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Proof of Cellini’s conjecture on self-avoiding

paths in Coxeter groups

Matthew Dyer

Abstract

This note proves Cellini’s conjecture that, in a Coxeter system (W, S) with reflections
T , the T -increasing paths in W are self-avoiding. Here, a T -increasing path is a sequence
v, t1v, . . . , tn · · · t1v in W with ti ∈ T and t1 ≺ · · · ≺ tn in a reflection order � of T .

1. Introduction

A reflection order is a special total order of the set T of reflections of a Coxeter system (W, S).
Despite significant applications to the study of Bruhat order, Hecke algebras and Kazhdan–
Lusztig polynomials (see e.g. § 3.4), they remain poorly understood, and basic conjectures about
them from [Dye92, Dye94] remain open.

Denote the standard length function of (W, S) as l. Let Φ be the standard root system, with
positive roots Φ+, and denote the reflection in α ∈ Φ as sα ∈ T . Fix a reflection order � for
(W, S) i.e. a total order � of T such that for all α, β, γ ∈ Φ+ with sα � sγ and β = aα+ cγ
for some a, c> 0 one has sα � sβ � sγ . Such reflection orders are known to exist. They generalize
reduced expressions of longest elements of finite Coxeter groups, in the following sense: if W is
finite, the reflection orders are precisely the orders t1 � · · · � tN such that there is a reduced
expression s1 · · · sN for the longest element of W such that for each i= 1, . . . , N one has
ti = s1 · · · si−1sisi−1 · · · s1. In this note, the following is proved.

Theorem. Let t1 ≺ t2 ≺ · · · ≺ tn in T . Then l(t1 · · · tn) > n.

Define the (undirected) Bruhat graph Ω of (W, T ) to be the Cayley graph of W with
respect to its generating set T . It is an undirected simple graph Ω with vertex set W and
edge set E := {{x, tx} | x ∈W, t ∈ T}. Equip it with an edge-labelling L : E→ T defined by
L({x, tx}) = t. A path (in Ω) is defined to be a sequence p= (v0, . . . , vn) in W with {vi−1, vi} ∈ E
for i= 1, . . . , n. The path p is said to be a �-path if t1 ≺ · · · ≺ tn, and to be self-avoiding if
vi 6= vj for i 6= j. In general, the opposite order �op of a reflection order � is a reflection order,
so there is also a notion of �op-path. The theorem implies the following corollary.

Corollary. (a) Any �-path in Ω is self-avoiding.

(b) Let p= (v0, . . . , vn) be a �-path and q = (w0, . . . , wm) be a �op- path with w0 = v0 and
wm = vn. Then {v0, . . . , vn} ∩ {w0, . . . , wm}= {v0, vn}.

(c) Unless n=m6 1, one has in (b) that L({v0, v1})≺ L({w0, w1}) and L({vn−1, vn})�
L(wm−1, wm).
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Part (a) was conjectured and proved for finite and affine Weyl groups by Cellini [Cel00], who
called �-paths ‘T -increasing paths’. The results in [BI06] (which give rise to efficient algorithms
for computation of Kazhdan–Lusztig polynomials) and [BB07, Proposition 6.3] (related to a
non-negativity conjecture on the complete cd-index of Bruhat intervals) require at some points
a special case of (c), which was only known previously to hold for finite and affine Weyl groups
because of a dependence of its proof on [Cel00]. The results in [BB07, BI06] are now known to
hold for general Coxeter systems, by virtue of the results in this note.

The arrangement of this note is as follows. In § 2, we recall without proof some necessary
background. The (very brief, given the background) proof of the theorem and its corollary are
given in § 3, followed by some concluding remarks.

2. Background

It is assumed throughout the paper that the reader is familiar with basic facts about Coxeter
groups, Bruhat order, root systems etc.; as general references on these topics, see [BB05, Bou68,
Hum90]. This section gives additional background concerning reflection orders and related
properties of reflection subgroups needed in the proofs.

2.1 Definition of the reflection cocycle from [Dye87, ch. 1] and [Dye90]

Fix a Coxeter system (W, S). Let T , l, Φ, Φ+, sα be as in the introduction. Regard the power set
P(T ) of T as an additive abelian group under symmetric difference A+B := (A ∪B)\(A ∩B),
for A, B ⊆ T . Define the ‘reflection cocycle’ N :W →P(T ) of (W, S) by N(w) = {t ∈ T | l(tw)<
l(w)}. Then N is characterized by the conditions

N(xy) =N(x) + xN(y)x−1 for x, y ∈W, N(s) = {s} for s ∈ S. (1)

Furthermore,

|N(w−1)|= l(w) for all w ∈W, (2)

where the cardinality of any set X is denoted as |X|.

