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LOCAL RIGIDITY AND GROUP COHOMOLOGY I:
STOWE'S THEOREM FOR BANACH MANIFOLDS

VICTOR BRUNSDEN

Stowe's Theorem on the stability of the fixed points of a C2 action of a finitely
generated group T is generalised to C1 actions of such groups on Banach manifolds.
The result is then used to prove that if </> is a CT action on a smooth, closed,
manifold M satisfying H1(T,Dr~1(M)) = 0, then <j> is locally rigid. Here, r ^ 2
and Dk(M) is the space of Ck tangent vector fields on M. This generalises a
local rigidity result of Weil for representations of a finitely generated CTOUD F in a
Lie group.

0. INTRODUCTION

Let F be a finitely generated group. Given a topological group G, the set of
representations of F in G will be denoted by R(T, G). This can be given the structure
of a topological space by taking the topology to be the compact-open topology. The
compact-open topology may also be shown to be the topology of uniform convergence
on finite sets of generators of T. Given <j> € R(T,G), it is natural to try to determine
the local structure of R(T, G) in a neighbourhood of <j>. For the case of G a Lie group
with Lie algebra g, a classical result of Weil [14] states that if fl'1(r, Qadcj>) — 0, then
all representations ip of T in a sufficiently small neighbourhood of <f> in R(T: G) are
conjugate to <p via an element of G. The subscript adcj) refers to the action of T on
0 via the composition of <j> with the adjoint action ad of G on g. A representation
(j> of F with this property is said to be locally rigid. The first cohomology group
Hl(£, 9ad^>) may be computed using techniques such as those developed by Matsushima
and Murakami [9].

Recently, there has been interest in extending this body of theory to a broader class
of topological groups. Of interest is the diffeomorphism group Diff°°(M) of a smooth
closed manifold M. The analogue of the Lie algebra for Diff°°(M) is £>°°(M), the
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272 V. Brunsden [2]

space of C°° tangent vector fields on M and the analogue of ad(j> is <£,. A representa-

tion of T satisfying Hl[T,D°°{M)^ \ = 0 is said to be infinitesimally rigid. Zimmer

[15] conjectured that, as for Lie groups, infintesimal rigidity implies local rigidity. The

aim of this paper is to provide a partial answer in the affirmative to this.

Rather than proceeding directly, the approach presented here follows Fleming's

observation [7] that Weil's original result may be deduced from a result of Stowe [13].

Stowe's theorem says that if <f> 6 R(T,Diff2(M)) fixes a point p € M, (here M is

assumed to be a smooth, finite dimensional manifold satisfying i71(F,TpMd^) = 0),

then p is stable; that is, for all neighbourhoods U of p in M, there is a neighbourhood

W of 0 in R(T, Diff2(M)) so that every ip € W has a fixed point in U. The notation

d<j> refers to the linearisation of <j> at the fixed point p. The fundamental theorem of this

paper is a fixed point result generalising Stowe's Theorem. For notational convenience,

let Actr (F,M) be R(T,Diffr(M)) where 1 ^ r < oo.

THEOREM 3 . 4 . Let F be a finitely generated group, M a C2 manifold modelled

on a Banach space V, <j> S Act1 (F, M) an action of T on M fixing a point p € M

satisfing H1{T,Vd4>) = 0, then, p is stable.

Evidence for Zimmer's conjecture is provided by the following:

COROLLARY 4 . 3 . Let M be a smooth, closed manifold and <f> e Actr (F, M)

a CT action of T on M satisfying H1(T,Dr~1(M)4i,) = 0. Then, there is a neigh-

bourhood U of 4> in Act1" (F, M) so that any tp 6 U is conjugate to <f> by an element

f e Diffr-1(M), where 2 ^ r < oo.

Section 1 presents the basics needed for our discussion of Banach manifolds. While
our manifolds are in general nothing more exotic than Banach manifolds, Frechet spaces
and other locally convex spaces do make an appearance and the needed results and
notational conventions are given in 1.1. Section 1.2 presents the material that we shall
need to define the topologies on various spaces of mappings from a Banach manifold to
itself. Much of this is patterned after treatments of Eells [5] or Lang [8]. Cohomology
is the subject of Section 2. More specifically, when the coefficient module V carries the
structure of a locally convex space a presentation of F induces a topology on the set
of cocycles associated to a Gruenberg resolution. The properties of this topology and
the quotient topology inherited by the cohomology groups is investigated in Section
2.2. The main result is Theorem 2.5; for the coefficient module a Frechet space and F
finitely generated, the (twisted) cohomology groups with coefficients are Hausdorff in
dimensions ^ 2. This result relies on the vanishing of the higher dimensional cohomolgy
for a free group. This is then used to derive the approximation result, Theorem 2.7.
The idea is to approximate a cochain in a cochain complex of Frechet spaces by a
cocycle. This is done by examining its image under the coboundary map. The required
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[3] Stowe's theorem for Banach manifolds 273

approximating cocycle may then be constructed by identifying this image with the
image of an element of the quotient of the space of cochains modulo cocycles under the
natural injection. This leads to useful information only if the range of the coboundary
map is closed. This approximation result is used in Section 3 to give a priori estimates
for constructing cocycles from an action "close" to the original action. The main result,
Theorem 3.4 then follows. The proof is constructive and differs from Stowe's even in the
finite dimensional case. The theorem is then applied in Section 4 to derive the analogue
of Weil's theorem for Diffr(M) (r finite) and so confirm Zimmer's conjecture in this
case.

BANACH MANIFOLDS AND TOPOLOGICAL V E C T O R SPACES. All vector spaces are as-
sumed real. Exceptions will be explicitly indicated. As always, for a locally convex
topological vector space V, V is its dual (= continuous, linear functional), V* is
V with the topology of uniform convergence on bounded subsets of V and the bidual
V** is the space V*' equipped with the topology of uniform convergence on bounded
subsets of V*.

