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Sliding flows of yield-stress fluids
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A theoretical and numerical study of complex sliding flows of yield-stress fluids is
presented. Yield-stress fluids are known to slide over solid surfaces if the tangential
stress exceeds the sliding yield stress . The sliding may occur due to various microscopic
phenomena such as the formation of an infinitesimal lubrication layer of the solvent
and/or elastic deformation of the suspended soft particles in the vicinity of the solid
surfaces. This leads to a ‘stick–slip’ law which complicates the modelling and analysis
of the hydrodynamic characteristics of the yield-stress fluid flow. In the present study, we
formulate the problem of sliding flow beyond one-dimensional rheometric flows. Then,
a numerical scheme based on the augmented Lagrangian method is presented to attack
these kind of problems. Theoretical tools are developed for analysing the flow/no-flow
limit. The whole framework is benchmarked in planar Poiseuille flow and validated against
analytical solutions. Then two more complex physical problems are investigated: slippery
particle sedimentation and pressure-driven sliding flow in porous media. The yield limit
is addressed in detail for both flow cases. In the particle sedimentation problem, method
of characteristics – slipline method – in the presence of slip is revisited from the perfectly
plastic mechanics and used as a helpful tool in addressing the yield limit. Finally, flows
through model and randomized porous media are studied. The randomized configuration
is chosen to capture more sophisticated aspects of the yield-stress fluid flows in porous
media at the yield limit – channelization.

Key words: plastic materials, porous media, particle/fluid flow

1. Introduction

Slip behaviour in complex fluids has been attributed to various microscopic phenomena
such as chain detachment/desorption at the polymer–wall interface in polymer melts
(Hatzikiriakos 2012), migration/depletion of disperse phase away from the vicinity of the
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solid boundaries in suspensions (Vand 1948), and elastic deformation of the suspended
soft particles lying on the smooth solid boundaries (Meeker, Bonnecaze & Cloitre 2004b)
in pastes – yield-stress fluids. In the present study, however, we rather investigate the
macroscopic consequences of slip on hydrodynamic features of yield-stress fluid flows,
in order to form a bridge over these two distinct scales.

In experiments, roughened (e.g. using sandpapers) or chemically treated surfaces are
usually used to suppress slip in measurements of yield-stress fluid flows. For instance,
Christel et al. (2012) proposed a polymethyl methacrylate (known as PMMA) treatment
to reduce slip by exciting positive surface charges providing electrostatic interactions and
squashing the lubricating layer. This is important since in a great number of laboratory
experiments, polymethyl methacrylate is used due to its transparency properties which
enable flow visualizations. In industrial scales/processes, however, chemical treatments are
not always feasible, and therefore it is crucial to analyse the hydrodynamic consequences
of sliding flows. Moreover, slip alters rheometric measurements, causing rheological
properties of the samples to be inaccurately evaluated, sometimes even by one order
of magnitude (Poumaere et al. 2014). This issue has been discussed extensively in the
literature, for instance recently by Medina-Bañuelos et al. (2017, 2019). Hence, it would
be constructive to have a generic analysis framework of sliding flows in yield-stress fluids,
and this is the aim of the present paper.

In the present study, we formulate the well known ‘stick–slip’ law for yield-stress
fluids beyond one-dimensional (1-D) rheometric flows and then generalize the previously
proposed numerical algorithm (Roquet & Saramito 2008; Muravleva 2018) based on the
augmented Lagrangian method for attacking this kind of problem. Theoretical tools are
developed in the presence of slip. The whole framework is first benchmarked by a simple
channel Poiseuille flow. Then we proceed to investigate flows in complex geometries:
the creeping flows about a circular cylinder and the pressure-driven flows in model and
randomized porous media.

1.1. General slip law for yield-stress fluids
Characterizing the slip behaviour of yield-stress fluids has been the main objective of a
large number of studies from theoretical attempts to experimental measurements. Meeker
et al. (2004b) and Piau (2007) tried to theoretically describe the slip origin in soft
particle pastes/microgels from an elastohydrodynamic perspective. Rheometric tests with
slippery plates in the cone–plate/plate–plate geometries have been conducted to quantify
the slip behaviours of yield-stress fluids ranging from Carbopol gels to emulsions (Meeker,
Bonnecaze & Cloitre 2004a; Meeker et al. 2004b; Poumaere et al. 2014; Zhang et al. 2018).
Moreover, very recently, in a series of experiments using optical coherence tomography
(known as OCT) and particle tracking velocimetry (known as PTV), Daneshi et al. (2019)
characterized the slip behaviour of Carbopol gel (a model ‘simple’ yield-stress fluid)
inside a capillary tube. The sliding characteristics of yield-stress fluids observed in all
the mentioned 1-D experimental studies can be summarized in a general slip law as

ûs =
{
β̂s
(
τ̂w − τ̂s

)k
, iff |τ̂w| > τ̂s,

0, iff |τ̂w| � τ̂s,
(1.1)

usually termed as the ‘stick–slip’ law, where ûs is the slip velocity on the solid surface
and τ̂w is the shear stress at the solid boundaries. The sliding threshold is called the
sliding yield stress – τ̂s. The slip coefficient and the power index are designated by β̂s
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Figure 1. Schematic of the sliding channel flow of a yield-stress fluid; the x-axis is aligned and placed at the
axial centreline of the channel which is formed by the two infinite parallel plates separated by the gap Ĥ and
the y-axis is in the wall-normal direction: (a) when τ̂w � τ̂s there is no flow, (b) when τ̂s < τ̂w � τ̂y then the
fluid in the whole gap slides as an unyielded plug, (c) when τ̂y < τ̂w then the fluid in the vicinity of the walls
(ŷp < ŷ where τ̂y < τ̂xy) yields and at the same time slides over the walls. There is a core unyielded region as
well (ŷ � ŷp).

and k, respectively. Hence, β̂s has the dimension of m2k+1/Nk.s or m/Pak.s. Its physical
interpretation (for the case k = 1) is the slip length over the local effective viscosity of the
fluid, �̂s/μ̂eff . In the entire paper, quantities with a ‘hat’ symbol (·̂) are dimensional and
others are dimensionless.

For a deeper understanding of the physical meaning of the slip law (1.1), we consider
the simple unidirectional channel Poiseuille flow in the presence of slip of a viscoplastic
fluid, ⎧⎪⎪⎨⎪⎪⎩

τ̂xy = K̂
dû
dŷ

[
abs

(
dû
dŷ

)]n−1

+ τ̂y sgn
(

dû
dŷ

)
iff |τ̂xy| > τ̂y,

dû
dŷ
= 0 iff |τ̂xy| � τ̂y,

(1.2)

where K̂(Pa · sn) is the consistency of the fluid and n the power-index (Herschel–Bulkley
model), û the streamwise velocity, τ̂y the material’s yield stress, τ̂xy the shear stress and
sgn(·) and abs(·) are the sign and absolute value functions. Figure 1 represents the slip law
schematically. When the applied pressure gradient is small enough, the wall shear stress
(τ̂w) lies below the sliding yield stress (figure 1a) and the slip velocity is zero. Since τ̂s is
always less than the material’s yield stress, then there is no flow in the channel. When the
pressure gradient is increased beyond (Δp̂/L̂)c where subscript ‘c’ indicates the critical
value, the wall shear stress grows beyond τ̂s and the fluid slides over the walls. If the wall
shear stress is still less than τ̂y, then the material moves as a sliding unyielded plug with a
constant velocity in the entire gap (see figure 1b). When the pressure gradient is increased,
at some point, the wall shear stress exceeds the fluid yield stress and the sheared/yielded
regions appear, which at the same time slide over the walls – see figure 1(c). Yet, in the
vicinity of the centreline, the shear stress drops below the yield stress and a core unyielded
region is formed. The flows corresponding to figures 1(b) and 1(c) are usually termed the
fully plugged regime and the deformation regime, respectively.

In the present study, the objective is to systematically address the effect of slip on
yield-stress fluid flows and its consequences on the yield limit; not only by conducting
numerical simulations, but also by forming a theoretical framework for analysing this type
of problem. Although some attempts have been made to solve simple rheometric flows
in previous years (Philippou, Kountouriotis & Georgiou 2016; Panaseti & Georgiou 2017;
Damianou, Panaseti & Georgiou 2019), still the lack of generic numerical implementation
frameworks (especially non-regularized methods) and the absence of adequate theoretical
frameworks to attack sliding yield-stress fluid flows are discernible. Hence, in what
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follows, we aim to partially fill this gap in the literature. Beyond that, we study complex
sliding flows such as particle sedimentation and pressure-driven flows in porous media
within these frameworks.

The outline of the paper is as follows. In § 2, we set out the slip law beyond 1-D for
the yield-stress fluid flows and generalize the numerical algorithm previously proposed
for simple 1-D problems. We then benchmark the numerical algorithm for simple channel
Poiseuille flow in § 3 and derive some theoretical tools for investigating the sliding flows.
This will be followed by addressing the sliding flow about a circular particle and the
aspects of the particle yield limit in § 4. The next two sections are devoted to the sliding
flows in porous media: in § 5 some general hints are made by studying the flow through
model porous media and in § 6 some deeper investigations are carried out by performing
numerical simulations in randomized porous media. Finally, some conclusions are drawn
in the closing section § 7.

2. Slip law and the numerical algorithm beyond 1-D

In this section, we set out and formulate a sample problem of sliding flow of a yield-stress
fluid and generalize the slip law and numerical algorithm for solving such problems beyond
1-D. In what follows, we mainly assume that n = 1 (Bingham model). Later in appendix
C, we will address how the present framework can be expanded to encompass the other
‘simple’ yield-stress rheological models, e.g. Herschel–Bulkley. However, the majority of
the physical discussions (e.g. the yield limit) in the next sections are independent of the
value of n. We will come back to this point in § 7.