2.2 Properties of reflection subgroups from [Dye87, ch. 1] and [Dye90]

For any reflection subgroup W ′ = 〈W ′ ∩ T 〉 of W ,

S′ = χ(W ′) = χ(W,S)(W
′) := {t ∈ T |N(t) ∩W ′ = {t}} (3)

is a set of Coxeter generators for W ′. The corresponding set of reflections and reflection cocycle
for (W ′, S′) are W ′ ∩ T and N ′ : w 7→N(w) ∩W ′ respectively. If T ′ ⊆ T is any set of reflections
of W with W ′ = 〈T ′〉, then

⋃
w∈W ′ wT

′w−1 =W ′ ∩ T . Define the root system of W ′ to be the set
ΦW ′ := {α ∈ Φ | sα ∈W ′}. If W ′′ is a reflection subgroup of W ′, then χ(W ′,S′)(W ′′) = χ(W,S)(W ′′).

2.3 Results on dihedral subgroups from [Dye87, (3.18)] and [Dye91, Remark 3.2]

A dihedral reflection subgroup is a reflection subgroup W ′ which may be generated by two
reflections or, equivalently, such that the real vector space RΦW ′ spanned by its root system is
a plane. Any dihedral reflection subgroup W ′ of W is contained in a unique maximal (under
inclusion) dihedral reflection subgroup W ′′ of W : one has ΦW ′′ = RΦW ′ ∩ Φ.
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2.4 Definition of the dot action from [Dye92, § 1]
Twisting the W -action on P(T ) by the reflection cocycle N gives another action

(w, A) 7→ w ·A :=N(w) + wAw−1 for A⊆ T and w ∈W (4)

of W on P(T ), to be called the dot action.

2.5 Results from [BB05, 5.2], [Dye87, ch. 6], [Dye93, § 2] and [Dye94, § 1]
A total order 4 on T is called a reflection order (for (W, S) or of T ) if for any r ≺ s in T with
{r, s}= χ(〈r, s〉) the order induced by 4 on the set of reflections of 〈r, s〉 is

r ≺ rsr ≺ rsrsr ≺ · · · ≺ srs≺ s. (5)

This is equivalent to the definition in terms of Φ in the introduction.
A subset A of T is called an initial section (of T , with respect to S) if there is a reflection

order 4 on T such that r ≺ s for all r ∈A, s ∈ T\A.
By [Dye93, Lemma (2.7)], the set A=A(W,S) ⊆ P(T ) of initial sections of T is stable under

the dot W -action on P(T ) and under complementation in T . Order A by inclusion.
It may be remarked that, by [Dye93, Lemma (2.11)], the map w 7→N(w) :W →A gives an

order isomorphism between W in weak right order (see [BB05, ch. 3] for the definition) and
the order ideal of A consisting of finite initial sections of T . It is well known that W in weak
right order is a complete semilattice (see [BB05, 3.2]) and it is conjectured that A is a complete
ortholattice (see [Dye94, Remark 2.14]).

2.6 Facts from [Dye93, Remark (2.4)(ii)]
Let W ′ be a reflection subgroup of W , and S′ = χ(W ′). The restriction to W ′ ∩ T of a reflection
order 4 on T is a reflection order on W ′ ∩ T with respect to S′. Hence if A is an initial section
of T with respect to S, then W ′ ∩A is an initial section of W ′ ∩ T with respect to S′.

2.7 Properties of length functions from [Dye92] and [Dye94]
Fix an initial section A of T with respect to S. Define a length function l(W,S,A) = lA = l :W → Z
by

lA(w) := |N(w−1)| − 2|N(w−1) ∩A|. (6)
This may be interpreted as an A-weighted version

lA(w) =
∑

t∈N(w−1)

wtA(t) (7)

of (2), where the A-weight wtA(t) of t ∈ T is defined to be

wtA(t) =

{
−1 if t ∈A,
1 if t ∈ T\A.

(8)

One has from the proof of [Dye92, Proposition (1.1)] that

lA(xy) = lA(y) + ly·A(x), x ∈W, y ∈W. (9)

If t ∈ T and w ∈W , one has by [Dye92, Proposition (1.2)] that{
lA(tw)< lA(w) if t ∈ w ·A,
lA(tw)> lA(w) if t 6∈ w ·A.