Sources for material on Banach manifolds are Omori [10], Ebin and Marsden [6],
Eells [5] or Lang [8]. Let V be a Banach space. A paracompact, Hausdorff space M is
a Banach manifold modelled on V, r ^ 0 if there is a collection of pairs (called charts)
(U, (j>)u&u where U is an open covering of M and cf> : U -*• V is a homeomorphism of
U to an open subset of V. M is a C Banach manifold if for all charts (U,<f>) and
{V, V>) with U n V # 0, the mapping (poip'1 : tp(U D V) -»• <f>(U n V) is a Cr mapping.
As in the finite dimensional case the tangent bundle TM of a C Banach manifold
M is defined to be the C~1 Banach manifold modelled on the Banach space V xV
with charts (U xV,<j>x d<j>)U€l4. The notions of a CT mapping between such spaces,
its derivative and k-jet are as in the finite dimensional case and may be found in the
previously mentioned references as well as in Deimling [4].

With the above definitions of a Banach manifold, it is a classical result that the
group Diffr(M) of C diffeomorphisms of a smooth, closed manifold M , is itself a C°°
Banach manifold with its model Banach space being the space DT(M) of Cr tangent
vector fields to M equipped with the topology of uniform convergence of derivatives of
order ^ r on compact subsets of M. The proof may be found in Ebin and Marsden
[6], Omori [10], Eells [5] or Abraham [1]. With multiplication in Diffr(M) given by
composition, DiffT{M) becomes a topological group that is also a Banach manifold (not
however, a Banach Lie group as right multiplication is not smooth). Another example
of an infinite dimensional topological group having the structure of a Banach manifold
is C(M,G), the space of C maps from a smooth, closed manifold M to a Lie group
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274 V. Brunsden [4]

G. Again the topology is that of uniform convergence of all derivatives of order ^ r on
compact subsets of M and with this topology, it is a Banach Lie group.

T H E SPACE R(T, G). Let G be a topological group and F a finitely generated group.
Fix a presentation

1 — > R — > F — > F — > 1

of F , where F is free on a finite subset S of F and R is the kernel of the epimorphism
mapping F to F. Let 5 consist of the elements 7 1 , . . . , 7n and R be freely generated
(see Robinson [12]) by r i , r2, r$,... where ri S F for i = 1 , . . . , n. If ip : F —> G is
a homomorphism, then clearly ip need only be specified on generators. In particular,
since ip is a homomorphism,

for all r € R. Suppose that ip^i) = gt for i = 1,... , n, then

r(9i,--- ,9n) = 1 G

for all r e R • Conversely, given g\,... ,gneGn satisfying

r ( s i , . . . ,gn) = 1G

for all r € R, assigning T/>(7I) = <?i for i = 1 , . . . , n defines a homomorphism ip : F ->• G.
In this fashion, for a presentation of F as described above, the set Horn (F, G), of
homomorphisms from F to G may be regarded as the subset

{ ( 5 l , . . . , 9 n ) e G n \r{gi,... ,ffn) = l o f o r all r € # }

of G". Gn with the product topology thus induces a topology on Hom(F,G). It
is straightforward to check that this topology is independent of the presentation and
coincides with the compact-open topology on Horn (F, G) when F is given the discrete
topology. We define R(T, G) to be Horn (F, G) equipped with this topology. If M is a
smooth closed manifold, let Actr (F, M) be the space R(T, Diffr(M)), where Diffr(M)
is given the topology of uniform convergence of derivatives of order ^ r on compact
subsets of M.

Finally, we define the Fox derivative. Given a presentation of F ,

1 — ¥ R — > F — > F — > 1

where F is free on 5 C F as above, ip e Hom(F,Aut(A)) and ( a i , . . . ) e A | S | , the
Fox derivative of w € F is defined as follows. Composition of tp with the quotient
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homomorphism F —> T gives a homomorphism which will also be denoted by <f>.

Let 5 = {7>}t6i, then given {aj}jgi where a,i G A there is <f> € Hom(F, Aff(A))

with <£(7i)(a) = <j>(ji)(a) + a.{ for all i € I . The Fox derivative of w € F, writ-

ten du>4,(ai,...), is then defined to be <£(w(7i,.. . ) ) (0) . The Fox derivative satis-

fies d(w1w2)<j>(.ai, ...) = d ( to i )^(a i , . . . ) + <£(wi(7i, • • •)) {d{w2)4,{ai,...)) for all words

iui, w2 € F.

2. COHOMOLOGY

FRECHET SPACES. The following results will be useful for dealing with the Frechet
spaces that occur in this paper. The first of these may be found in [2, Proposition 12
- T TT /*Tl

PROPOSITION 2 . 1 . Let V and W be two Frechet spaces and F a continuous
linear mapping from V onto W. Then there exists a section of F that is continuous
though not necessarily linear.

In the following, a normed Frechet space is a Frechet space equipped with a con-
tinuous norm || ||. Note that the norm does not define the topology unless the space
happens to be a Banach space. An example of such a space is the space of C°°(M)
real valued functions on a smooth, compact manifold M with || || being the C° norm.
With these conventions, Proposition 2.1 can be strengthened to

PROPOSITION 2 . 2 . Let V be a normed Frechet space with norm \\ \\ and X
a closed subspace. Assume that Y = V/X with F : V —s- Y the quotient mapping is
also a normed Frechet space with norm || | | y . Then for any 77 > 0 there is a section
a :Y -+V with

PROOF: Let r : Y -> V be the section of F given by Proposition 2.1. For all y 6 Y
there is a (non unique) x G l s o that \\y\\Y + rj > | | T ( J / )+X | | . As r is continuous, there
is an open neighbourhood Wy of y so that \\y'\\Y + TJ > \\T(y') + x|| for all y' 6 Wy.
The collection {Wy \ y £ Y} is an open cover of Y. As Y is paracompact, there
is a locally finite subcover {f/t}ig/ and constant mappings {t{ : Y -> X}i€i so that
IMIy+7?> ||r(2/) + *t(z/)|| for all y e f/j. If Xi is a partition of unity subordinate to the
cover {Ui}iei then the section TX(y) = r(y)+Y, Xi{y)U{y) satisfies ||ri(j/)|| < | | j / | | y + 7;

i€l
for all y € Y. Define a on Y - {0} by

\\\y\\y)

By construction it satisfies the desired inequality and is clearly continuous on Y — {0}.
Extending a to all of 7 by a(0) = 0 completes the construction of a. D

https://doi.org/10.1017/S0004972700032895 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032895