Problem P. We consider the Stokes flow of a Bingham fluid in Ω \ X̄ (see figure 2) as
follows:

−∇p̂+∇ · τ̂ + ρ̂ f̂ = 0, (2.1)⎧⎪⎨⎪⎩τ̂ =
(
μ̂+ τ̂y

‖ ˆ̇γ ‖

)
ˆ̇γ iff ‖τ̂‖ > τ̂y,

ˆ̇γ = 0 iff ‖τ̂‖ � τ̂y,

(2.2)

where p̂ is the pressure, τ̂ the deviatoric stress tensor, ρ̂ f̂ the body force, ρ̂ the fluid density
and ˆ̇γ is the rate of deformation tensor. Without loss of generality, we consider no-slip and
no-penetration boundary conditions on ∂Ω as û = û0 and the slip boundary condition,

ûs = ûns · t − δû · t =

⎧⎪⎨⎪⎩β̂sΛ̂

(
1− τ̂s

|Λ̂|

)
, iff |Λ̂| > τ̂s,

0, iff |Λ̂| � τ̂s,

(2.3)

on ∂X, where ûs is the slip velocity, ûns the velocity of the solid boundary ∂X and δû is the
restriction of û on ∂X: û→ δû as x̂→ ∂X. The value of the tangential traction vector (i.e.
tangential force per unit area on the solid surface) is shown by Λ̂ = [(−p̂1+ τ̂ ) · n] · t,
where the normal and tangential unit vectors to the solid surface ∂X are represented by n
and t, respectively. The no-penetration condition on ∂X reads δû · n = ûns · n.

Without loss of generality, we fixed k at unity in the slip law (2.3) and will do so in
the rest of the present study. This is supported by experimental observations as well. Seth
et al. (2012) validated the slip power index of unity for emulsions contacting non-adhering
surfaces. Moreover, in separate experimental studies, Poumaere et al. (2014) and Daneshi
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Sliding flows of yield-stress fluids

n

X
Ω

Figure 2. Schematic of the problem P. The full domain is denoted by Ω , and the solid object on which the
flow slides in designated by X. The red arrows show the outward unit normal vectors of the solid surface ∂X.
The boundary of the full domain is ∂Ω .

et al. (2019) reported k ≈ 1 for the pressure-driven flows of Carbopol gels with different
concentrations and stirring rates during the sample preparation. However, experiments
have also revealed that k /= 1 in some cases (Piau 2007; Medina-Bañuelos et al. 2017,
2019). We will discuss these cases in appendix C, as the main objectives/conclusions of
the present study are independent of the value of k.

2.1. Numerical algorithm
The minimization principle for the sliding problem P can be derived as

J (û) = μ̂

2

∫
Ω\X̄
ˆ̇γ (û) : ˆ̇γ (û) dV̂ + τ̂y

∫
Ω\X̄
‖ ˆ̇γ (û)‖ dV̂ −

∫
Ω\X̄

ρ̂ f̂ · û dV̂

+ 1

2β̂s

∫
∂X

û2
s dÂ+ τ̂s

∫
∂X
|ûs| dÂ. (2.4)

For the augmented Lagrangian approach we require to relax the rate of strain tensor to the
auxiliary tensor q̂ and the restriction of the velocity vector on ∂X to the auxiliary vector ξ̂ .
Then the saddle-point problem associated with P is

J (û, q̂, ξ̂) = μ̂

2

∫
Ω\X̄

q̂ : q̂ dV̂ + τ̂y

∫
Ω\X̄
‖q̂‖ dV̂ + 1

2

∫
Ω\X̄

[
ˆ̇γ (û)− q̂

]
: T̂ dV̂

−
∫
Ω\X̄

ρ̂ f̂ · û dV̂ + 1

2β̂s

∫
∂X

ξ̂2 dÂ+ τ̂s

∫
∂X
|ξ̂ | dÂ+

∫
∂X
λ̂ ·
(
ξ̂ − δû

)
dÂ

+ aμ̂
2

∫
Ω\X̄

(
ˆ̇γ (û)− q̂

)
:
(
ˆ̇γ (û)− q̂

)
dV̂ + b

2β̂s

∫
∂X

(
ξ̂ − δû

)2
dÂ,

(2.5)

where a and b are arbitrary constants (augmentation parameters); T̂ and λ̂ are the Lagrange
multipliers.

Hence, the Uzawa algorithm in the presence of slip takes the form of algorithm 1. Upon
convergence of algorithm 1 with the free augmentation parameters a and b, the Lagrange
multiplier T̂ converges to the true stress field, q̂ to the true rate of strain tensor, Lagrange
multiplier λ̂ to the traction vector on ∂X, and auxiliary variable ξ̂ to the velocity on ∂X.

A mesh adaptation procedure, the same as the one proposed by Roquet & Saramito
(2003), could be coupled with the above algorithm to obtain a fine resolution of the yield
surfaces. Based on this procedure, the adapted mesh is stretched anisotropically in the
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Algorithm 1

1: procedure (solving yield-stress fluid flow with slip yield stress boundary condition)
2: m← 0
3: q̂0, T̂ 0, λ̂0, ξ̂0 ← 0 (or any other initial guess)
4: loop (Uzawa algorithm):
5: if residual < convergence then close.
6: find ûm+1 and p̂m+1 which satisfy,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a μ̂�ûm+1 = −∇p̂m+1 +∇ ·
(

T̂ m − a μ̂ q̂m
)
+ ρ̂ f̂ , in Ω \ X̄,

a μ̂ ˆ̇γ (ûm+1) · n+ b

β̂s
δûm+1 = a μ̂ q̂m · n+ b

β̂s
ξ̂m

+
[
λ̂m −

(
−p̂m+11+ T̂ m

)
· n
]

on ∂X,

∇ · ûm+1 = 0, in Ω \ X̄,

with given B.C.: ûm+1 = û0 on ∂Ω .

7: q̂m+1 ←

⎧⎪⎨⎪⎩
0, iff ‖�̂‖ � τ̂y,(

1− τ̂y

‖�̂‖

)
�̂

(1+ a)μ̂
, iff ‖�̂‖ > τ̂y.

where �̂ = T̂ m + a μ̂ ˆ̇γ (ûm+1).
8: ξ̂m+1 ←

⎧⎪⎨⎪⎩
(
ûns · n

)
n+ (ûns · t

)
t, iff |	̂| � τ̂s,(

ûns · n
)

n+ (ûns · t
)

t + β̂s

1+ b
	̂

(
1− τ̂s

|	̂|

)
t, iff |	̂| > τ̂s.

where 	̂ = −λ̂m · t + b

β̂s

(
δûm+1 · t − ûns · t

)
9: T̂ m+1 ← T̂ m + a μ̂

[
ˆ̇γ (ûm+1)− q̂m+1

]
10: λ̂m+1 ← λ̂m − b

β̂s

[
δûm+1 − ξ̂m+1

]
11: residual←

max
(∫


\X̄
|ûm+1 − ûm| dÂ,

∫

\X̄
‖ ˆ̇γ
(

ûm+1
)
− q̂m+1‖ dÂ,∫


\X̄
‖q̂m+1 − q̂m‖ dÂ,

∫
∂X
|λ̂m+1 − λ̂m| dŜ

)
12: m← m+ 1
13: goto loop.
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Sliding flows of yield-stress fluids

direction of the eigenvectors of the Hessian of
√
μ̂ ˆ̇γ : ˆ̇γ + τ̂y‖ ˆ̇γ ‖, which is the square root

of the local energy dissipation. In this study, we implement the entire numerical algorithm
in an open-source C++ finite element environment – FreeFEM++ (Hecht 2012). We have
previously validated our numerical implementation and mesh adaptation widely within
various studies (Chaparian & Frigaard 2017b; Chaparian & Tammisola 2019; Chaparian
et al. 2020). Here we will not go into technical details such as the convergence rate, since
such details are well-documented in the previous studies – please see, for example, Roquet
& Saramito (2008).

In what follows, we quickly validate the algorithm for the sliding flows and most
importantly derive variational tools (Mosolov & Miasnikov 1965) for a sample problem.
These tools will be used to analyse more complex flows in the next sections.

3. Benchmark problem: sliding channel Poiseuille flow

In this section we consider the sliding flow of a Bingham fluid in a channel (Poiseuille
flow) – the same as the one shown in figure 1. The walls are denoted by Γ and the full
domain byΩ . We consider two classic formulations: (i) the mobility problem ([M]) where
the pressure gradient is applied and the flow rate can be computed and (ii) the resistance
problem ([R]) in which flow rate is set and as a result pressure gradient can be computed.
We also validate the presented numerical algorithm and derive/revisit some variational
tools (Huilgol 1998) useful for the rest of this study.

3.1. The [M] problem

In this subsection, we use ĜĤ2/μ̂ as the velocity scale, ĜĤ as the characteristic viscous
stress to scale the deviatoric stress tensor and Ĥ/μ̂ to scale the slip coefficient where
Ĝ is the absolute value of the applied pressure-gradient to drive the flow from left to
right (in the positive direction of the x-axis). Hence, the non-dimensional governing and
constitutive equations take the forms

ex +∇ · τ = 0 (3.1)

and ⎧⎨⎩τ =
(

1+ Od
‖γ̇ ‖

)
γ̇ iff ‖τ‖ > Od,

γ̇ = 0 iff ‖τ‖ � Od,
(3.2)

respectively, and the slip law

us =
⎧⎨⎩βsΛ

(
1− Ods

|Λ|
)
, iff |Λ| > Ods,

0, iff |Λ| � Ods,

(3.3)

where Od = τ̂y/ĤĜ and Ods = τ̂s/ĤĜ. In what follows, the ratio τ̂s/τ̂y is denoted by αs.
The analytical solutions to the velocity and stress fields are derived in appendix A.1.
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The energy balance equation in the presence of slip is

a(u,u)+ Od j(u)+
∫
Γ

|σntus| dS

= a(u,u)+ Od j(u)+ 1
βs

∫
Γ

u2
s dS+ Ods

∫
Γ

|us| dS

= a(u,u)+ Od j(u)+ as(us, us)+ Ods js(us) =
∫
Ω

u · ex dA, (3.4)

where a(u,u) = ∫
Ω

γ̇ (u) : γ̇ (u) dA and Od j(u) = Od
∫
Ω
‖γ̇ (u)‖ dA are the viscous and

plastic dissipations, respectively. Please note that the slip dissipation
∫
∂X |σntus| dS can be

split into two terms: the ‘viscous’ slip dissipation (1/βs)
∫
Γ

u2
s dS which is designated by

as(us, us) in this study and the ‘plastic’ slip dissipation Ods
∫
Γ
|us| dS with Ods js(us).

