K(H)‖T +K‖ 6 ‖T‖.
We say that T is a Fredholm operator if the class [T ] is invertible in C(H).
According to Atkinson Theorem, T ∈ B(H) is a Fredholm operator if and only if

its range is closed and the kernels ker(T ) and ker(T ∗) are finite dimensional, where
T ∗ ∈ B(H) is the adjoint of T. The set of all Fredholm operators in B(H) is denoted
by F(H).
The essential S-spectrum of T ∈ B(H) defined by

σS
e (T ) = {q ∈ H : ∆q(T ) /∈ F(H)} .

is a non-empty compact subset of σS(T ), see [12].
In the sequel, we will be working in the quaternion setting, that is, the quaternions

H are our ground field (skew field to be more precise). Therefore, when we write W (T )
or We(T ), we always refer to the quaternionic numerical range or quaternionic essential
numerical range.
Finally, define the essential bild and the essentials upper and lower bilds to be, respec-

tively, Be(T ) = We(T )∩C, B+
e (T ) = We(T )∩C+, and B−

e (T ) = We(T )∩C−, where C±

is the closure of the respective half-planes.

3. Properties of the essential numerical range

This section is devoted to elementary properties of the essential numerical range and to
prove some criteria for a quaternion to be in the essential numerical range of an operator.
The results and their proofs are identical to the complex case with some adjustments.
For the sake of completeness full proofs are provided. We start with an auxiliary result
concerning compact operators.

Lemma 3.1. An operator T is compact if and only if 〈Ten, en〉 → 0 for every
orthonormal set (en)n.

Proof. Let T ∈ B(H) be compact and let (en)n be an orthonormal set. Let Pn be
the projection onto span {e1, . . . , en}. Since T is compact, it is the limit of a sequence of
finite rank operators, i.e. limn→∞‖PnT − T‖ = 0 (see [7, Corollary 4.5]). Then

lim
n→∞

‖(I − Pn)T (I − Pn)‖ 6 lim
n→∞

‖T − PnT‖‖I − Pn‖ = 0.

Since (I − Pn)en+1 = en+1, and using the Cauchy–Schwarz inequality, we have

|〈Ten+1, en+1〉| = |〈T (I − Pn)en+1, (I − Pn)en+1〉|
6 ‖(I − Pn)T (I − Pn)‖.

Hence, 〈Ten, en〉 → 0.
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For the converse, suppose that T ∈ B(H) is such that 〈Ten, en〉 → 0, for every orthonor-
mal set (en)n. From ‖T‖ = sup‖x‖=‖y‖=1|〈Tx,y〉|, there exist unit vectors x1, y1 ∈ H such
that

|〈Tx1, y1〉| >
‖T‖
2

.

A straightforward computation shows the following ‘polarization identity’, for all x, y ∈
H:

4〈Tx, y〉 = 〈T (x+y), x+y〉−〈T (x−y), x−y〉+
(
〈T (x+yi), x+yi〉−〈T (x−yi), x−yi〉

)
i

+k
(
〈T (x+yk), x+yk〉−〈T (x−yk), x−yk〉

)
+k

(
〈T (x+yj), x+yj〉−〈T (x−yj), x−yj〉

)
i.

In particular, it follows that

|〈Tx1, y1〉| 6
1

4

∑
u∈U

|〈Tu, u〉|,

where U = {x1 + ηy1 : η = ±1,±i,±j,±k}. More precisely, for some u0 ∈ U , we can
write

|〈Tx1, y1〉| 6
8

4
|〈Tu0, u0〉| = 2

∣∣∣∣∣〈T
(

u0

‖u0‖

)
,

u0

‖u0‖
〉

∣∣∣∣∣ ‖u0‖2

6 8

∣∣∣∣∣〈T
(

u0

‖u0‖

)
,

u0

‖u0‖
〉

∣∣∣∣∣
where in the last inequality we used the fact that ‖u0‖ 6 2. Set ρ1 = u0/‖u0‖ ∈ H. Then,
ρ1 is a unit vector such that

‖T‖
2

6 |〈Tx1, y1〉| 6 8|〈Tρ1, ρ1〉| ⇔
‖T‖
16

6 |〈Tρ1, ρ1〉|.