276 V. Brunsden [6]

C H A I N COMPLEXES. The cohomology groups occurring in this paper arise from (co)-
chain complexes built out of the coefficient group (always a Prechet space in this context)
and a projective Z[F] resolution of Z . The cochain groups inherit a topology from the
coefficients that depends on the resolution. Therefore the cohomology groups of such a
complex inherit a topology as sub-quotients of the complex that is a priori dependent on
the topology of the complex. For cohomology with coefficients in a FVechet space, this
will be shown to be independent of the resolution. Given a cochain complex (C',dm)

let Z{{C) = ker(d') denote the cocoycles in degree i and B^C) = im (d'"1) the
coboundaries in degree i. Usually, a cochain complex will simply be referred to as C
with the coboundary operators d' being understood. The complexes arise by applying
the functor Homp ( , V) to a projective Z[F] resolution

dn+l p 3n , p °n-} 8X p dp 9

of Z . As this type of construction will occur repeatedly throughout this section, it will
be worthwhile to record some of the topological properties inherited by the image of the
functor Homp ( , V) when V is a Frechet space in the following. For any (countable)
ring R together with a countably generated R module T and action of R on a Frechet
space V via continuous linear transformations, the Abelian group

teT

may be given the topology of a Frechet space by first giving rj V the product topology

(so making it a Frechet space) and then considering HornR (T, V) as the subspace of
n V defined by

t,t'eT

where Ltti(x) = x(t) + x(t') — x(t + t') and Mr<t(x) = r.x(t) - x(rt) and function
notation is used for the product Yl V • Clearly, both Ltii and MT}t are continuous

T
o n II y a n d so Homfl (T, V) is a closed subspace of \[V. Therefore, if V is a

teT teT

Frechet space, so is HornR (T, V) if T is countable. Similarly, applying Hom,R ( , V) to
/ e Homfi (5, T) produces a map of topological vector spaces that may be verified to be
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continuous when both HomR (T, V) and Homjj (5, V) are given the topology outlined
above. Moreover, if T is free as an .R-module on a set X, then as a Frechet space

Horn* (T, V)=]JV
xex

and if S C T is a projective submodule (that is, S is a direct summand of T), then
it is straightforward to verify that HornR (5, V) is a direct summand of Hom^ (T, V).
Furthermore, if / € Hom^ (T, S) is a surjective i?-homomorphism then the induced
map of Frechet spaces /* : Hom/i (5, V) —> HoniR (T, V) is continuous. Moreover, since

r * T T / n T r\ I ^ TT. trrt T r\ I -A /• -f\\ n I
j i J A J i i i R yu, v j — < y c i i u i i i W ( i , v j | y ^ i v c i ^ ,/y — u j

this exhibits im (/*) as a closed subspace of Homn (T, V). As these constructions will
be used repeatedly in this section, here is a summary of them in the following lemma.

LEMMA 2 . 3 . If V is a Frechet space, R a (countable) ring acting via continuous
linear transformations on V, then

(1) Homfl ( , V) takes countable R-modules to Frechet spaces and
(2) R-module homomorphisms to continuous linear maps of Frechet spaces,

and
(3) projective, countably generated R-modules to direct summands of count-

able direct products of V.
(4) If f e Homjj (T, 5) is a surjective R-homomorphsim, f* Hom.R (5, V) is

a closed subspace of Hom^ (T, V).

Applying Lemma 2.3 to the ring Z[F] and a projective Z[F] resolution of Z gives
a cochain complex (C*,d')

O A Homr (Z, V)-^» Homr (Po, V)-^> Homr (Pi, V ) - ^ . . .

where the modules in the complex are Frechet spaces and the coboundary maps are
continuous maps of Frechet spaces. We say that a cochain complex C* is a cochain
complex of locally convex topological vector spaces if each C* is a locally convex, topo-
logical vector space and the coboundary maps d1 : C -> C*+1 are continuous and is a
Frechet cochain complex if in addition each C l is a Frechet space. Therefore, the above
considerations imply that a resolution by countably generated projective modules gives
rise to a Frechet cochain complex if V is itself a Frechet space. The cohomology groups
of such a complex will inherit a topology from the complex that a priori depends on the
resolution. For the case of a complex whose cohomology is T cohomology with Frechet
space coefficients, we shall show this to be independent of the resolution.
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LEMMA 2 . 4 . Let C* and D* be two cochain complexes of locally convex topo-
logical vector spaces, f : C* -* D' a (continuous) morphism and i € N. Then if
ft : H'iD') -> WiC*) is bijective, the topology induced on H^C) by pulling back
the topology on H%(D*) via f* is coaser than the topology on i f ' (C) coming torn
C.

PROOF: By definition, for any cohomology class z + Bl~1(C) in Hl(C)

ft(z + B^iC')) = f{z) + B'-^D').

As / " is continuous, the induced map on the quotient Z'(C*)/Bl(C) is continuous
and the result follows. D

Given two projective Z[F] resolutions P, -t Z and P'm -> Z of Z, the induced
homotopy equivalence of the resolutions e : P. -+ P'm and e' : P', -¥ P, induce
continuous maps of the cochain complexes e* : Homp (P'm, V) —» Homr [P,., V) and
£,. : Homp (P»,V) —> Homr (-P.i^O for any coefficient module V carrying the struc-
ture of a locally convex topological vector space with a continuous F action. Therefore,
the previous Lemma implies that the topologies induced on H* (F, V) from either res-
olution are identical. In this fashion, we may talk about the topology on H'(T, V)
being induced from the topology on V.

The previous considerations show that the cochain complex Homr (P,, V) with P.
countably generated and V a Frechet space, is a Frechet chain complex. Moreover,
if F is FPn (that is, there is a projective Z[F] resolution P. of Z with Pi finitely
generated for all i ^ n) then, if V is a Banach space, so is Homr {Pi,V)- Following
Borel and Wallach [3], we say that a cochain complex of locally convex topological
vector spaces V has Hausdorff cohomology in dimension i if Hl(V°) is Hausdorff
and has Hausdorff cohomology if Hl(V) is Hausdorff for all i, equivalently if im (5*)
is a closed subspace of V*+1. Similarly, we shall say that i/*(F, V") is Hausdorff if
Homp (Pm, V) has Hausdorff cohomology in dimension i for at least one (hence any)
projective Z[F] resolution P, of Z.