Moreover, j(u) is the normalized plastic dissipation and js(us) the normalized ‘plastic’ slip
dissipation.

We can rearrange the energy balance equation and form a set of inequalities as follows:

0 � a(u,u) = −j(u)

⎛⎜⎜⎝Od −

∫
Ω

u · ex dA− as(us, us)− Odsjs(us)

j(u)

⎞⎟⎟⎠

� −j(u)

⎛⎜⎜⎝Od −

∫
Ω

u · ex dA− Odsjs(us)

j(u)

⎞⎟⎟⎠

� −j(u)

⎛⎜⎜⎝Od − sup
v∈V ,v /= 0

∫
Ω

v · ex dA− Odsjs(vs)

j(v)

⎞⎟⎟⎠ , (3.5)

to find the definition of the critical Oldroyd number in the presence of slip as

Odc = sup
v∈V ,v /= 0

⎛⎜⎜⎝
∫
Ω

v · ex dA− Odsjs(vs)

j(v)

⎞⎟⎟⎠ , (3.6)

where v is a velocity test function from the set of all admissible velocity fields V . Then it
enforces that for Odc � Od, a(u,u) = 0 or u = 0 (i.e. no flow condition).

We may use (3.6) for calculating Odc in simple flows such as Poiseuille flow here: the
flow can be postulated by two boundary layers with thickness δ attached to the walls,
through which the slip velocity U1 is connected to the plug velocity U2, then,

j(v) ≈ 2
U2 − U1

δ
δ� = 2(U2 − U1)� & js(vs) = 2U1�, (3.7)

where � is the length of the chosen control volume. This suggests,

Odc = sup
0<U1�U2,(U1,U2)∈R

U2 − 2 OdsU1

2(U2 − U1)
= sup

0<U1�U2,(U1,U2)∈R
U2 − 2αsOdcU1

2(U2 − U1)
, (3.8)
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Figure 3. The [M] problem features: (a) velocity profile of the case Od = 1, αs = 0.2, βs = 0.1 (fully sliding
plug); (b) velocity profile of the case Od = 0.3, αs = 0.2, βs = 0.1 (deforming regime); (c) the mesh after
five cycles of adaptation associated with panel (b); (d) velocity contour associated with panel (b), the green
lines show the yield surfaces; (e, f ) close-up of the cyan windows in the panels (b,c), respectively. Please
note that in panels (a,b,e) the blue line shows the numerical data corresponding to the initial mesh, the red
line corresponds to the adapted mesh (the mesh shown in the panel (c)) and the red circles are the analytical
solution; see appendix A.1.

or,

Odc = sup
0<U1�U2,(U1,U2)∈R

1
2[1+ (αs − 1)U1/U2]

. (3.9)

The maximal value of the argument is 1/2αs which occurs at U1/U2 = 1. Its physical
interpretation is that the supremum occurs in the fully sliding regime, which is intuitive.
Hence, Odc = 1/2αs, or in other words, there is no flow if 1/2 � Ods, which is in
agreement with the solution of the full equations derived in appendix A.1.

We perform a few simulations for the [M] problem to benchmark the presented
algorithm. Figure 3 illustrates different regimes: figure 3(a) compares the computed
velocity profile (blue line) in the gap with the analytical solution (red circles) in the fully
sliding plug regime (Od = 1, αs = 0.2 & βs = 0.1) and figure 3(b) within the deforming
regime. Utilizing the mesh adaptation seems more indispensable in the deforming regime
compared with the fully sliding plug regime, where velocity gradient is zero. It is clear
that the velocity distribution after adaptation (red line) is much closer to the analytical
solution (red circles) than the solution of the initial mesh (blue line), and also yields a fine
resolution of the yield surfaces – see figure 3(d). We shall mention that the focus of the
present study is not on quantifying these improvements by the mesh adaptation, as it has
been previously studied in detail (Roquet & Saramito 2003, 2008; Chaparian & Tammisola
2019).

3.2. The [R] problem
Here, we reformulate the problem in the resistance scalings and the quantities are
designated with asterisk sign (∗) to prevent any potential confusion with the [M] problem.
In the resistance formulation, the velocity is scaled with the mean bulk velocity, Û = Q̂/Ĥ,
and as a result, there is always a non-zero flow with the flow rate equal to unity (Q∗ = 1),
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whether the flow is in the deforming regime or the fully sliding plug regime. The deviatoric
stress and pressure are scaled with the characteristic viscous stress, μ̂Û/Ĥ, hence,

G∗ex +∇ · τ ∗ = 0 (3.10)

and ⎧⎨⎩τ ∗ =
(

1+ B
‖γ̇ ∗‖

)
γ̇ ∗ iff ‖τ ∗‖ > B,

γ̇ ∗ = 0 iff ‖τ ∗‖ � B,
(3.11)

with the boundary condition,

u∗s =
⎧⎨⎩βsΛ

∗
(

1− Bs

|Λ∗|
)
, iff |Λ∗| > Bs,

0, iff |Λ∗| � Bs,

(3.12)

on the walls govern the [R] problem. Please note that G∗ is the absolute value of
the pressure gradient which enforces the unity flow rate for a given Bingham number
(τ̂yĤ/μ̂Û), αs and βs. The energy balance equation in this case is

a(u∗,u∗)+ Bj(u∗)+
∫
Γ

|σ ∗ntu
∗
s | dS

= a(u∗,u∗)+ Bj(u∗)+ 1
βs

∫
Γ

u∗s
2 dS+ Bs

∫
Γ

|u∗s | dS

= a(u∗,u∗)+ Bj(u∗)+ as(u∗s , u∗s )+ Bsjs(u∗s )

=
∫
Ω

dp∗

dx
u∗ · ex dA = G∗

∫
Ω

u∗ · ex dA. (3.13)

Frigaard (2019) has shown that at the yield limit (B→∞), viscous dissipation is at
least one order of magnitude less than the plastic dissipation (when B→∞: a(u∗,u∗)	
Bj(u∗)). With a little extra effort, we can show that this applies to as(u∗s , u∗s ) and Bsjs(u∗s )
as well, knowing that u∗s � 1 (from the continuity equation Q∗ = 1) and Bs →∞ in this
limit. Exploiting that generally the mapping between [M] and [R] problems is attainable
via Q = Od/B or G∗ = B/Od, one can extract the critical Oldroyd number from the [R]
formulation through

Odc = lim
B→∞

∫
Ω

u∗ · ex dA

j(u∗)+ 1
B

∫
Γ

|σ ∗ntu
∗
s | dS

= lim
B→∞

HL
j(u∗)+ αs js(u∗s )

. (3.14)

To explain the relation between [R] and [M] problems further, we consider some
examples in figure 4. The analytical solutions to (3.10)–(3.12) of the [R] problem are
derived in appendix A.2. The absolute value of the pressure gradient versus the Bingham
number under the no-slip condition and the sliding flow αs = 0.2 & βs = 0.1 are shown
with the continuous black and red lines, respectively. While for both type of flows an
increase in G∗ by increasing Bingham number can be observed, they display different
trends. This can be explained by knowing that beyond a critical Bingham number (B̄ =
1/βs(1− αs) � B), the sliding flow state switches from the deforming regime to the fully
sliding plug regime. Only at large enough Bingham numbers (B→∞), we can use the
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Figure 4. Features of the [R] problem for no-slip (in black) and sliding flow αs = 0.2 & βs = 0.1 (in red).
Lines represent analytically calculated values (see appendix A.2): continuous lines, G∗; dashed lines, j(u∗);
dashed-dotted line, js(us). The black dotted line is the asymptotic scaling 2B and red dotted line 2αsB = 0.4B.
The asterisk symbols mark the computational data in the deforming regime and circle symbols in the fully
sliding regime. Inset (B = 5,Bs = 1 & βs = 0.1): j(u∗) (cyan dashed line and asterisks) and js(us) (cyan
dashed-dotted line and asterisks) versus the cycles of mesh adaptation index with red lines showing the
analytically calculated values in appendix A.2.

numerical data to extract the yield limit. This is illustrated in figure 4 by the dotted lines,
where at B→∞, G∗ asymptotes to 2B and 2αsB = 0.4B for no-slip and the sample sliding
flow considered, respectively. In this limit, j(u∗) (dashed lines in figure 4) asymptotes
to 2 and 0 for the no-slip and sliding flows: this is equivalent to Odc = 1/2 and 1/2αs,
respectively, knowing that js(us) asymptotes to 2 for the sliding flows at sufficiently large
Bingham numbers (follow the red dashed-dotted line in figure 4). These results are the
same as the ones derived in appendix A.1 considering the [M] formulation. Please note
that due to the log–log scaling used in figure 4, j(u∗) corresponds to the sliding flow,
which is exactly equal to zero for B̄ � B is not visible; however, its fast decay is clear:
j(u∗) is almost equal to 10−2 for B ≈ 11.85 where B̄(αs = 0.2 & βs = 0.1) = 12.5. From
a different perspective, the inset in figure 4 shows how mesh adaptation helps us to achieve
more accurate results.