Now, let P1 be the orthogonal projection onto span {ρ1}. By applying the above argu-
ment to the operator (I − P1)T (I − P1), we can find a unit vector ρ2 orthogonal to ρ1
such that

‖(I − P1)T (I − P1)‖
16

6 |〈Tρ2, ρ2〉|.

Moreover, a recursive procedure allows us to construct an orthonormal sequence (ρn)n
such that if Pn is the projection onto the span of {ρ1, . . . , ρn} then

‖(I − Pn)T (I − Pn)‖
16

6 |〈Tρn+1, ρn+1〉|.
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Since ρn is an orthonormal sequence, by assumption, we have limn→∞〈Tρn, ρn〉 = 0, so
that

lim
n→∞

‖(I − Pn)T (I − Pn)‖ = lim
n→∞

l‖(PnT + TPn − PnTPn)− T‖ = 0,

and thus T is compact (being the limit of the finite rank operators PnT + TPn −
PnTPn). �

Next result, well-known in the complex setting (see [13, Corollary in page 189]), gives
necessary and sufficient conditions for an element q ∈ H to belong to We(T ), for some
operator T ∈ B(H). A very important class of unitary vectors regarding the essential
numerical range, portrayed below in condition (b), will be called an essential sequence,
see Definition 3.3. As usual, we write xn ⇀ x if a sequence (xn)n in H converges to x ∈ H
in the weak topology.

Theorem 3.2. Let q ∈ H. The following conditions are equivalent:

(a) q ∈ We(T ).
(b) There exists a sequence of unit vectors (xn)n in H such that xn ⇀ 0 and

〈Txn, xn〉 → q.
(c) There exists an orthonormal sequence (en)n in H such that 〈Ten, en〉 → q.

limn→∞〈Tξn, ξn〉 = q.

Proof. (b) ⇒ (a). Suppose (b) holds. To see that q ∈
⋂

K∈K(H) W (T +K), we will

show that 〈(T + K)xn, xn〉 → q, for every compact operator K. At this point, we need
the following well-known result: if K is compact and xn ⇀ x, then Kxn → Kx strongly.
In particular, if xn ⇀ 0 then ‖Kxn‖ → 0. It follows that

〈(T +K)xn, xn〉 = 〈Txn, xn〉+ 〈Kxn, xn〉 → q,

since we have |〈Kxn, xn〉| 6 ‖Kxn‖, for every n.
(c) ⇒ (b). The result follows from the fact that en ⇀ 0 for every orthonormal sequence

(en)n.
(a) ⇒ (c). Since We(T ) = [Be(T )], it is enough to prove the result for the essential

upper bild. Let q ∈ B+
e (T ).

From
B+

e (T ) ⊆ B+(T ), there is a sequence of unit vectors (ξn)n in H such that 〈Tξn, ξn〉 ∈
B+(T ) and limn→∞〈Tξn, ξn〉 = q.
Take ξM, which we call without loss of generality ξ1, such that

|〈Tξ1, ξ1〉 − q| 6 1

2
.

Let L1 := span {ξ1} and write H = L1 ⊕ L⊥
1 . Denote P1 : H → H the orthogonal

projection onto L1. From [3, Corollary 3.3], we know that the quaternionic numerical
range of an operator, and therefore its upper bild, always intersects the real line. So, we

can take a real number µ1 ∈ B+
(
(I − P1)

)
T |L⊥

1

)
∩ R.
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Let F 1 be the finite rank operator such that T +F1 = µ1P1+(I−P1)T (I−P1). Then,
F 1 compact and, since q ∈ B+

e (T ), it follows that

q ∈ B+(T + F1) = B+(µ1P1 + (I − P1)T (I − P1)).