A Frechet cochain complex computing the cohomology of a finitely generated group
F may obtained from the Gruenberg Resolution corresponding to a presentation

of F where F is a free group on a finite set of generators S C T. The Gruenberg
resolution associates to such a presentation a free Z[F] resolution P,

. . . — i r n — K r n _ i —> . . . —>lJo—>UJ—HJ
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[9] Stowe's theorem for Banach manifolds 279

of Z, where the Pj s are countably generated if F is. The modules Pn are defined via

P, -T/T+l

•* 2n — I R/1R

where IQ is the kernel of the G map Z[G] —> Z and J/y — Z[G]//v is the kernel of
the homomorphism Z[G] —• Z[G/iV] for any normal subgroup N of a. group G. The
coboundary maps are defined by dn(f)(x) = / (d n (z ) ) for / € Homr(P n ,V) . A full
treatment of the construction of these can be found in [12]. For our purposes, the
important result on Hausdorff cohomology is:

THE!OP^M !? S If F is B fini^9hr crf>Tiprst+£*r1 o-rrmn artirnr iria rnn + innmiQ lin-

ear transformations on a Frechet space V then the Frechet cochain complex C* =

Homr (P. , V) has Hausdorff cohomology in dimension ^ 2.

PROOF: It suffices to show that d* : Homr (P., V) -^ Homr(P.+i ,V) is open,
as then the subspace topology on im(9*) coincides with the quotient topology on
Homr (P., y ) /ker (9*). As the quotient is a Frechet space, this shows that the image
of d' is closed and so H' is Hausdorff. The idea of the proof is to map the complex C*
to another Frechet cochain complex C with vanishing cohomology for • > 1. With
some care, C* will be embedded as a closed subcomplex of C and so B'yC ) =

im f d ) will be a closed subspace of Homr (P., V) for • > 1. The particular complex

chosen computes H' (F, V) where 1 —> R —» F —> F —> 1 is a presentation

of F and V is given the structure of a Z[F] module via the natural homomorphism

F —t F —> GL(V) induced by the presentation and the action of F on V.

Let P , be any free Z[F] resolution of Z. Given a presentation 1 —> i? —> F —»F—>
1 of F, construct a free Z[F] resolution P . of Z with a surjective Z[F] homomorphism
a. : P . -> P . of resolutions as follows. For the initial segment

Po —> Z —> 0,

by regarding Po as a 7L\F\ module in the fashion described above, let Po be a free
Z[F] module mapping surjectively to Po via ao and do — do{cro) be the composition
of this homomorphism with do so that

Po -^-» Z —> 0

["o TidI-
commutes. Proceeding by induction, assume that ( P . , 9,) has been constructed for

• ^ n. Let Qn+i be a free Z[F] module with a surjective Z[F] homomorphism sn + i
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to Pn+i and Qn+i a free 7L\F\ module with a surjective homomorphism dn+i to
ker (9n : P n -» P n - i ) • By the inductive hypothesis, an : Pn -» Pn is surjective and
is also a map of complexes, hence we may lift crnosn+i to a homomorphism r n + 1 :
Qn+i —* Qn+i a n d similarly define a lift r n + 1 : Q n + 1 —»• ker (dn) of sn +i so that the
diagrams

•Oi+l • "n ' "n+1 * "n '

Tsn+1 T<7n and Trn+1

commute. Now define P n + i = Qn+i © Q n + 1 , an+i = r n + i + sn+i and dn+i =
dn+i + ^n+i • Clearly this completes the inductive step. Moreover, if P . is countable,
then clearly P . may be chosen to be countable for all • ^ 0.

Embed Homr(P.,V) into Homp (P.) via the natural action F on P, and V

coming from the quotient homomorphism 7r : F -> T. Let a* : Romp (P., V) -»
•(P. ,V) be the composition of this identification with cr* : Horn./? (P., V) —>
(P. , V), which by construction is a morphism of Frechet cochain complexes.

The definition of P . and a, embeds a'[Romp (P., V)) as the closed subspace {/ €
HomF (P . , V) | f(p + r) = f(p) for all r € ker (<T.)} of HomF (P., V).

By construction, the Frechet cochain complex Homj?(P,,K) has cohomology

groups H*(F, V) which are 0 for • ^ 2. Therefore the subspace topology on im (d j

is identical to the quotient topology on C / ker Id J for • ^ 1 where

C* =RomF(P.,V).

Now consider the diagram
7=;* . ?=r#+1

for • ^ 1. Choosing the complex P . to be countably generated for each • gives a

Frechet cochain complex. Choose a (continuous) section d' : im (9* J -> C* of 9* with

d# (0) = 0. The section dm gives rise to a homeomorphism of topological spaces (though

not an isomorphism of Frechet spaces)

(id - d'd*) © d* : C* - • ker f<9*) © im

with inverse
L + dT : ker (a*) © im (d') -> C*
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where i: ker f d ) —> C is the inclusion. However there are neighbourhoods Y and Z

of 0 in ker (9*1 and im (d'j respectively, so that

Clearly, Z C d'(U) and so d'(U) is open in im(9") as required. U

LEMMA 2 . 6 . Let C* be a Frechet cochain complex with Hausdorff cohomology
in dimension 2. Then for any seminorm p on Cl there is a seminorm q on C1 so that

inf p(c + z)^q ( a 1 (c))
z^Z1

for all ceC1.

PROOF: By assumption B2(C) ^ C2 is a closed subspace and so is a Frechet
space. Hence, d1 : C1 —> B2(C) is a continuous surjective linear map of Frechet spaces
and so by Bourbaki [2, Proposition IV 4.1.1], B2(C) is isomorphic (as a Frechet space)
to C 1 /^ 1 (C*) . The topology on the quotient space C1/Z1(C#) is given by seminorms
of the form inf p( +z). The result now follows since any set of seminorms on B2(C)

zez1

giving the Frechet space topology for B2(C) is equivalent to the above set of seminorms

on B2 = C1/Z1(C9). U

The low dimensional cohomology groups can be given the following interpretations.
The O-th cohomology group may be identified as

H°(T, V) = {v e A | v = <p{-y)v for all 7 G T}.

The group of 1-cocycles may be interpreted to be

Z\T, V) = [z : T -> V I v * ip{i)v + z(7) e Hom(r, Aff(V))}.

A function z : T —t V satisfying this condition is called a crossed homomorphism. The
subgroup consisting of the coboundaries may be interpreted as the set of all cocycles for
which there is an a € A which is fixed by this affine action. That is, <p(7)a + 2(7) = a
for all 7 G F. They are referred to as principal crossed homomorphisms. The first
cohomology group with coefficients in A is then the quotient of the group of crossed
homomorphisms by the group of principal crossed homomorphisms.