(10)

550

https://doi.org/10.1112/S0010437X11007032 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007032


Proof of Cellini’s conjecture on self-avoiding paths in Coxeter groups

By (9), equation (10) is equivalent to its special case with w = 1, which asserts that lA(t) is
positive or negative according as whether t 6∈A or t ∈A. From (6),

if A, B ∈ A with A⊆B and w ∈W , then lB(w) 6 lA(w) in Z. (11)

The standard length function of (W, S) is l = l∅ and lT+A(w) =−lA(w). By (6) and (2),

− l(w) 6 lA(w) 6 l(w) for A ∈ A and w ∈W. (12)

3. Proofs

Fix t ∈ T . Let M=Mt be the family of all maximal dihedral reflection subgroups of W which
contain t. Let A ∈ A with t ∈A. One has by [Dye92, (1.2.1)] that

l(W,S,A)(t) =−1 +
∑

W ′∈M
(1 + l(W ′,χ(W ′),A∩W ′)(t)). (13)

This sum involves only finitely many non-zero terms. The equation (13) can be proved using the
interpretation of lA(w) as a weighted sum in (7), noting that every reflection t′ ∈ T with t′ 6= t
is contained in a unique element of Mt, by § 2.6.

For the proofs of the theorem and corollary, we need only the equivalence of conditions (a)–(c)
from the following lemma; the final assertion is included for completeness.

Lemma 3.1. Let A ∈ A and t ∈ T\A. Then the following conditions are equivalent:

(a) A+ {t} ∈ A;

(b) t ·A=A+ {t};
(c) there is a reflection order � of T such that A= {s ∈ T | s≺ t}.

If these conditions hold, then lA(t) = 1 =−lt·A(t).

Proof. The equivalence of conditions (a)–(c) comes from [Dye93, Lemma 2.9] and its proof. The
final claim is proved as follows. Note first that, by (9), lA(t) + lt·A(t) = lA(1) = 0. Hence it is
sufficient to show that lt·A(t) =−1 where t ·A= {s ∈ T | s� t}. First, one checks that this holds
if (W, S) is dihedral; we omit the details of this routine verification. In general, note that in (13)
with A replaced by t ·A, each term 1 + l(W ′,χ(W ′),t·A∩W ′)(t) 6 0 by (10) since t ∈ t ·A ∩W ′. Hence
for t ∈A, one has l(W,S,t·A)(t) =−1 if (and only if) l(W ′,χ(W ′),t·A∩W ′)(t) =−1 for every W ′ ∈M.
However, the latter holds by the dihedral case, since t ·A ∩W ′ = {s ∈ T ∩W ′ | s�′ t} where �′
is the reflection order of W ′ ∩ T obtained by restricting �. 2

Note that the above lemma describes certain coverings A(A ∪ {t} in the partially ordered
set A. A conjecture (cf. [Dye94, Remark 2.14]), that any totally ordered subset of A is a subset
of the set of all initial sections of some reflection order �, implies that all coverings in A arise
as in the lemma.

The following result is the key lemma in this paper.

Lemma 3.2. Let A ∈ A be an initial section of the reflection order �, and let t1 ≺ · · · ≺ tn be
in A. Let x= t1 · · · tn. Then lA(x) 6−n.

Proof. For t ∈ T , let At := {s ∈ T | s� t}. We prove that lA(x) 6−n by induction on n. If
n= 0, then lA(x) = lA(1) = 0. If n > 0, then t1 ≺ · · · ≺ tn−1 are all in Atn\{tn}= tn ·Atn , by
Lemma 3.1. Also, Atn\{tn}= {s ∈ T | s≺ tn} is an initial section of �. Assume inductively
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that ltn·Atn
(t1 · · · tn−1) 6−(n− 1). Then by (11), (10) (or Lemma 3.1) and (9),

lA(x) 6 lAtn
(t1 · · · tn) = lAtn

(tn) + ltn·Atn
(t1 · · · tn−1) 6−1− (n− 1) =−n. 2

3.3 Proof of the main results
The proof of the main results in the introduction is straightforward from Lemma 3.2, as follows.
Let � be a reflection order and t1 ≺ · · · ≺ tn in T . Define the initial section A := {s ∈ T | s� tn}
of �. Then (12) and Lemma 3.2 imply that −l(x) 6 lA(x) 6−n, proving the theorem. Part (a) of
the corollary follows immediately from the theorem.