However, it is clear that

B+ (µ1P1 + (I − P1)T (I − P1)) =

= {〈(µ1P1 + (I − P1)T (I − P1))(x1 + x2), x1 + x2〉 : (x1, x2) ∈ Ω} ∩ C+

=

{
µ1‖x1‖2 + ‖x2‖2〈(I − P1)T

x2

‖x2‖
,

x2

‖x2‖
〉 : (x1, x2) ∈ Ω

}
∩ C+,

where Ω =
{
(x1, x2) : x1 ∈ L1, x2 ∈ L⊥

1 , ‖x1‖2 + ‖x2‖2 = 1
}
.

Since µ1 ∈ B+
(
(I − P1)

)
T |L⊥

1

)
∩ R and B+

(
(I − P1)

)
T |L⊥

1

)
is convex (see [15,

Corollary 1]), we obtain

B+(µ1P1 + (I − P1)T (I − P1)) = B+
(
(I − P1)T|L⊥

1

)
.

Hence, q ∈ B+
(
(I − P1)

)
T |L⊥

1

)
. So there is a unit vector ξ2 ∈ L⊥

1 such that

|〈(I − P1)T |L⊥
1 ξ2, ξ2〉 − q| 6 1

22
⇔ |〈Tξ2, ξ2〉 − q| 6 1

22
.

If ξ1, . . . , ξn are orthonormal vectors such that |〈Tξn, ξn〉 − q| 6 1
2n , we can repeat the

above procedure with Ln := span {ξ1, . . . , ξn}, Pn the orthogonal projection onto Ln,

µn ∈ B+
(
(I − Pn)

)
T |L⊥

n

)
∩ R and Fn such that T + Fn = µnPn + (I − Pn)T (I − Pn).

We thus obtain a unit vector ξn+1 orthogonal to each ξk for 1 6 k 6 n such that

|〈Tξn+1, ξn+1〉 − q| 6 1

2n+1
.

By recursion, there exists an orthonormal sequence (ξn)n in H such that
〈Tξn, ξn〉 → q. �

We will call any sequence satisfying (b) an essential sequence for q, as stated in the
following definition.

Definition 3.3. An essential sequence (xn)n ⊂ H for q is a sequence of unit vectors
such that xn ⇀ 0 and 〈Txn, xn〉 → q.

An immediate consequence of Theorem 3.2 is the non-emptiness of the essential numer-

ical range. In fact, for any orthonormal sequence (en)n, the sequence
(
〈Ten, en〉

)
n
is

bounded by ‖T‖. Then, it has a convergent subsequence. By (c) in Theorem 3.2, we have
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that We(T ) is non-empty. Moreover, it is clear that We(T ) is a compact set since it is
closed and bounded in H. These properties are summarized in the corollary below.

Corollary 3.4. We(T ) is a non-empty and compact set.

The essential numerical range in the quaternionic setting shares many properties with
either the complex essential numerical range or the quaternionic numerical range. We
collect some of such properties below. The proofs are direct and for that reason only a
short hint is provided.

Proposition 3.5. The following properties of the quaternionic essential numerical
range hold.

(i) We(T +K) = We(T ), for all K ∈ K(H).
(ii) q ∈ We(T ) if and only if [q] ⊆ We(T ).
(iii) We(T

∗) = We(T ).

(iv) We(T ) ⊆ D(0, ‖π(T )‖).
(v) If a, b ∈ R,We(aT + bI) = aWe(T ) + b.
(vi) We(T + S) ⊆ We(T ) +We(S).
(vii) If U ∈ B(H) is unitary, then We(UTU∗) = We(T ).
(viii) We(T ) contains all eigenvalues of T of infinite multiplicity.

Proof. (i) follows from K + K(H) = K(H), for any K ∈ K(H); (ii) results from
q ∈ W (T ) if and only if [q] ⊆ W (T ), for every operator T ; (iii) is a consequence of

W (T ∗) = W (T ), for every T ∈ B(H); the inclusion W (T ) ⊆ D(0, ‖T‖) implies (iv); (v)
holds because W (aT + bI) = aW (T ) + b, for a, b ∈ R; from K(H) + K(H) = K(H) and
W (T + S) ⊆ W (T ) + W (S) we obtain (vi); (vii) follows from W (UTU∗) = W (T ); for
(viii) note that the orthonormal set (en)n of eigenvectors satisfying Ten = enq is an
essential sequence for q. �

From [6, Theorem 2.9], we know that σS(T +K) ⊆ W (T +K), for every K ∈ K(H).
Using the notion of Weyl S-spectrum, σS

w(T ) :=
⋂

K∈K(H) σ
S(T +K), and that σS

e (T ) ⊆
σS
w(T ) ⊆ σS(T ) (see Definition 6.1 and Theorem 6.6 in [12]), we have the following result.