For the Gruenberg resolution corresponding to the presentation 1 —> R —> F —>
T —> 1, there is an exact sequence

Z^F, A)-^> Homr (Rab, A)-^H2(T, ,4)—>0

that will provide useful estimates for approximating cochains by cocycles [12, Theorem
11.4.9].
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THEOREM 2 . 7 . Let V be a Ftechet space, ip € R(T, V) with 1 —> R —> F —>
F —> 1 a presentation of F with F finitely generated by S C F and R generated by
T = {r\,r2, • • •} C F. Let {pn}n€N bean increasing set of seminorms defining the
topology on V, that is, pn ̂  pm for all n < m. Then for any n £ N there are m € N
and Kn > 0 so that

iaf v Pn(c + z)^ Knq^ic))

where qm is the continuous seminorm on Homr (Rab, V) defined by

qm(h) = max pm(/i(rj))

for ft 6 Homr (Rab, V).

PROOF: By Theorem 2.5, B2(T, V) is a closed subspace of Z2(T, V) and so is a
Prechet space and so d1 : C1(F, V) -* B2{T, V) is a continuous, surjective linear map
of Prechet spaces. By [2, Proposition IV 4.1.1], given two Prechet spaces X and Y, a
continuous linear mapping L : X —¥ Y is a surjective linear mapping of Frechet spaces
if and only if for every continuous seminorm p on X there is a continuous seminorm q
on Y with inf p{x + x') < (L.x) for all x G X. Applying this to X = C^F, V),

x'6ker(i)

Y = B2(T, V) and L = d1, we find that for every continuous seminorm p on C1(F, V)

there is a seminorm q on B2(T, V) with

inf

for all c 6 C"1(F, V). Note that the collection of seminorms {qm}meN form a funda-
mental system of seminorms for the topology on Homr (Rab> V) aQd that for mi ^ m,2,

Qm2 • Therefore, for all n there is a seminorm qn on Homr (Rab, V) so that

inf pn(c+ z) ^q^.c).

Put Un = {he Homr (-Ra6, V) \ qn(h) < 1} and Um = {h e Homr {Rab, V) \ qm(h) <
1}. By definition, the sets XUm for A > 0 form a fundamental system of neighbourhoods
of 0. Consequently, Un contains a neighbourhood U of 0 of the form U = f") XUmi •

i=l,...,N

Put A — min{Ami,... ,Am/v} and m — max{mi,... ,171^}. Therefore XUm C U and

so Um C (l/i)U C (1/A)!7n and so qn(h) = inf{A ^ 0 | ft € A[7n} ^ (l/A)9m(ft) for

all /i e Homr (fia6> V). This provides the conclusion of the proof with Kn = (l/A). D

Theorem 2.7 forms the basis for approximating cochains by cocycles. The idea is
that a cochain whose image under the coboundary map is small, must have a small semi-
norm in an appropriate seminorm on the quotient of the cochains by the coboundaries.
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Combining this estimate with the (not necessarily linear) section of the coboundary
map produces a cocycle approximating the original cochain. The following Corollary
makes this idea precise for the case that V is a Banach space.

COROLLARY 2 . 8 . With the hypotheses of Theorem 2.7 and the additional as-
sumption that V is a Banach space with norm || ||, there is n S N and K > 0 so
that for any c e C1^, V) there is z e Zl{T, V) satisfying

PROOF: By Theorem 2.7 there are m € N and Km > 0 so that

inf ||c + z | | < Km min ||(^^c)C^«)||-

By Proposition 2.2, there are also a constant L > 0 and a section r : C 1 /Z1 -» C1

satisfying

By applying the previous Theorem, setting pn = pm = \\ \\ (since V is a Banach
space), inf lie + z\\ < Kn min Ij^1 (C)(T~»)II. Hence,

z£Zl(T,V) l^i^n"

completing the proof with K = LKn and z = c - T(C + ZX(T, V)) . D

3. STABILITY

PRELIMINARIES. Several preliminary results needed for the proof of the main theorem
will be collected here. Some of these are fairly simple and are folklore; for these the
proofs will be omitted or only briefly indicated. There are one or two of these results
for which full proofs will be given however. Fix a presentation F = (71 , . . . , 7 n | r\,...)
with the corresponding short exact sequence of groups 1 —> R —> F —> T —> 1
where F is freely generated by 7 1 , . . . , 7 n and R is freely generated (by the Nielsen-
Schrier Theorem, [12, Theorem 6.1.1]) by r i , . . . . For the remainder of the section,
this will be fixed.

The first result is a routine application of the identity

/•1

F{y) = F(x) + / dF(x + X(y - x)).(y - x) d\
Jo

for any C1 mapping F : X —> Y of a Banach space X to a Banach space Y.
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LEMMA 3 . 1 . Let F be a C1 function from a Banach space X to a Banach

space Y and U C X a closed, bounded, convex subset of X. If A & CL(X, Y)

satisfies \\Ax - dF(u).x\\Y ^ e\\x\\x for all x € X and u 6 U then \\F{y) - F(x) -

A(y - x)\\Y ^s\\y-x\\x for all x,y £ U.

The next results apply the results of the previous section to constructing the nec-
essary estimates for approximating a C1F action by cocycles in the neighbourhood of
a fixed point of a fixed F action.

PROPOSITION 3 . 2 . Let V a Banach space, F a finitely generated group, with
presentation as above, cj> € Act1 (F, V) an action that fixes 0 and $ € R(T,GL(v))
the action of F on V obtained by linearising <f> at 0. Let Fn c F be the subset of F
consisting of reduced words in F whose reduced length is less than n € N. For any
n e N there are constants Ln and Kn > 0 depending only on n, so that for any convex,
bounded neighbourhood U C V of 0 there are neighbourhoods W C Act1 (F, V) of <j>
and convex U' C U of 0 so that for any neighbourhoods W C W and convex U c U'
of 4> and 0 respectively of the form

|| ^ £o and

^ ei ||v|| for all x e U, v 6 V and 7 € s\

U C {x € U' I | |#(7)(x) .v - d#(7)(0).u|| ^ ei ||v|| for all v € V and 7 G s\

where eo,£i > 0, such that for all x,y e U,

\\rP(w)(x) - $(w).(x -y)-y- diu*(Vtf)|| < ^i(L« Wx ~ 2/11 + Kn Uv\\)

where tpy is the element of Cl (F, V) defined by ipy{ji) = ipfai) [y)-y for i = 1,... ,n.