4. Slippery particle motion

Particle motion in yield-stress fluids has been considered in numerous studies ranging
from numerical simulations (Beris et al. 1985; Tokpavi, Magnin & Jay 2008; Putz
& Frigaard 2010; Nirmalkar, Chhabra & Poole 2012; Fraggedakis, Dimakopoulos &
Tsamopoulos 2016; Chaparian & Frigaard 2017a,b; Izbassarov et al. 2018) to experimental
validations/extensions (Jossic & Magnin 2001; Putz et al. 2008; Tokpavi et al. 2009).
Unfortunately, fewer studies are devoted to investigating the effect of slip on the flow
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field around the particle surface. Although Fraggedakis et al. (2016) used the Navier-slip
law in their simulations, the emphasis of their study was on the effect of elasticity of the
yield-stress fluid in the particle sedimentation problem. On the experimental side, Jossic &
Magnin (2001) reported the drag coefficient of the particle moving in a Carbopol gel and
showed that for particles with smooth surfaces, the drag coefficient is smaller compared
with the rough particles that prevent slip which is intuitive. However, the mentioned
authors did not quantify the slip velocity/law on the particle surface and rather qualitatively
addressed the effect of slip. In this section, we will shed light on the effect of slippery
motion of the yield-stress fluid about a circular two-dimensional (2-D) particle and in
detail will address the yield limit under this condition.

Flow configuration: the horizontal symmetry axis of the particle is aligned with the
x-axis (positive direction to the right) and the vertical one by y-axis (positive direction
upward) where the origin of the coordinate system is fixed at the particle centre. The fluid
flow about the particle (X) with its radius R̂ as the length scale can be described again by
two formulations.

(i) The [R] formulation, where the particle is dragged through the fluid with a
prescribed velocity V̂∗p as the boundary condition. Hence, the drag force F̂∗D can
be calculated. In this formulation, V̂∗p is used as the velocity scale and μ̂V̂∗p/R̂ as
the characteristic viscous stress to scale the deviatoric stress tensor and the pressure,
hence the governing equation is

−∇p∗ +∇ · τ ∗ = 0 in Ω \ X̄ & u∗ns = −ey on ∂X (4.1)

with (3.11) and (3.12) as the constitutive and the slip law, respectively, where B =
τ̂yR̂/μ̂V̂∗p . The drag force on the particle can be computed as a result from

a(u∗,u∗)+ Bj(u∗)+ as(u∗s , u∗s )+ Bsjs(u∗s ) =
∫
∂X

(
σ ∗ · n

) · ey dS = F∗D. (4.2)

(ii) The [M] formulation, where the buoyancy of the particle is known and it falls freely
under the action of the gravity −ĝey. Hence, the settling velocity of the particle V̂p

can be calculated as a result. In this formulation, velocity is scaled with Δρ̂ĝR̂2/μ̂:
the velocity scale obtained via balancing the buoyancy stress with the characteristic
viscous stress. Please note that here ĝ is the gravitational acceleration and Δρ̂ is
the density difference between the particle and the suspending fluid. Hence, the
governing equation is

−∇p+∇ · τ − ρ

1− ρ ey = 0 in Ω \ X̄ and
∫
∂X
(σ · n) · ey dS = π

1− ρ (4.3)

where ρ is the ratio of the fluid density to the particle one (i.e. ρ̂f /ρ̂p). The
constitutive and slip laws are the same as (3.2) and (3.3), respectively, with a slight
difference: the yield number Y is substituted for the Oldroyd number in the particle
sedimentation problem; indeed, Y = τ̂y/Δρ̂ĝR̂.

The yield limit can be well understood using either the [R] or [M] formulations knowing
the mapping between these two formulations: Y = πB/F∗D or B = Y/Vp. In the [R]
formulation, the particle never stops because the particle velocity is set as the boundary
condition, yet, in the yield limit B→∞, the drag force also goes to infinity. However, in
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the [M] problem, for a large enough yield number (Y > Yc), the yield stress can overcome
the buoyancy of the particle and makes it stationary suspended. The connection between
these two situations can be well discussed by the ‘plastic drag coefficient’,

Cp
D =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
F̂∗D
�̂⊥τ̂Y

][R]

=
[

F∗D
�⊥B

][R]

for problem [R],

[
Δρ̂ĝÂp

�̂⊥τ̂Y

][M]

=
[

π

�⊥Y

][M]

for problem [M],

(4.4)

where �⊥ is the width of the particle perpendicular to the flow direction (�⊥ = 2) and Âp

is the area of the 2-D particle (i.e. πR̂2 here). Then, the critical plastic drag coefficient
(i.e. plastic drag coefficient at the yield limit) can be converted easily to the critical yield
number,

Cp
D,c =

[
Cp

D,c

][R]

B→∞
=
[
Cp

D,c

][M]

Y→Y−c
= π

�⊥Yc
. (4.5)

For more details please see Chaparian & Frigaard (2017b). For instance, for a 2-D circle,
as has been extensively validated (Tokpavi et al. 2008; Putz & Frigaard 2010; Chaparian &
Frigaard 2017a,b), the critical plastic drag coefficient under the no-slip condition is 11.94,
which yields to Yc = 0.1316.

Regarding the computational details, we conduct the same strategy as in our previous
studies (Chaparian & Frigaard 2017a,b; Iglesias et al. 2020). The computational box (Ω) is
chosen large enough to ensure independency from far-field conditions (Chaparian, Wachs
& Frigaard 2018). The boundary condition u∗ = 0 is enforced on ∂Ω .

The yield limit of particle motion in a quiescent yield-stress fluid is directly relevant
to the lateral resistance of an object (e.g. a pile) in a perfectly plastic medium (e.g. soil)
which can be investigated by method of characteristics (i.e. slipline solution) due to the
hyperbolic nature of the equations. We briefly revisit this problem in the next subsection.

4.1. Revisiting the slipline solution and lower- and upper-bound calculations
In a deformed perfectly plastic medium, the second invariant of the stress is equal to B
everywhere. The equilibrium equations for the unrestricted 2-D plastic flow then form
a closed set of hyperbolic equations for which there are two families of orthogonal
characteristic lines: the α- and β-families (Hill 1950; Chakrabarty 2012). Physically, these
lines (termed as sliplines) show the direction of the maximum shear stress which is equal
to B. Properties of these lines facilitate studying the ‘yield limit’ in various viscoplastic
problems (Dubash et al. 2009; Chaparian & Frigaard 2017a,b; Chaparian & Nasouri 2018;
Hewitt & Balmforth 2018). However, finding the sliplines itself is not trivial in some
complex problems. Indeed, the sliplines assist us in postulating admissible stress and
velocity fields which yield to finding the lower and upper bounds, respectively, of the
load limit.

Initially investigated by Randolph & Houlsby (1984), a slipline solution was devised for
calculating the lateral resistance of a circular pile in soil (considered as a perfectly plastic
material), taking into account the effect of soil adhesion at the pile–soil interface, α̃s. In
other words, the tangential shear stress at the pile-soil interface is assumed to be equal
to α̃sB. Although widely believed that the Randolph & Houlsby (1984) solution is exact
(lower and upper bounds of the load/drag are the same for the whole range of α̃s), an issue
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Figure 5. Schematic of the sliplines about a 2-D circle. The α-lines are in cyan colour and β-lines in red.
Only a quarter of the whole domain is shown due to symmetry.

was firstly detected by Murff, Wagner & Randolph (1989): for α̃s < 1, there is a region
in the vicinity of the pile surfaces in which the rate of strain is negative and its absolute
value should be taken into account in calculating the upper bound to avoid negative plastic
dissipation. If one does so, then there is a discrepancy between the lower and upper bounds.
Later, Martin & Randolph (2006) proposed two new postulated velocity fields which
improved the upper-bound predictions to some extent; one for small (α̃s → 0) and the
other one for large (α̃s → 1) soil adhesion factors. By combining these two mechanisms,
Martin & Randolph (2006) proposed an alternative mechanism which markedly shrinks
the uncertainty between the lower and upper bounds predictions for the entire range of α̃s.
We will quickly review the lower- (Randolph & Houlsby 1984) and upper-bound (Martin
& Randolph 2006) solutions here; however, for more details, readers are referred to the
original references.

The first family of sliplines in this problem are straight lines that make a π/4− ψ/2
angle with the pile surface (say α-lines) where ψ = sin−1 α̃s. Figure 5 represents these
lines in cyan colour. The initial α-line is AB which makes a π/4 angle with the vertical
symmetry line since τ̃xy is zero on OB. Hence, the region enclosed between AB and the
pile surface is the plug region shown in light grey. The α-lines from AB to CD can be
found easily as discussed above; the corresponding β-lines are curved lines which are
the involutes unwrapped from an imaginary concentric circle – the evolute – with radius
η = cos(1

2 cos−1 α̃s) shown with a dashed white line. Please note that indeed α-lines can
be introduced as tangents of this imaginary circle as well. From CD to CE, α-lines are
spokes of a fan centred at C; hence, the β-lines in this part are arcs of concentric circles at
point C.