Theorem 3.6. σS
e (T ) ⊆ We(T ).

4. Convexity

In this section, we establish the main result of the paper which asserts that the quater-
nionic essential numerical range is convex. To see this, we will show that for any two
elements ω(1), ω(2) in We(T ), their convex combination can be arbitrarily approximated
by elements 〈Tz, z〉, where z ∈ H is generated by an essential sequence for ω(1) and an
essential sequence for ω(2). To construct such elements z ∈ H, we need a preparatory
lemma which states a general property enjoyed by a pair of unitary sequences weakly
vanishing and a bounded linear operator.
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Lemma 4.1. Let T ∈ B(H) and
(
x
(i)
n

)
n
, i = 1, 2, be unitary sequences in H such that

x
(i)
n ⇀ 0. For any ε> 0 and N ∈ N, there is M ∈ N such that M > N and∣∣〈x(1)

N x
(2)
M 〉

∣∣ 6 ε,
∣∣〈Tx(1)

N x
(2)
M 〉

∣∣ 6 ε and
∣∣〈T ∗x

(1)
N x

(2)
M 〉

∣∣ 6 ε.

Proof. Let δ > 0. Let (ek)k be an orthonormal basis for H and PK be the projection
onto span {e1, ..., ek}. Since (I − PK)y

−→
k→∞0 for every y ∈ H, then, for the above δ > 0

and N ∈ N, we may find K ∈ N such that

‖(I − PK)x
(1)
N ‖ 6 δ, ‖(I − PK)Tx

(1)
N ‖ 6 δ and ‖(I − PK)T ∗x

(1)
N ‖ 6 δ. (4.1)

We can find an M ∈ N that depends on δ, N, K, such that M > N and

|〈x(2)
M , ek〉| 6

δ

2k/2
, for every 1 6 k 6 K. (4.2)

Inequality (4.2) follows from the fact that
(
x
(2)
n

)
n

vanishes weakly and that implies
coordinatewise convergence to zero. It follows that∥∥∥ ∑

16k6K

〈x(2)
M , ek〉 ek

∥∥∥2 =
∑

16k6K

∣∣∣〈x(2)
M , ek〉

∣∣∣2 6 δ2

and therefore ∥∥PKx
(2)
M

∥∥ 6 δ. (4.3)

Noting that ‖x(1)
N ‖ = ‖x(2)

M ‖ = 1, we have∣∣∣〈x(1)
N , x

(2)
M 〉

∣∣∣ 6 ∣∣∣〈x(1)
N , (I − PK)x

(2)
M 〉

∣∣∣+ ∣∣∣〈x(1)
N , PKx

(2)
M 〉

∣∣∣
6

∥∥(I − PK)x
(1)
N

∥∥ ∥∥x(2)
M

∥∥+
∥∥x(1)

N

∥∥ ∥∥PKx
(2)
M

∥∥
6 2δ (from (3.1) and (3.3)).

Using a similar reasoning, we can show that∣∣〈Tx(1)
N , x

(2)
M 〉

∣∣ 6 ‖(I − PK)Tx
(1)
N ‖ ‖x(2)

M ‖+ ‖Tx(1)
N ‖‖PKx

(2)
M ‖

6 ‖(I − PK)Tx
(1)
N ‖+ ‖T‖ δ

6 δ + ‖T‖ δ

and
∣∣〈T ∗x

(1)
N , x

(2)
M 〉

∣∣ 6 δ+‖T‖ δ. Letting δ be such that max{2, 1+‖T‖}δ 6 ε the lemma
follows. �
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Theorem 4.2. We(T ) is convex.