P R O O F : Let E : V x Act1 (F, V) -> V|F"I be the function

E(x,tp)w = tp{w{j1:... ,7n))(z) for ail we Fn.

Continuity of the evaluation map ev : V x Act1 (F, V) —> V and the hypothesis that
0(7) (0) = 0 € U for all 7 € F imply that there are neighbourhoods W of (j> in
Act1 (F, V) and Un of 0 in V so that £ ( z , ^ ) € E/IF«I for all (x, V) € Un x W. Since
the trivial word w = 1 & Fn for all n € N it is clear that Un C U. Moreover, Un may
be chosen so that Un C Un-i and is convex for all n > 1.

The neighbourhoods W and Un are the candidates for the W and £/' of the
Proposition.
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Let An = max | |$ (w(7i , . . . ,7 n ) ) | | and Bn — max ||diw$||. Note that An ^ A"

and Bn ^ 1 + AxBn-i- Without loss of generality, assume that £\ < 1/2. It is easily
verified that by Lemma 3.1

|iK7)(a:) - [$(7)-(* - V) + V

for all x,y € U and 7 € 5 .

Since V'(7)(V'(7~1)(a;)) = a: for all x € V, for all 1 € U, substituting
for x in the above and rearranging gives

I k - y - * ( 7 ) - ( V ' ( 7 - 1 ) ( x ) - y ) - d7»(^v) l ! ^ ^ i l l ^ ^ " 1 ) ^ ) - I'll

for all x,y € U and 7 € 5 . Since d^iipy) = -$(7~1).d7$(r/'j /), factoring out a

common factor of * ( 7 - 1 ) from i0(7~1)(z) - [$(7 - 1 ) . (x - y) + y + dy^iipy)] gives

for all x,y e U and 7 € 5 . Moreover, by Proposition 3.1

WH-y-^ix) - Vfr-WH ^ (Ai + 260 ||x - y||

and so

^ W ? + yli) ||x - y\\ + 2AX Uy

for all x,y e U and 7 G 5 . By putting .Jfi = 2i4j + Ai and L\ = 2At the result is true
for n = 1. The remainder of the proof is by induction on n. Assume that the result is
true for Fk where k < n. Let w € Fn - .Fn-i- Then there are words wi and w2 in
F n _ ! so that w = iuiW2 hence, after some manipulation,

.(x -y)-

-X \\x - y\\ + Kn^ \\i>y\\).
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Since

(X) - y|| - \\$(w2).{x -y) +

^ \\ip(w2)(x) -

by the inductive hypothesis,

|||^(™2)(x) - 2,|| - \\$(w2).(x -y) + dwnWy)\\\ ^ £ l (Ln_i \\x - y\\+Kn^ \\jy\\),

and so on rearranging terms

\\ip(w2)(x) - y\\ ^ \\$(w2).(x -y) + dw2^(ipy)\\

n-i) \\ipy\\

Substituting, the result now follows with constants Ln and Kn given by the formulae

Ln = An_i_Ln-i_ + ̂ Ll-i + s « - i a n d

Kn — Bn-i + Kn-\An-i + -Ln-iKn-i

since £\ was chosen less than 1/2. D

PROPOSITION 3 . 3 . Let V a Banach space, r finitely generated, (j> € Act1 (r, V)
an action ofT onV fixing 0, $ 6 R(F, GL(v)) the linearisation of<t>atO with B2{T, V)
a closed subspace of Z2(F, V). There is a K > 0 so that for any convex, bounded neigh-
bourhood U C V ofO, there are neighbourhoods UiCUofO and W C Act1 (r, V) of
<f> so that for all neighbourhoods W C W and convex neighbourhoods U' CU\ of <p
and 0 respectively of the form

W' = [4> 6 W e0 and

\\dTp{-y)(x).v - dtj>(-y)(x).v\\ ^ ei \\v\\ for all x € U, v € V and 7 € s\

and

U' C {x € Ui ||d0(7)(x).u - *(7)-f || ^ £1 ||u|| for all x G U, v e V and 7 G

where £0 and £1 are greater than zero, for any ip G W and y £ U\ the 1-cochain xjjy

defined by •i/'yCli) = i>{*1i)(y) - y satisfies
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where \\c\\ = _max {||c(7i)||} for all c G C1 (r, V).

PROOF: By Corollary 2.8, there is an n > 0 so that

where \\h\\n — max ||Mr»)||- Therefore, by definition,

inf \\ipy + z\\ < max HO

Let U — length(rj) for i = 1 , . . . , n be the length of the (reduced) word r* and
N = max{Zi}. By Proposition 3.2, for this value of N and all neighbourhoods U of 0

-r r . > • 1 i i i rr ~ TT . c t\ 1 Tir ^ » . t l fp TA «f J. in™nil, rtw ,,.;*-U
111 V OiieiC clit: lltl^HUUUlllUUUO \J\ \_ l_/ UL V a u u rr v̂_ xiv,u yx , r j \JL \p uug^uuv,! muu

LN > 0 and KN > 0 SO that for any neighbourhoods W C W and U' C U\ of (j> and
0 of the form

W = [i> e Act1 (r, V) || ^ £o and

\\dip(j)(x).v - #(7)(x).i; | | < ei ||v|| for all x G U, v € V and 7 G

and

U' C Ixe Ui \\d<t>{^){x).v - $(7).i;|| ^ £i ||v|| for all x G I/, v € V and 7 G S

where eoi^i > 0 s o that

W^ir^x) - $(rj).(x -y)-y- dr^y)\\ ^ £l{LN \\x - y\\ + KN Uy\\)

for all x,y in U'. Putting x = y and observing that ijj(rj)(x) = <&{rj).x — x gives

and so ||<5XC"0i/)II ^ £I^N \\*l>y\\- The result now follows with K = kK^. D

This completes the preliminary results necessary for the presentation of the stability
theorem. The proof follows in the next section.