Hencky’s equations (Hill 1950),

p̃+ 2Bθ = const. along an α-line and p̃− 2Bθ = const. along a β-line, (4.6)

provide the tool for finding the admissible stress field associated with these sliplines
which can be used for calculating the lower bound of the plastic drag coefficient. Here,
θ is the anticlockwise orientation of the α-lines made with the x-axis (aligned with OE).
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The individual stress contributions can be written as

σ̃x = −p̃− B sin(2θ), σ̃y = −p̃+ B sin(2θ), τ̃xy = B cos(2θ) (4.7a–c)

in the new curvilinear coordinates α and β. Then the lower bound can be calculated as

[
Cp

D,c

]
L
=

[
F̃
]

L
�⊥B

=

[
F̃
]

L
2B
=
∫
∂X
(σ̃ · n) · ey dS (4.8)

which basically consists of four individual contributions in the shown quadrant: shear force
acting on AB, B sin(ψ/2); shear force acting on AC, B sinψ cos(ψ/2); normal force acting
on AB, B(c+ 3π/2) sin(ψ/2); and normal force acting on AC,

B
{

c
[

1− sin
(
ψ

2

)]
+
[

2 cos
(
ψ

2

)
+ π

2
+ ψ + cosψ −

(
3π

2
+ cosψ

)
sin
(
ψ

2

)]}
,

(4.9)

where cB is the reference mean stress, (σ̃x + σ̃y)/2, on CE (position of the centre of the
Mohr circle). Please note that c will be eliminated if all four quadrants are taken into
account. Hence, the total lower bound of the plastic drag coefficient will be[

Cp
D,c

]
L
= π+ 2ψ + 2 cosψ + 4

(
cos

ψ

2
+ sin

ψ

2

)
. (4.10)

The upper-bound calculation can be performed by postulating admissible velocity fields.
Geiringer equations (Hill 1950) make it feasible via slipline solution,

dũα − ũβ dθ = 0 along an α-line & dũβ + ũα dθ = 0 along a β-line, (4.11)

where ũα and ũβ are the velocities in the directions α and β in the new curvilinear
coordinate system. Based on these equations, Randolph & Houlsby (1984) proposed a
mechanism (see figure 6a) in which velocity along α-lines is zero and along each β-line
is a constant, which can be found by considering a no-penetration condition on the pile
or fore-and-aft plugs surface. As mentioned above, this mechanism leads to a relatively
large uncertainty with the lower-bound solution for α̃s /= 1. Martin & Randolph (2006)
improved this mechanism by substituting a rotating rigid block (blue region in figure 6b)
in the middle of the domain with angular velocity ω compatible with the no-penetration
boundary condition on the pile surface; the centre of that is determined by the angle γ and
the imaginary evolute circle of radius η. By optimizing for γ , one can markedly reduce the
uncertainty between the lower and upper bounds of CP

D,c.
It is worth mentioning that although α̃s and αs do not have exactly the same physical

origins, in what follows, we show that both display the same effect in the current problem
and can be used interchangeably. Nevertheless, we should note that, αsB in the viscoplastic
fluid mechanics context not only marks the boundary between the presence of sliding or
no-slip flow on the solid surface, but actually also controls the yield limit (see figure 1):
for instance in the case of αs = 1, the limit of flow/no-flow reduces to having stress as
large as B on the solid surfaces. Without a doubt, when there is a flow, it slides over solid
boundaries depending on βs in this case. Yet, the case of αs = 1 shares the same yield
limit characteristics with the no-slip condition. In the perfectly plastic mechanics context,
α̃sB roughly has the same interpretation since if the tangential shear stress on the solid
boundary is less than that, then there are no deformed regions. Indeed, this is the strict
condition at the yield limit in a deformed perfectly plastic solid.
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ω
η

γ

(a) (b)

Figure 6. Schematic of the upper-bound mechanisms: (a) associated with the sliplines (Randolph & Houlsby
1984), (b) combined mechanism (Martin & Randolph 2006) with the blue region rotating as an unyielded block.
Black arrows show velocity vectors. For a better representation, in this schematic the pile velocity is assumed
to be ey. Nevertheless, it should be noted that the flow has fore-and-aft symmetry.

4.2. Results
Figure 7(a) represents the plastic drag coefficient versus the Bingham number under
different conditions. As shown by Putz & Frigaard (2010) and Chaparian & Frigaard
(2017b), with the no-slip condition on a circular particle surface, limB→∞ Cp

D = Cp
D,c ≈

11.94 which is the value that can be obtained from the expression (4.10) as well when
α̃s = 1. Three main points can be drawn from figure 7(a) as follows.

(i) Plastic drag coefficients associated with the sliding flows over the particle surface are
smaller compared with the same Bingham number flows with the no-slip condition.
This seems intuitive and as mentioned has been validated experimentally by Jossic
& Magnin (2001).

(ii) The plastic drag coefficient decreases by increasing Bingham number and reaches
a plateau when B→∞. More interestingly, the critical plastic drag coefficient
associated with the flows of the same αs asymptote to a same limiting value
(see asterisks and circles). Indeed, Cp

D,c is only a function of αs. However, in the
Newtonian limit, B→ 0, this is βs which controls Cp

D (see stars and circles).
(iii) The lower-bound estimations from the slipline solutions accurately predicts Cp

D,c.

Figure 7(b) compares the lower and upper bounds of the critical plastic drag coefficient
with the data obtained by the numerical computations. It clearly shows that even within
the sliding flow context, perfectly plastic theories could be useful in investigating the yield
limit. It is worth mentioning that, as investigated by Chaparian & Frigaard (2017b) in
detail, although the computations and slipline analysis display same behaviours to some
extent for the no-slip case, the envelope of the characteristics does not agree fully with
the yield surfaces in the viscoplastic computations. Both the characteristics solution and
the viscoplastic computation predict rigid caps fore-and-aft of the particle (although they
are not exactly the same size), whereas the viscoplastic solution also has kidney plug
regions along the side of the cylinder. The velocity fields are not exactly equal either –
see figure 4 of the mentioned reference. The perfectly plastic velocity has discontinuities
which are diffused in the viscoplastic field by the narrow viscous boundary layers. Given
the discrepancies in both stress and velocity fields for the no-slip case, it is perhaps
interesting that slipline solutions still predict the yield limit very well. Figure 8 reveals
that these differences exist in the sliding flows as well. Figure 8(a) sketches the sliplines
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Figure 7. (a) Plastic drag coefficient versus the Bingham number for different αs and βs. The continuous blue
lines are lower-bound estimations for α̃s = 0.2, 0.5 and 1. (b) Critical plastic drag coefficient versus αs. The
blue line is the lower-bound estimation and the red line shows the upper-bound estimation by the combined
mechanism (Martin & Randolph 2006) with the same symbol interpretation as panel (a).
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Figure 8. Sliplines for the case (a) α̃s = 0.2 and (b) no-slip (α̃s = 1); α-lines in blue and β-lines in red while
the rigid caps stock to the particle surface represented in light grey. The other panels show the contour of |u∗|
at B = 105: (c) αs = 0.2 and βs = 0.1; and (d) no-slip flow. Green lines in panels (c,d) represent the yield
surfaces.

for the case α̃s = 0.2, and figure 8(c) shows the computed contours of velocity for the case
αs = 0.2 & βs = 0.1 at B = 105. Figures 8(b) and 8(d) make the comparison possible with
the no-slip condition. The frontal caps are significantly smaller for αs = 0.2 while the side
kidneys are bigger and are in touch with the particle surface.

Figure 9 closely monitors these differences for the case αs = 0.5. Figure 9(a) shows
the contour of velocity in the viscoplastic problem with yield surfaces in continuous
green, whereas ‘yield surfaces’ predicted by the combined upper-bound mechanism
(Martin & Randolph 2006) are shown with discontinuous blue lines. Moreover, figure 9(c)
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Figure 9. Features of the flow about a particle αs = 0.5 & βs = 0.05: (a) velocity contour (|u∗|) at B = 105,
the green lines show the yield surfaces and blue discontinuous lines are yield surfaces predicted in combined
upper-bound mechanism (Martin & Randolph 2006) with η = 0.866 and γ = 20.8◦ and cyan discontinuous
lines mark the start and end spokes of the rigid zones; (b) contour of log10(‖γ̇ ∗‖); (c) velocity profile
comparison in simulations with increasing Bingham number (B = 10, 100 and 105 from cyan to dark blue
colour, respectively) and upper-bound mechanisms (Martin & Randolph (2006) combined mechanism with
continuous red line and Randolph & Houlsby (1984) mechanism with discontinuous dashed red line) over the
horizontal symmetry line. Please note that particle surface velocity is v∗ = −1.

compares velocity distributions along the horizontal symmetry line: the two red lines
represent the ones associated with the upper-bound mechanisms by Martin & Randolph
(2006) (continuous) and Randolph & Houlsby (1984) (discontinuous), while the computed
velocities for different Bingham numbers are shown in blue colours; the darker it is
the higher the Bingham number. As B increases, the velocity distributions get closer to
the ones predicted by the upper-bound mechanisms, especially the combined mechanism
where even the slip velocity on the particle surface at the equator is predicted correctly.
Nevertheless, again the discontinuities in the perfectly plastic solution are replaced by the
viscous boundary layers in the viscoplastic solutions.

5. Sliding flow in model porous media

Non-Newtonian fluid flows through porous media, especially yield-stress fluids, are
of great practical importance for numerous industries such as filtration. Due to the
complexities of these types of geometries and their randomness, it is expensive to conduct
numerical simulations/experiments at the full scale. Hence, a common way is to model
the medium as arrays of cylinders or other model geometries. For instance, Chevalier
et al. (2013) studied the flow of a Herschel–Bulkley fluid through confined packings of
glass beads experimentally and proposed a semiempirical model for the pressure drop
versus the flow rate. Chaparian et al. (2020) and De Vita et al. (2018), recently, studied
the effect of elasticity of the yield-stress fluid in flows through model porous media.
Another related topic is the flow along uneven channels: in a series of studies (Roustaei &
Frigaard 2013, 2015; Roustaei, Gosselin & Frigaard 2015; Roustaei et al. 2016) investigated
in detail the yield-stress fluid flow inside fractures and washouts for a wide range of
flow configurations. They showed that large-amplitude variations in the duct walls lead
to the formation of static unyielded zones (termed as ‘fouling layers’) adjacent to the
walls. Lubrication approximation (which is based on a constant pressure gradient along
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Figure 10. Schematic of the model porous media: (a) regular geometry, (b) staggered geometry.

the channel length), therefore, is an inadequate approach to study yield-stress fluid flows
along wavy channels.

It should be mentioned that all the above studies are limited to the no-slip condition.
Here, in the continuation of the previous sections, we investigate the effect of slip on the
pressure-driven yield-stress fluid flows in porous media.

In this section, we consider flows through two model geometries mimicking porous
media – the same ones as studied by Chaparian et al. (2020). The schematic is represented
in figure 10: both geometries are designed to have the same porosity φ = 0.38 (i.e. �̂/R̂ =
0.25 and 1.25 in figures 10a and 10b, respectively). The obstacle’s radius, R̂, is used as
the length scale. We use the [R] formulation in this section; hence, for all the cases of
the same geometry, the flow rate is constant and the pressure drop is a function of the
Bingham number (τ̂yR̂/μ̂Û), αs and βs. We consider an inertialess fully developed flow
with the sliding boundary condition (3.12) on the solid topologies (∂X). Fixed flow rate
condition is enforced using a Lagrange multiplier and periodic boundary conditions are
applied at the inlet and outlet. On the top and bottom sides of the computational cell
(horizontal faces), a symmetry boundary condition is imposed. For more details about the
computational method and its validations please see Chaparian et al. (2020).