Proof. Convexity of We(T ) will be proved by showing that α2ω(1) + β2ω(2) ∈ We(T )
for any α2 + β2 = 1, when ω(1), ω(2) lie in We(T ). For that we will prove there is an
essential sequence (z̃p)p for α2ω(1) + β2ω(2).

Let
(
x
(i)
n

)
n
be an essential sequence for ω(i) and denote ω

(i)
n = 〈Tx(i)

n , x
(i)
n 〉, for i = 1, 2.

For any p ∈ N let ε = 1/p. One of the conditions for the sequence
(
x
(i)
n

)
n
to be essential

for ωi is that ωin → ωi when n → ∞. Hence, for the given ε, there exists N > p satisfying

|ω(1)
n − ω(1)| 6 ε and |ω(2)

n − ω(2)| 6 ε, for n > N. (4.4)

Pick M according to the previous lemma. For the fixed α and β, let z = αx
(1)
N +βx

(2)
M .

Since α2 + β2 = 1 and αβ 6 1
2 , we easily verify that

∣∣‖z‖2 − 1
∣∣ 6 ∣∣〈x(1)

N , x
(2)
M 〉

∣∣ 6 ε. (4.5)

A simple computation shows that∣∣∣〈Tz, z〉 − (
α2ω(1)

N + β2ω(2)
M

)∣∣∣ = αβ
∣∣∣〈Tx(1)

N , x
(2)
M 〉+ 〈T ∗x

(1)
N , x

(2)
M 〉

∣∣∣ 6 ε.

From (4.4), it follows that∣∣∣〈Tz, z〉 − (
α2ω(1) + β2ω(2)

)∣∣∣ 6 ∣∣∣(α2ω(1)
N + β2ω(2)

M

)
−
(
α2ω(1) + β2ω(2)

)∣∣∣
+
∣∣∣〈Tz, z〉 − (

α2ω(1)
N + β2ω(2)

M

)∣∣∣
6 α2

∣∣∣ω(1)
N − ω(1)

∣∣+ β2
∣∣∣ω(2)

M − ω(1)
∣∣

+
∣∣∣〈Tz, z〉 − (

α2ω(1)
N + β2ω(2)

M

)∣∣∣
6 2ε. (4.6)

Observing that the fixed integers N and M depend on ε, that is on p ∈ N, we denote
them by Np and Mp; likewise, we denote z by zp. To get an essential sequence, we have
to normalize (zp)p. Write z̃p =

zp
‖zp‖ . From (4.5), ‖zp‖ → 1 (p → ∞), and so (z̃p)p is well

defined. By definition, zp = αx
(1)
Np

+βx
(2)
Mp

, and x
(1)
Np

, x
(2)
Mp

⇀ 0, when p → ∞. By linearity

and since ‖zp‖ → 1, we have that z̃p ⇀ 0. Finally, from (4.6) it follows that

〈T z̃p, z̃p〉 =
1

‖zp‖2
〈Tzp, zp〉 → α2ω(1) + β2ω(2).

The sequence (z̃p)p is essential for α2ω(1) + β2ω(2) and thus, by Theorem 3.2, α2ω(1) +
β2ω(2) ∈ We(T ). �
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Next result establishes the relation between the boundary of the numerical range and
the essential numerical range. This is the quaternionic analogue of Lancaster’s theorem
for the complex numerical range, see [11, Theorem 1]. Since the quaternionic numerical
range is not always convex, a modification is imposed and we need to introduce the notion
of inter-convex hull of sets (see [2, Definition 3.2]).
The inter-convex hull of the sets A and B, denoted by iconv {A,B}, closes the set A∪B

to the convex combinations with one element of each sets,

iconv {A,B} = {αa+ (1− α)b : a ∈ A, b ∈ B, 0 6 α 6 1}. (4.7)

Theorem 4.3. The closure of the numerical range is W (T ) = iconv {We(T ),W (T )}.