Now make assumptions as in part (b) of the corollary. Set ti = L({vi−1, vi}) for i= 1, . . . , n
and si = L({wi−1, wi}) for i= 1, . . . , m. We prove part (c) before part (b). Suppose it is not true
that m= n6 1. Choose k ∈ N maximal such that k 6 min(m, n) and vi = wi for all 0 6 i6 k.
Necessarily, k 6 1 because (v0, . . . , vk) is both a �-path and a �op-path. If xk = vn, then part
(a) implies that k =m= n6 1. Hence xk 6= vn. Then k < n, k <m and tk+1 6= sk+1 (or else
vk+1 = wk+1). If sk+1 ≺ tk+1, then sm ≺ · · · ≺ sk+1 ≺ tk+1 ≺ · · · ≺ tn, and so

(wm, . . . , wk+1, wk = vk, vk+1, . . . , vn = wm)

is a non-self-avoiding �-path, contrary to part (a). Hence tk+1 ≺ sk+1. If k = 1, this gives
that t1 ≺ t2 ≺ s2 ≺ s1 = t1, which is a contradiction. Therefore, k = 0 and L({v0, v1}) = t1 ≺ s1 =
L({w0, w1}). Since (wm, . . . , w0) is a �-path and (vn, . . . , v0) is a �op-path with wm = vn and
w0 = v0, it follows by symmetry that L(wm−1, wm)≺ L({vn−1, vn}). This completes the proof of
part (c). For use in the proof of part (b), note that part (c) holds weakly (with ≺ and � replaced
by � and �) even if n=m= 1.

Finally, we prove part (b). Suppose that part (b) is false. By part (a), there must exist i and
j with 0< i < n, 0< j <m and vi = wj . There are �-paths p′ = (v0, . . . , vi), p′′ = (vi, . . . , vn)
and �op-paths q′ = (w0, . . . , wj) and q′′ = (wj , . . . , wm). Using, in turn, first the fact that p is
a �-path, then the weak version of part (c) with (p, q) replaced by (p′, q′), then the fact that q
is a �op-path and finally the weak version of part (c) with (p, q) replaced by (p′′, q′′), it follows
that

ti+1 � ti � sj � sj+1 � ti+1.

This contradiction completes the proof of part (b) and of the corollary.

3.4 Concluding remarks
For A ∈ A, say that a path (v0, . . . , vn) is a lA-increasing path if lA(v0)< · · ·< lA(vn). Define a
partial order 6A on W by setting v 6A w if there is such a lA-increasing path with v0 = v and
vn = w . This is called the twisted Bruhat order associated to A. When A= ∅, 6A reduces to
ordinary Bruhat order. For arbitrary A, the ‘spherical’ intervals of 6A (which may or may not
include all intervals of 6A, depending on A) have similar properties to Bruhat intervals, but in
general there are additional subtleties [Dye93, Dye94].

Fix A ∈ A, a reflection order � of T and an initial section B of �. Also fix v, w ∈W . One may
consider various combinations of conditions such as the following on a Ω-path p= (v0, . . . , vn)
from v to w i.e. with v0 = v and vn = w:

(a) p is lA-increasing;

(b) p is a �-path;

(c) all labels of the edges of p are in B.
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The usual applications of reflection orders to Bruhat order require considering paths of
increasing (standard) length in the Bruhat graph i.e. paths satisfying condition (a) with
A= ∅. To illustrate some of the applications, take A= ∅ and assume that v 6∅ w. Then the
natural labelling of paths p satisfying condition (a) and with n= l(w)− l(v) determines a dual
EL-labelling of the Bruhat interval [v, w] (see [Dye93]), and the pattern of the ascents and
descents of such paths determines the cd-index of the interval as Eulerian poset (see e.g. [BB07]).
Dropping the condition n= l(w)− l(v), the pattern of ascents and descents in such paths p
determines the ‘complete cd-index’ (see [BB07]), the topological and combinatorial interpretation
of which is less well understood. The Kazhdan–Lusztig R-polynomial Rv,w, which is crucial
in the definition of Kazhdan–Lusztig polynomials but is poorly understood combinatorially,
can be interpreted as a (renormalized) generating function for the set of paths p satisfying
conditions (a) and (b) [BB05, Dye87, Dye93]. More generally, suitable generating functions of
paths satisfying conditions (a), (b) and (c) can be interpreted as ‘generalized’ structure constants
for the Iwahori–Hecke algebra of W (see [Dye93]). Similar results to those above apply with any
A ∈ A, using spherical intervals [x, y] in 6A and modules (depending on A) for the Iwahori–Hecke
algebra [Dye92, Dye94].

The above-mentioned results apply to, and are proved using, fixed A. In contrast, the main
idea in this note is to study the effect of varying A on the length functions lA. A subsequent paper
will examine more systematically the effect of varying A on the twisted orders 6A, obtaining
new results on and relationships between the twisted Bruhat orders, ordinary Bruhat order and
(partly conjecturally) the inclusion-ordered set A.
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