MAIN THEOREM. The proof is constructive. Propositions 2.1 and 2.2 imply there are
sections A0 and r 1 of the coboundary operators 8° and 61 respectively satisfying
||A*(6)|| ^ Li\\b\\ for all b G B'(T, V) for i - 0 ,1 . Estimates on the size of Lo and
L\ give an a priori bound on e\ and e0 allowing Propositions 3.2 and 3.3 to construct
(via A1) a sequence of cocycles which are then converted into approximate fixed points
using A0. The bounds derived for £Q and e\ ensure that the elements of this sequence
remain in the neighbourhood of the original fixed point where Propositions 3.2 and 3.3
are applicable. Finally, the sequence is shown to converge to a fixed point. The result
is initially proved for actions on a Banach space and the generalisation to more general
Banach manifolds is shown to follow from this case.
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THEOREM 3 . 4 . Let F be a finitely generated group, M a C2 Banach manifold
modelled on a Banach space V, <j> G Act1 (I\M) an action of F on M satisfying

(1) (f> fixes a point p € M

(2) if$> € R(T, GL(V)) is the linear action obtained by linearisation of <j> at
p, then i /1(F, V) = 0, where V is a F module via $ .

Then, p is a stable fixed point, that is, for all neighbourhoods U of p there is a

neighbourhood W of <$> in Act1 (F, V) so that all actions ip G W have fixed points in

U.

PROOF: The proof will be carried out for the case M — V. The general case will
be shown to reduce to this. By hypothesis, the images of the coboundary maps 6° and
61 are Frechet spaces. By Proposition 2.2 there is a section r1 , of the quotient map
TT1 : Cx(r, V) -> C1(T,V)/Z1(r,V) satisfying WT1^] ^ K \\c\\ for some K > 0 and
all c G C1(T,V)/Z1(r,V). Define £>i > 0 by Dx = KK where K is the constant
whose existence is guaranteed by Proposition 3.3. Similarly, by Proposition 2.2 there is
a continuous section A0 : S1(F, V) -> V of the 0-th coboundary operator that satisfies
||A°(6)|| ^ Do \\b\\ for all b S B1(r,V). Let d0 > 0 be a positive real number so that
||(5°(i»)|| ^ do \\v\\ for all v G V and m G N so that m^ D\. Define constants r)0 and
Vi by

!?! = # ! + £>0(l + 1/m.Di) and 7?0 = 1 — 1/mJJi

These choices are not optimal, just workable.

The next step is to construct a priori bounds on the size of neighbourhoods of <j> in

Act1 (F, M) so that all actions in the constructed neighbourhoods satisfy the conclusion

of the theorem. To do so, choose an e\ > 0 so that

. f 1 1 1
in< — , — >.

Im no i-C min

This will remain fixed throughout the remainder of the proof. By Proposition 3.3, there
are a neighbourhoods U' C U and W C Act1 (F, V) of <f> respectively, so that

inf \\1tx + z\\£Kei \\ipx\\^rv)

for all x G U and tp € W that are neighbourhoods of 0 and 0 respectively of the form

U C {x G U' | \\d4>in){x).v - #(7)(0).v| | ^ ei IMI for all v G V and 7 G

)-w ~ #(7)(x).i; | | ^ z\ ||v|| for all x G C/, u G V and 7 G S j
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respectively and ipx € C ^ F , V) is the 1-cochain defined by tpxl = x-ip(y)(x) for 7 € 5 .
Without loss of generality it can be assumed that U is convex. Let Wm c Act1 (F, V)
be the neighbourhood of <f> defined by

WUA = JV € W I \\dil){j)(x).v - # ( 7 ) (x ) .v | | s$ ei \\v\\ for all x € U, v € V, 7 €

Given such a neighbourhood [/ of 0, choose r > 0 small enough that {x 6 V \ \\x\\

r} c U. Choose eo > 0 so that

Now let VKŷ  be the neighbourhood of <j> defined by

WU}0 = e0 for all x e U and 7

The remainder of the proof will show that given U as above, actions ij) in Wu,o have
fixed points in {x e V | ||x|| ^ r} where r is as above.

Given tp eW, the strategy will be to construct a sequence of approximate cocycles
tpj € C1(F, V) which measure the failure of the j t h point to be a fixed point and to
use the a priori estimates derived in Propositions 3.2 and 3.3 to construct true cocycles
Zj £ ZX(T, V). It is then straightforward to construct approximate fixed points Xj from
the cocycles Zj. The a priori estimates are then shown to imply that ||XJ|| $J r for all j
and that the sequence of Xj s converges to XQO which is then shown to be a fixed point.

At the j t h step, define ipj € C ^ F , V), Zj g Zl(Y, V) and xj+i by

V'j-r = Xj - i>{l){xj) for 7 € 5

Zj =ipj-T1(Tr(ipj)) and

where XQ = 0. Note that ipx = 0 iff x is a fixed point and since r1(0) = A°(0) = 0,
a limit point of the sequence is a fixed point (assuming that the sequence converges
within the ball ||x|| ^ r). The proof proceeds by induction. The idea is to show for all
j € N that

We begin the induction at j = 0. By definition, XQ — 0 £ U' and so by Proposition
3.3,

inf Uo + zW^dKUoh
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Hence,

I IIV'o
Using the triangle inequality, this gives

and so after substituting into the inequality for

and so ||a;i|| ^ r.

By hypothesis, ||XJ|| ^ r for i < j . By definition of Wu,i, for all x € U and
« € V,

| | | | ^ £i \\v\\.

Therefore by definition of (5°,

||u - drp(y)(x).v - S°(v)\\ ^ £i ||t;|| for all 7 € 5 and x € U,

so by Proposition 3.1

\\rl>j - ipi-i - 8°{XJ - XJ-X)\\ = ei||A0(z,-_i)|| ^ exD0 ||z,-_i||.

Expanding the left hand side of this inequality leads to the following bounds for

^-ll - H -̂.x - 5°(Xj - Xj^)\\\

and so to the following bound for | |^-| |:

Il̂ -H ^ Uj-i - Zj-i\

By construction,

^ l

and so by Proposition 3.3, this gives
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Again, by hypothesis, | |xj| | < r and so again by Proposition 3.3,

Since E\ < I/TO this gives the following bounds for Zj and ipj:

||z,-|| ^ HVill < (1 + 1/mDO ||^-||.