Figure 11 compares different flows within a wide range of Bingham numbers. Dead
zones (shaded in light grey) are smaller in the sliding flows since the fluid slides over
the solid surfaces and ‘erodes’ the fouling parts. However, the unyielded regions in the
middle of the passage (yield surfaces in green) are mostly larger compared with the no-slip
condition, which is intuitive. Interestingly, because of the slip, unyielded zones are prone
to attach to the solid surfaces (e.g. see figure 11p).

Figure 12 reveals, quantitatively, various features of the flow in the model porous media.
Figure 12(a) sketches G∗ with respect to the Bingham number; zoomed-in insets are
provided in figure 12(b–e). In the range of small Bingham numbers – Newtonian limit –
the pressure gradient is a function of B and βs alone; see figures 12(b) and 12(d) in which
the cyan and yellow curves (βs = 0.05) converge together and also red and purple curves
(βs = 0.1) together. On the other hand, in the limit of large Bingham numbers (i.e. no flow
or yield limit; figures 12c and 12e), the critical pressure gradient is a function of B and
Bs or indeed B and αs: yellow and red curves with αs = 0.2 are almost indistinguishable;
the same for the purple and cyan curves with αs = 0.8. Moreover, as shown by Chaparian
et al. (2020), in the yield limit (B→∞), the pressure gradient scales with∼B; this is true
for both the no-slip and sliding flows, yet with different prefactors. Indeed, as shown in
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Figure 11. The velocity magnitude contour |u∗|. Panels (a–d) and (i–l) show the no-slip flow in the regular and
staggered geometries, respectively. Panels (e–h) and (m–p) illustrate the sliding flow (αs = 0.2, βs = 0.1) in
regular and staggered geometries, respectively. Panels (a,e,i,m), (b, f ,j,n), (c,g,k,o) and (d,h,l,p) are associated
with B = 1, 10, 100 and 1000, respectively. The dead zones are shown in light grey and green lines represent
the yield surfaces in the middle of the flow passage.

§ 3.2 for the simple channel flow,

lim
B→∞

G∗(no-slip)
G∗(αs)

= 1
αs
, (5.1)

which is the case in the complex flows through model porous media as well.
Figure 12( f ) confirms that the viscous dissipation, even in sliding flows, is at least one

order of magnitude less than the plastic and slip dissipations. Interestingly, for sliding
flows, a(u∗,u∗) converges to its limiting value when B→∞ and the limiting value is
a function of αs only. Whereas, in the no-slip flow, the viscous dissipation increases
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Figure 12. Features of the flow in model porous media: (a) G∗ versus B, the circles stand for the regular
geometry and squares for the staggered cases; (b,c) close-up of the panel (a) at small and large Bingham
numbers, respectively (only data of the regular geometry is presented); (d,e) close-up of the panel (a) at small
and large Bingham numbers, respectively (only data of the staggered geometry is presented); ( f ) different
contributions to the total dissipation versus the Bingham number; (g) different contributions to the slip
dissipation versus the Bingham number; (h) normalized plastic dissipation and ‘plastic’ slip dissipation versus
B. The scale of the vertical axis in this panel is not logarithmic – it is linear. Please note that in panels ( f –h)
only data of the regular geometry is presented and the colour interpretation is the same as in panel (a).

by increasing Bingham number but with a much smaller rate compared with the plastic
dissipation. Figure 12( f ) also shows that the leading-order dissipation terms (i.e. Bj(u∗)
and

∫ |σ ∗ntu
∗
s | dS) scales with ∼B at the yield limit for sliding flows which is the main

reason of yielding to the same scaling for G∗ at this limit – see (3.13). Figure 12(g) also
establishes that the leading-order term in the slip dissipation is the ‘plastic’ slip dissipation
Bsjs(u∗s ).

Please note that although j(u∗) of the no-slip flow is not shown in figure 12(h), the
trend is the same as the sliding flows, but of course with larger values as it is clear from
figure 12( f ) where Bj(u∗) is shown.

Under the no-slip condition, the asymptotic values of j(u∗) at B→∞ are equal to 3.42
and 12.57 for regular and staggered geometries which yield to Odc = τ̂y/R̂Ĝc ≈ 0.1645
and ≈0.2237, respectively, using (3.14) in the absence of any slip dissipation. The critical
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Reg. (exact) Reg. (exp. (5.2)) Stagg. (exact) Stagg. (exp. (5.2))

No-slip 0.1645 — 0.2237 —
αs = 0.8 0.1781 0.1553 0.2427 0.2125
αs = 0.2 0.2581 0.2578 0.3502 0.3486

Table 1. Values of Odc for regular and staggered geometries.

Oldroyd number in the presence of slip is calculated using the same expression in table 1.
Please note that as an approximation, one may alternatively use

Odc = lim
B→∞

∫
Ω\X̄

u∗ · ex dA

j(u∗)+ 1
B

∫
∂X
|σ ∗ntu

∗
s | dS

≈ lim
B→∞

�L
(1+ αs)j(u∗)

, (5.2)

in which js(u∗s ) is approximated by j(u∗) as is suggested by figure 12(h), especially for
small values of αs (i.e. more slippery flows). These values are reported in table 1 as well.
A negligible difference between Odc calculated using (3.14) and (5.2) for αs = 0.2 shows
the validity of this approximation when the ‘sliding yield stress’ is much smaller than the
material yield stress.

We shall mention that, as it is clear from figure 12(c,e,h), Odc only depends on αs as
reported in table 1 (at least for 0 � βs � 0.1).

6. Towards more complex geometries

Although previous studies on the yield-stress fluid flows in the model porous media
uncovered some generic interesting aspects of the problem, yet they were not capable
of capturing the whole physics behind these type of complex flows. For instance, Talon &
Bauer (2013) utilized the lattice Boltzmann method (known as LBM) to study the Bingham
fluid flow in a stochastically reconstructed porous media. These authors showed that due
to the yield stress, channelization can happen: the material will flow only in self-selected
paths depending on the imposed driving pressure gradient; at the yield limit it is only one
path and by increasing the pressure gradient gradually, other paths will open up. This has
been supported by the work of Liu et al. (2019) in model pore networks connected by
straight tubes.

To capture these kinds of fascinating and more realistic behaviours, in this section we
will complement the findings in § 5 by studying the flow in random-designed porous media
with a wide range of porosities. The computational domain is a box of dimensions 50×
50 where the fluid flows around 2-D fixed rigid circles of radius unity with symmetric
boundary conditions on the pair of the horizontal and vertical box faces. Again we use the
[R] formulation in this section and the same numerical method as in the previous section.
To have a better comparison, in addition to the random porous media, we simulate the flow
again in the two introduced model porous media (figure 10); yet with the same porosity as
the random cases: the size of the model cell in figure 10 is L = √π/1− φ.

6.1. Baseline no-slip flow
Figure 13 illustrates the no-slip flow in the case φ = 0.7 for a wide range of Bingham
numbers from unity to 104. Panels (a,b), (c) show the velocity magnitude contours and
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Figure 13. Here φ = 0.7 where panels (a–c) illustrate |u∗| and (d–f ) contour of log10(‖γ̇ ∗‖) for flows with
no-slip condition. Please note that the range of colourbars are different in velocity contours whereas it is the
same in panels (d–f ). Panels (a,d), (b,e) and (c, f ) are associated with B = 1, 100 and 104, respectively.

panels (d,e), ( f ) the logarithmic scale of the second invariant of the rate of strain tensor.
When the Bingham number increases, the flow becomes more and more localized, and at
the yield limit (B→∞), the flow only passes through a single channel. Please note that
the black level contours represent the quiescent parts. It is worth mentioning that due to the
[R] scaling, the flow rate in all the simulations is the same (for a fixed geometry regardless
of the Bingham number, αs and βs), hence, in figure 13(c) the whole fluid passes through
the single open channel which results in extremely high velocities (compare the level of
contours in the panels (a,b), (c)). By looking at the panels from left to right sequentially,
the channelization characteristic is clearly observable: by increasing the Bingham number
(i.e. moving to the yield limit), the flow occurs in lesser paths, until only one path remains
at the yield limit.

Figure 14 shows the pressure drop against the Bingham number. The lines are computed
data in the present study and the symbols are computational and experimental data by
Bauer et al. (2019) for three-dimensional (3-D) flows. The blue lines are acquired from
the randomized porous media and the red lines from the two model porous media for a
wide range of porosities. To have a better comparison, we combined G∗ from the regular
and staggered models in the red lines by averaging. This figure demonstrates that the
model porous media closely predicts the pressure drop in the randomized porous media,
however, there are small discrepancies, more pronounced in the two limits of the problem
– Newtonian and the yield limit. Yet, in the intermediate regime of the Bingham numbers,
the predictions are more satisfactory. Table 2 compares the critical Oldroyd number under
the no-slip condition computed in different configurations. As can be seen in figure 14, the
model porous media slightly overpredicts the pressure drop which results in smaller Odc
compared with the randomized geometries.

In figure 14, we also compare 2-D simulations in the present study and 3-D simulations
by Bauer et al. (2019). They are partially comparable; specifically in the large Bingham
number limit where a large portion of domain is filled with static/fouling regions.
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Figure 14. Pressure drop with respect to the Bingham number under the no-slip condition. The red colour
stands for simulations of the model porous media and the blue colour the simulations of the random porous
media. The lines represent our computations: the continuous line corresponds to φ = 0.38, dashed line to
φ = 0.5, dashed-dotted line to φ = 0.7 and the dotted line to φ = 0.9. The symbols are data borrowed from
Bauer et al. (2019): simulations for face-centred cubic packing of spheres (�, φ = 0.218), simulations for
random array of overlapping spheres (�, φ = 0.429).