Proof. We start proving that iconv {We(T ),W (T )} ⊆ W (T ). Let ω̄ ∈
iconv {We(T ),W (T )}. Then ω̄ = α2ω + β2ωe with ω ∈ W (T ), ωe ∈ We(T ) and
α2 + β2 = 1. In particular, we can take a unitary y ∈ H such that ω = 〈Ty, y〉 and an
essential sequence (yn)n for ωe. Since yn ⇀ 0, we have that lim 〈Tyn, y〉 = lim 〈Tyn, T y〉 =
lim 〈Tyn, T ∗y〉 = 0. Let zn = αy + βyn. Then,

〈Tzn, zn〉 = α2〈Ty, y〉+ β2〈Tyn, yn〉+ αβ
(
〈Ty, yn〉+ 〈Tyn, y〉

)
→ α2w + β2we = ω̄.

Furthermore,

‖zn‖2 = α2‖y‖2 + β2‖yn‖2 + αβ
(
〈y, yn〉+ 〈yn, y〉

)
→ 1.

Thus, W (T ) 3 〈T zn
‖zn‖ ,

zn
‖zn‖ 〉 → ω̄ and ω̄ ∈ W (T ).

To prove the converse inclusion, take ω ∈ W (T ). There is a sequence (yn)n in H
satisfying ‖yn‖ = 1 and ωn = 〈Tyn, yn〉 → ω. Since this sequence is in the unit circle,
there is an element y ∈ H in the unit disk such that yn converges weakly to y.
If y =0, then (yn)n is an essential sequence for ω. From Theorem 3.2, we have ω ∈

We(T ).
If ‖y‖ = 1, we have that yn ⇀ y, with ‖y‖ = 1 = ‖yn‖. It is well-known that in this

case yn → y (strongly). Thus, 〈Tyn, yn〉 → 〈Ty, y〉, that is, ω = 〈Ty, y〉 ∈ W (T ).
Assume now that ‖y‖ 6= 0, 1. Using that 〈yn, h〉 → 〈y, h〉 for any h ∈ H, we can prove

that lim 〈Tyn, y〉 = lim 〈Ty, yn〉 = 〈Ty, y〉 and therefore

lim 〈Tyn, yn〉 = lim [〈Ty, y〉+ 〈T (yn − y), yn − y〉] .

It is easy to see that lim ‖yn − y‖2 = 1− ‖y‖2. Then

ω = lim 〈Tyn, yn〉 = lim

[
‖y‖2

〈
T

y

‖y‖
,

y

‖y‖
〉
+ ‖yn − y‖2

〈
T

yn − y

‖yn − y‖
,

yn − y

‖yn − y‖

〉]
=‖y‖2

〈
T

y

‖y‖
,

y

‖y‖
〉
+ (1− ‖y‖2) lim

〈
T

yn − y

‖yn − y‖
,

yn − y

‖yn − y‖

〉
.
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We have just written ω as a convex combination of ω = 〈T y
‖y‖ ,

y
‖y‖

〉
∈ W (T ) and

ωe = lim 〈T yn−y
‖yn−y‖ ,

yn−y
‖yn−y‖

〉
. We use Theorem 3.2 again, observing that

(
yn−y

‖yn−y‖

)
n

is an essential sequence for we, to conclude that we ∈ We(T ). Therefore, ω ∈
iconv {We(T ),W (T )}. �

As in other results concerning the quaternionic numerical range, next corollary shows
that we can simply consider what happens in the complex plane. Given a quaternion
q = q0 + q1i+ q2j + q3k, we define π(1)(q) = Re (q) = q0 and π(i)(q) = q1.

Corollary 4.4. Let T ∈ B(H). Then B(T ) = iconv {Be(T ), B(T )}.

Proof. From Theorem 4.3, we have

iconv {Be(T ), B(T )} ∩ C ⊆ iconv {We(T ),W (T )} ∩ C = W (T ) ∩ C.

We obtain that iconv {Be(T ), B(T )} ⊆ B(T ).

For the converse inclusion, take an element ω̄ ∈ B(T ). According to Theorem 4.3, there
are ω ∈ W (T ), ωe ∈ We(T ) and α ∈ [0, 1], such that

ω̄ = αω + (1− α)ωe. (4.8)

Observe that when α=0 or α=1 the inclusion immediately follows. So suppose α 6= 0, 1.
We can write ω = a+ bq and we = c+ dqe, where a, b, c, d ∈ R, q ∈ Im (q), qe ∈ Im (qe)

and |q| = |qe| = 1. Therefore, we have

ω̄ = (αa+ (1− α)c) + (αbq + (1− α)dqe).