Combining this inequality with the previous inequality for 11V*j 11 provides the following
inductive bound for \\ipj\\:

\\rl>j\\^eiD0\\zj-1\\+e1D1\\1>j-1\\

^ ei(l>i + I>0(l + 1/mDO) Uj-i\\

Rewriting this so that the bound is now in terms of ||ZJ|| instead of ||^>j|| gives

1 + 1/mDi

Hence, the preceeding shows that

(1-1/mDi)"

The formula for ||XJ|| follows since
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and so ||x,|| < r for all j € N and the sequence {XJ}JL0 is Cauchy. Therefore there
is x* £ Br(0) so that Xj —> x, as j -> oo. As Vj -» V^. as j -> oo and Vj -» 0, it
follows immediately that x» is a fixed point for rp.

The general case follows by observing that the preceding argument as well as those
of Propositions 3.2 and 3.3 are local and so apply to germs of F actions. Therefore,
by restricting the neighbourhood of the fixed point to be contained in a coordinate
chart, the preceeding argument can be applied to the germ of the F action obtained by
restricting cj> to this neighbourhood. This gives the general case. D

The following Corollary could have been proven by an implicit function theorem
argument, though this would not have shown the connection to the more general theory
for actions of finitely generated groups.

COROLLARY 3 . 5 . Let M, V, T, </> and p be as in Theorem 3.4 and assume F
is finite. Then for each neighbourhood U of p in M there is a neighbourhood W of (j>
so that each xp € W has a fixed point in U.

PROOF: Since #*(F, V) = 0 for all i > 0, the result follows. D

4. APPLICATIONS

The stability theorem of the previous chapter is applied to provide a partial ver-
ification of a conjecture of Zimmer [15]. This is to the effect that if M is a smooth
closed manifold, F a finitely generated group acting smoothly on M via an action
<t> € Act00 (F, M), and if H1 (F, D°°(M)) = 0 then <j> is locally rigid in Act00 (M).

GENERALISATIONS OF WEIL'S LOCAL RIGIDITY THEOREM. Theorem 3.4 and its
Corollaries may be used to generalise Weil's criterion for local rigidity of represen-
tations of a finitely generated group in a Lie group. This argument was first noticed
by Fleming [7]. We reproduce the argument here for completeness. Define a topolog-
ical group G to be a Cr almost Lie group (or almost Lie group for short) if G is a
Cr Banach manifold with model Banach space V as well as a topological group. Note
that it is not assumed that multiplication and inversion are Cr maps. Examples of such
groups are Diffr(M) for 1 ^ r < oo, where M is a smooth, closed manifold. Of course,
any Lie group G is an almost Lie group as is C(M,G) where again, M is a smooth
closed manifold and G is any Lie group. A C almost Lie group pair (G, H) consists
of Cr almost Lie groups G and H together with a continuous group homomorphism
L : H —> G that is an injective immersion of H into a subgroup of G so that for each
h € H the map AdL(h) : G -* G defined by AdL(h){g) = t(h)gb(h~1) is a C1 map. An
example of a pair (G,H) is of course (Diffr(M),Diffr+1(M)) for M a smooth, closed
manifold. Also (Cr(M,G),Cr+1(M,G)) is an example of a pair. In both examples, the
homomorphism i is induced by the inclusion C r + 1 •-»• Cr. The "canonical" example is
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(Diffr(M),Diffr+1(M)). It is also apparent that if G is an "honest" Lie group then
(G, G) is also an almost Lie group pair. Theorem 3.4 can be applied to prove a local
rigidity result for representations of a finitely generated group F as follows.

THEOREM 4 . 1 . Let F be a finitely generated group, (G, H) an almost Lie group
pair and <j> £ R(T,H) a representation satisfying -ff1(F, TeG) = 0. Then there is a
neighbourhood U of 4> in Rfi, H) so that any ip £ U is conjugate to <j> via an element
of G. The action of F on TeG is given by

v £ TeG !->•

fQr- oil ™ <= r ariW 11 CL T1 Q

PROOF: Define ED : R(T,H) -> Act1 (F,G) by

ED(ip) H-> $ e Act1 ( r ,G) where tffrXs) = i-(f>P{'y))9i-{<P{'y~1))-

It is a matter of checking the definitions to see that ED is a continuous function from
R(T, H) to Act1 (r, G). Moreover, ED(<f>) has a fixed point at e £ G with

d(ED(cj>)){i){e).v = dAdlWl)){e).v for all 7 £ Y and v £ TeG.

By hypothesis, i f1(F, TeG) = 0 and so by Theorem 3.4 for each neighbourhood U of
e in G there is a neighbourhood W of -Adt(0) in Act1 (F, G) where each \I> € W has
a fixed point g0 £ U. By the continuity of ED, W = ED~1(W) is an open subset of
R(T,H) and so for all tp £ W there is g0 £ G with

for all 7 € F. This g0 provides the required conjugacy. D

This has the following Corollaries.

COROLLARY 4 . 2 . Let G be a Banach Lie group with TeG = g{G), F a finitely

generated group and <j> £ R(T,G) a representation of F with ff1(F, fl) = 0. Then <j> is

locally rigid in R(T, V).

The following Corollary of Theorem 4.1 is a partial verification of Zimmer's con-
jecture that the conclusion of Weil's local rigidity theorem is true if the Lie group G
and its Lie algebra g(G) are replaced by Diff°°(M) and D°°{M) respectively, where
M is a smooth closed manifold.

COROLLARY 4 . 3 . If M is a smooth closed manifold and T is a Bnitely generated

group acting on M via 4> £ Act1" (F, M) satisfying H1(T,Dr~1(M)) = 0 then there is
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a neighbourhood U of <p in Actr (F, M) so that every xp € U is conjugate to 4> via an
element of Diffr~l{M).

PROOF: Since DiffT{M) is an almost Banach Lie group and the action of Diffr(M)
on Diffr~1{M) via conjugation is C1, this reduces to an application of Theorem 4.1. D

This result generalises [7, Theorem 1]. The hypotheses of the above are weaker in
that F is only required to be finitely generated rather than finitely presented and the
vanishing of H1 implies the closed range condition imposed by Fleming, by Theorem
2.4. Unlike Fleming's result, this reduces to Stowe's theorem in the finite dimensional
case. The final result is an application of the above to the case of a finite group action.
This parallels a result of Palais [11].

COROLLARY 4 . 4 . With M as above and F a finite group, then any (f> S
Actr (F, M) is locally rigid.

PROOF: This follows by combining Corollary 4.3 with the observation that H1 (F, V)
0 for a F module V possessing the structure of a real vector space. D
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