φ = 0.38 φ = 0.5 φ = 0.7 φ = 0.9

Randomized — 0.3511 0.7678 2.2096
Regular geo. 0.1645 0.2804 0.6163 1.7996
Staggered geo. 0.2237 0.3308 0.6365 1.8001

Table 2. Comparison of Odc (under no-slip condition) for different geometries.

However, a closer comparison in the Newtonian limit is suggestive of different trends,
which could be the consequence of different flow structures in 2-D and 3-D flows in this
limit and also the difference between the viscous functionality in the Bingham model
which is used here and the Herschel–Bulkley model used by Bauer et al. (2019). More
sophisticated analyses/comparisons of the model and random porous media under the
no-slip condition are presented in appendix B, as the main focus of the present study
is on the sliding flows.

6.2. Effect of slip
In this subsection, we take a close look at the effect of slip in the randomized porous media.
Figures 15 and 16 compare the velocity and the rate of strain fields, respectively, between
the flows under the no-slip condition and the sliding flows (αs = 0.2 & βs = 0.1) at B =
104. These two figures show that when the flow can slide over the pores’ surfaces, the
channelization is not strong compared with the no-slip condition. Indeed, the flow slides
over the solid surfaces which cover a large portion of the domain in the small porosities
limit and consequently there is a flow in most of the passages. However, in the limit of high
porosities (i.e. less solid surfaces), the effect of slip is negligible: compare panels (c) and
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Figure 15. Here |u∗| at B = 104 for (a–c) no-slip flow, (d–f ) sliding flow (αs = 0.2 and βs = 0.1). Panels
(a,d), (b,e) and (c, f ) correspond to φ = 0.5, 0.7 and 0.9, respectively.

( f ) in figures 15 and 16. The static regions under the no-slip condition and in the sliding
flows are almost the same when porosity is as high as φ = 0.9. There are slightly sheared
parts out of the main open path (see figure 16f ), but the flow mainly passes through the
open channel whose shape and location are identical to the no-slip case.

Figure 17 looks at this phenomenon from the pressure drop perspective. The lines
(no-slip simulations) are borrowed from figure 14 for reference. The symbols refer to
sliding flows (αs = 0.2 & βs = 0.1); the blue ones collected from the simulations in the
randomized porous media and the red ones from the model porous media. Please note
that again we plot the average value of G∗ corresponding to the two model porous media
(normal and staggered cases). This figure demonstrates that as the porosity increases, the
effect of slip on the pressure drop decreases, in agreement with figures 15 and 16 for the
model porous media. Indeed, the symbols are much closer to their corresponding lines with
the same porosity as φ→ 1. Moreover, in this high porosity limit, the model porous media
predictions are appropriate approximations of the pressure drop in the randomized porous
media: the asterisks and pluses with different colours are not distinguishable. However, in
the other limit (low porosities), the effect of slip on the pressure drop is more pronounced:
the pressure drop in the sliding flows are smaller compared with no-slip flows, which is
intuitive. Moreover, the intensity of the slip effect on the pressure drop depends on the
geometric structures since there is a significant discrepancy between the predictions of the
model porous media and the randomized porous media: the blue and red full circles are
relatively far from each other specifically in the low Bingham number regime (please note
the logarithmic scale).

7. Summary and discussion

The hydrodynamic features of sliding flows of yield-stress fluids are investigated in the
present study. It has been well-documented in the literature that yield-stress fluids slide
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Figure 16. Here log10(‖γ̇ ∗‖) at B = 104 for (a–c) no-slip flow, (d–f ) sliding flow (αs = 0.2 and βs = 0.1).
Panels (a,d), (b,e) and (c, f ) correspond to φ = 0.5, 0.7 and 0.9, respectively. Please note that for each row, we
have used the same range of colourbar.
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Figure 17. Pressure drop with respect to the Bingham number. The red colour stands for the simulations of the
model porous media and blue colour the simulations of the random porous media. The lines are borrowed
from figure 14 (no-slip condition): the continuous line corresponds to φ = 0.38, dashed line to φ = 0.5,
dashed-dotted line to φ = 0.7 and the dotted line to φ = 0.9. The symbols are computations of the sliding
flow (αs = 0.2 & βs = 0.1): stars correspond to φ = 0.38, full circles to φ = 0.5, asterisks to φ = 0.7 and the
pluses to φ = 0.9.
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over solid surfaces due to microscopic effects: formation of a lubrication layer of solvent
and elastic deformation of soft particles in the vicinity of the solid surface (Meeker et al.
2004b). Firstly, we formulated a general vectorial form of the well known ‘stick–slip’
law and presented a numerical algorithm based on the augmented Lagrangian scheme
combined with anisotropic mesh adaptation to attack these kinds of problems. We derived
some theoretical tools as well to formulate the yield limit in the presence of slip. The whole
framework was benchmarked in a simple channel Poiseuille flow. Then we addressed more
complicated problems including moving solid surfaces and the sliding flow over complex
topologies.

Firstly, we simulated the slippery particle sedimentation problem and addressed the
yield limit in detail. Slipline solutions from the perfectly plastic mechanics were revisited
and utilized to find the yield limit in the presence of slip. The slipline method has proved
capable of finding the yield limit, even though the velocity/stress fields obtained from
slipline solutions can differ from the viscoplastic solutions at large, yet finite Bingham
numbers – see Chaparian & Frigaard (2017b). The conclusions from the present study are
similar, showing again that the lower and upper bounds of the plastic drag coefficient are
excellent estimations of the yield limit of slippery particle motion.

Secondly, we addressed the complex sliding flows in the model and randomized porous
media. Different hydrodynamic features of the flow were investigated as well as the critical
pressure gradient to ensure continuous non-zero flow was reported. Moreover, some
general conclusions were drawn about modelling the flow in porous media by comparing
the results computed from the model configurations and more realistic random-designed
porous media, both under the no-slip condition and sliding flows. Furthermore, it was
shown that the effect of slip is more severe in the low porosity limit where a larger portion
of the domain is filled by occupying solids (i.e. a large portion of the flow is in contact
with the solid surfaces). In this limit, the pressure drop of a slippery flow is decreased
compared with the flow under the no-slip condition. For instance, the pressure drop under
the no-slip condition at φ = 0.5 closely follows the pressure drop of the sliding flow
for the case φ = 0.38 when αs = 0.2 & βs = 0.1 (see figure 17). Indeed, an effective
porosity can be defined for the sliding flows in porous media to predict the pressure drop:
G∗(φeff ; no-slip) = G∗(φ;αs, βs) where φeff > φ. In the high porosity limit, however,
φeff ≈ φ since the solid surfaces are occupied by a small portion of the whole domain.

By investigating different physical problems in the presence of slip, from particle motion
to pressure-driven flows in complex geometries, the following general conclusions can be
drawn about sliding flows of viscoplastic fluids.

(i) There are three sources of dissipation in sliding flows: viscous, plastic and slip
dissipations. Slip dissipation itself can be split into two main contributions: ‘viscous’
slip dissipation which comes from the slip coefficient βs and ‘plastic’ slip dissipation
which is the contribution of the sliding yield stress.

(ii) In the yield limit, the leading-order contribution to the total slip dissipation is the
‘plastic’ slip dissipation. Exploiting that viscous dissipation is at least one order of
magnitude less than the plastic dissipation, we can conclude that the yield limit of
sliding flows is indeed controlled by αs or sliding yield stress. This was evidenced
both for particle sedimentation and pressure-driven flows in porous media.

(iii) In the other limit (Newtonian limit), however, the flow characteristics are determined
by the slip coefficient βs. For instance, the plastic drag coefficient in the particle
sedimentation problem and the pressure drop in the porous media are the same for
the flows with the same βs as B→ 0.
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Finally, we should mention that, although in the entire study we considered k = 1 and
the Bingham model as the rheological representation, the presented framework and most
of the conclusions that are drawn are independent of these assumptions. In appendix C, we
will show how we can adopt the presented numerical algorithm and the analytical tools to
study the cases in which k /= 1 and n /= 1.

Acknowledgements. E.C. gratefully acknowledges the Linné FLOW PostDoc grant during the course of this
study.

Funding. The authors appreciate the support of Swedish Research Council through grant VR 2017-0489.
This project also has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. 852529).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Emad Chaparian https://orcid.org/0000-0002-5397-2079;
Outi Tammisola https://orcid.org/0000-0003-4317-1726.

Appendix A. Analytical solution of the sliding Poiseuille flow

We derive analytical solutions for the sliding Poiseuille flow in a channel with gap width
unity considering both [M] and [R] formulations.

A.1. The [M] problem
For the [M] problem, the only non-zero stress component is the shear stress which can be
derived from

dτxy

dy
= 1, (A1)

and the slip velocity can be calculated from

us =
{
βs (|τw| − Ods) , iff |τw| > Ods,

0, iff |τw| � Ods,
(A2)

where τw is the wall shear stress. From the constitutive equation, we know that in the
yielded regions (if there are any),

Od sgn( y)− y = γ̇xy = du
dy
. (A3)

Hence, if |y| � Od,

u = Od|y| − y2

2
+ A, (A4)

with the boundary condition,

u
(

y = ±1
2

)
= us = βs

(
1
2
− Ods

)
. (A5)
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Sliding flows of yield-stress fluids

Therefore, three different scenarios can happen based on values of Od and Ods, namely

u =

⎧⎪⎨⎪⎩
0, iff 1/2 � Ods (i.e. no flow),

βs

(
1
2
− Ods

)
, iff Ods < 1/2 � Od (i.e. fully sliding plug),

uy, iff Od < 1/2 (i.e. deforming regime),

(A6)

where,

uy =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

(
Od − 1

2

)2

+ βs

(
1
2
− Ods

)
, iff |y| � Od (i.e. core plug region),

Od
(
|y| − 1

2

)
+ 1

8
− y2

2
+ βs

(
1
2
− Ods

)
, iff Od < |y| (i.e. sliding sheared region).