Note that αbq+(1−α)dqe ∈ span {i}, since ω̄ ∈ C. Assume that ω̄ ∈ C+. If ω̄ ∈ C−, the
proof is analogous.
By the axial symmetry over the reals of the numerical range, there are ω(i) ∈ [ω]∩C+

in the bild and ωe,(i) ∈ [ωe] ∩ C+. We can write ωi = a+ |b|i and ωe,i = c+ |d|i.
Define ωi = αωi + (1− α)ωe,i, which can be written as

ωi = (αa+ (1− α)c) + (α|b|+ (1− α)|d|)i.

Clearly, π(1)(ω̄) = π(1)(ω̄i). On the other hand, since αbq + (1 − α)dqe ∈ span {i} and
|q| = |qe| = 1, we have

0 6 π(i)(ω̄) =
∣∣∣π(i)(ω̄)i

∣∣∣
=

∣∣∣αbq + (1− α)dqe

∣∣∣
6 α|b|+ (1− α)|d|
= π(i)(ω̄i).

https://doi.org/10.1017/S0013091524000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000336


On the convexity of the quaternionic essential numerical range 13

Assuming that α|b| − (1− α)|d| > 0, let now ω̃i = αωi + (1− α)ω∗
e,i; otherwise, define

ω̃i = αω∗
i + (1− α)ωe,i. Clearly, ω̃i ∈ C+ and π(1)(ω̃i) = π(1)(ω). We have

0 6 π(i)(ω̃i) =
∣∣∣α|b| − (1− α)|d|

∣∣∣
=

∣∣∣α|bq| − (1− α)|dq∗e |
∣∣∣

6
∣∣∣αbq − (1− α)dq∗e

∣∣∣
=

∣∣∣αbq + (1− α)dqe

∣∣∣
= π(i)(ω̄),

since αbq + (1− α)dqe ∈ span {i} and ω ∈ C+.
Then we have found two elements ω̄i and ω̃i, both in iconv {Be(T ), B(T )}, such that

π(1)(ω̄) = π(1)

(
ω̄i

)
= π(1)

(
ω̃i

)
0 6π(i)

(
ω̃i

)
6 π(i)(ω̄) 6 π(i)

(
ω̄i

)
.

Now we will show that ω is also in iconv {Be(T ), B(T )}. Consider the affine
transformation

f : Be(T ) −→ C
f(z) = αωi + (1− α)z.

Since Be(T ) is convex, [ω
∗
e,i, ωe,i] ⊂ Be(T ). Affine transformations map lines into lines so

we have

f([ω∗
e,i, ωe,i]) = [ω̃i, ωi].

Observe that ω̃i 6= ωi, since α 6=1.
Since ω ∈ [ω̃i, ωi], there exists η ∈ [ω∗

e,i, ωe,i] ⊂ Be(T ) such that f(η) = ω, that is,
αωi + (1− α)η = ω. We conclude that ω ∈ iconv {Be(T ), B(T )}. �

Remark 4.5. In the complex setting, [11, Corollary 1] proves that the numerical range
is closed if and only if the WC,e(T ) is a subset of the WC(T ). The relation in the previous
result induces the idea that the same result might hold for quaternions. However, that is
not the case.
Take the operator T = diag {−1+ i, 1+ i}⊕diag{sn}, where sn is a sequence that runs

over (−1/2, 1/2)i ∩Qi. Applying Theorem 3.2 and Theorem 4.2, we have

Be(T ) = [−i/2, i/2].

From Theorem 4.2 in [6], it follows

B+(T ) = conv{−1 + i, 1 + i,−1/3, 1/3]}.
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Nevertheless, the upper bild, and therefore the bild, is not closed. For example, the
boundary line segment joining −1/3 to −1 + i does not belong to B(T ). Thus, we have
Be(T ) = [−i/2, i/2] ⊆ B(T ) but B(T ) is not closed.
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