(A7)
Hence, Odc = 1/2αs.

A.2. The [R] problem
In the [R] formulation, we always have a non-zero flow rate due to the velocity scaling.
Hence, we shall identify two different regimes: deforming regime at small and moderate
Bingham numbers (B < B̄) and a fully sliding plug at B→∞ (or strictly when B > B̄).
The shear stress satisfies

dτ ∗xy

dy∗
= G∗, (A8)

with the slip velocity,

u∗s =
{
βs
(|τ ∗w| − Bs

)
, iff |τ ∗w| > Bs,

0, iff |τ ∗w| � Bs.
(A9)

In the deforming regime, in the yielded regions,

B sgn( y∗)− G∗y∗ = γ̇ ∗xy =
du∗

dy∗
. (A10)

Hence,

u∗ =
⎧⎨⎩B |y∗| − G∗

2
y∗2 + A, iff |y∗| > y∗p,

U∗p , iff |y∗| � y∗p,
(A11)

where y∗p = B/G∗ and u( y∗p) = U∗p . The boundary condition for velocity is

u∗
(
±1

2

)
= u∗s =

βsG∗

2

(
1− 2Bs

G∗

)
, (A12)

therefore,

u∗ =

⎧⎪⎨⎪⎩B
(
|y∗| − 1

2

)
+ G∗

2

[
1
4
− y∗2 + βs

(
1− 2Bs

G∗

)]
, iff |y∗| > y∗p,

U∗p , iff |y∗| � y∗p.
(A13)
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Please note that still G∗ is unknown and should be calculated from continuity

1 = 2
∫ 1/2

0
u∗ dy∗ = G∗

(
1
12
+ βs

2

)
+ B

(
B2

3 G∗2
− 1

4

)
− βsBs. (A14)

The individual dissipation terms can be calculated as

a(u∗,u∗) =
∫ 1/2

−1/2

(
du∗

dy∗

)2

dy∗ = 2
3G∗

(
G∗

2
− B

)3

, (A15)

Bj(u∗) =
∫ 1/2

−1/2

∣∣∣∣du∗

dy∗

∣∣∣∣ dy∗ = B
(

G∗

4
− B+ B2

G∗

)
(A16)

and ∫
|σ ∗ntu

∗
s | dS = βsG∗2

2

(
1− 2Bs

G∗

)
. (A17)

However, in the case of fully sliding plug, the slip velocity is

u∗s = 1 = βsG∗

2

(
1− 2Bs

G∗

)
. (A18)

Hence,

G∗ = 2 (1+ βsBs)

βs
= 2 (1+ αsβsB)

βs
. (A19)

Therefore, the critical Bingham number beyond which the fully sliding plug occurs is

B̄ = 1
βs(1− αs)

. (A20)

Appendix B. Flow rate curve in porous media

Bauer et al. (2019) considered 3-D flow in model and random porous media using a
regularized lattice–Boltzmann approach. The model geometry used was a face-centred
cubic maximum-packing arrangement of spheres whereas, a random array of overlapping
spheres was designed for more realistic porous media. Interestingly, Bauer et al. (2019)
reported that the model and random porous media display different flow rate dependencies:
i.e. flow rate (∼B−1) as a function of the excessive pressure gradient (∼Od−1 − Od−1

c ) or

B−1 ∼
(

Od−1 − Od−1
c

)ζ
. (B1)

They observed that the model porous media predicts a single scaling ζ ≈ 2 while the
random porous media exhibits two distinctive scalings in the range of moderate and
low/high excessive pressure gradients. In other words, in random porous media, both
viscous limit and yield (i.e. plastic) limit share similar characteristics/slopes in predicting
the flow rate as a function of the excessive pressure gradient (ζ ≈ 2). However, in the
viscoplastic regime, the slope is higher (ζ ≈ 3). This has been proved by experimental
data collected by considering Carbopol flow through a sandstone bed.

Using the computational data of the present study under the no-slip condition, we
consider how the 2-D model porous media and the 2-D randomized porous media predict
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Figure 18. Flow features in model and random-designed porous media. The lines and symbols interpretation
is the same as figures 14 and 17. Please note that in both panels, the lines with circles correspond to the regular
model geometry (figure 10a) and those with squares to the staggered model geometry (figure 10b). The dotted
black line in panel (a) marks B−0.95 scaling and the two dotted black lines in panel (b) 1 : 1 scaling for reference.

the flow rate curves and how it differs from the simulations/experiments of Bauer et al.
(2019). Moreover, we investigate if the model and randomized porous media share the
same characteristics in converging to the yield limit at large B.

Figure 18(a) illustrates the convergence to the yield limit (1− Od/Odc) versus the
Bingham number. All the simulations display more or less the same scalings,

1− Od
Odc
∼ B−ν, (B2)

where ν ≈ −1. However, two more conclusions can be drawn from figure 18(a).

(i) At small porosities, we need to go to the higher Bingham numbers to get close
enough to the yield limit. This can be attributed to the highly localized and
heterogeneous/channelized flow at small porosities. Data borrowed from Bauer
et al. (2019) also show the same characteristics, yet a slower convergence rate
(|ν| < 0.9) with the Bingham number compared with our results, which could be
the consequence of 3-D flows.

(ii) At high porosities, the model and randomized porous media display closely matched
convergence to the yield limit by increasing the Bingham number. For instance,
see the dotted blue line (randomized) and the two dotted red lines decorated with
symbols (regular and staggered models with circles and squares). However, at
the low porosities, the model porous media displays faster convergence compared
with the randomized porous media (compare the red continuous lines and symbols
(φ = 0.38) with the dashed line (φ = 0.5)).

Another interesting feature to compare, as discussed above, is the flow rate curve
– see figure 18(b) which shows the flow rate versus the excessive pressure gradient.
Contradictory to what has been reported by Bauer et al. (2019), this figure shows that
the model porous media (at least in two dimensions), predicts same behaviour: in the
sense that at small and large excessive pressure gradients (yield and Newtonian limits,
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respectively), the flow rate scales linearly with the excessive pressure gradient; however,
at the intermediate regime, the flow rate growth as a function of 1/Od − 1/Odc is faster.
This behaviour is manifested by the randomized porous media as well. Though, as is clear
from figure 18(b), ζ is different in our data from the one reported by Bauer et al. (2019).
Indeed, both Bauer et al. (2019) and Chevalier et al. (2013) demonstrated that ζ is close to
the inverse of the power-law index of the Herschel–Bulkley fluid, ζ ≈ 1/n. Considering
that in the present problem we have used the Bingham model (n = 1), it makes sense why
we found a different exponent (ζ ≈ 1) which is consistent with the ζ ≈ 1/n discussion.

Appendix C. Extensions to the non-ideal cases: k /= 1 and n /= 1

In the main analyses throughout the paper, we have assumed that k = 1. As discussed in
§§ 1 and 2, this assumption is founded on many experimental observations. However, in
this appendix, we intend to expand our understanding for the cases in which k /= 1, and
also non-ideal viscoplastic rheology. In the resolution of the presented numerical method,
‘simple’ viscoplastic models can be easily adopted such as Herschel–Bulkley and Casson
models: step 7 needs updating in the presented algorithm, which is clearly explained by
Huilgol & You (2005). For instance, for the Herschel–Bulkley model, it takes the form⎧⎪⎨⎪⎩

q̂m+1 = 0, iff ‖Σ̂‖ � τ̂y,(
K̂‖q̂m+1‖n−1 + â

)
q̂m+1 =

(
1− τ̂y

‖Σ̂‖

)
Σ̂, iff ‖Σ̂‖ > τ̂y,

(C1)

where Σ̂ = T̂ m + â ˆ̇γ (ûm+1). In the case of more complex models, e.g. elastoviscoplastic
models, one needs more effort – please see Chaparian & Tammisola (2019).

In the following, as an example, we consider the 2-D circular Couette flow between
two infinitely long cylinders of radii R̂1 and R̂2 – see figure 19. We consider this
specific geometry to compare our numerical results with the experimental measurements
reported by Medina-Bañuelos et al. (2017): they reported the velocity profiles in the gap
using rheo-particle image velocimetry measurements and also slip laws on the cylinder
surfaces for a Carbopol microgel 0.12 wt. % with the rheological properties τ̂y = 27 Pa,
K̂ = 5.5 Pa.sn and n = 0.43. Figure 19(b) compares our numerically obtained velocity
profiles (red lines) with the experimental measurements of Medina-Bañuelos et al. (2017)
for the case R̂i = 14 mm and R̂o = 42.5 mm for two different rotational speeds. The slip
laws in this case are

ûs = 2.74× 10−8|τ̂w|3.74 (C2)

for the deforming regime and

ûs = 5.2× 10−5|τ̂w|1.45 (C3)

in the case of a sliding plug. As can be seen, there is a close agreement between our
simulations and experimental measurements. In the case of Ω̂1 = 18 rad s−1, the fluid is
yielded close to the inner cylinder (up to ≈0.75 r̂/d̂) and slides over the outer cylinder
as a rotating plug, whereas in the case Ω̂1 = 0.2 rad s−1 the whole gap is unyielded and
undergoes a solid-body rotation.
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Figure 19. (a) Schematic of the 2-D Couette rheometry between two cylinders of radii R̂1 (rotating with
rotational speed Ω̂1) and R̂2 (stationary), (b) red lines are the present computations and the blue symbols
are experimental data borrowed form Medina-Bañuelos et al. (2017).

The only change that we need to implement in algorithm 1 is step 8,

ξ̂m+1 ← (
ûns · n

)
n+ (ûns · t

)
t + β̂s

1+ b
Φ̂t, (C4)

where Φ̂ = −(λ̂m · t)|λ̂m · t|k−1 + b/β̂s(δûm+1 · t − ûns · t).
As discussed in § 7, although the hydrodynamics features of the flows are different for

different n and k, the yield limit of the problems are not dependent on these power indices.
We will discuss this in the next few lines by considering a sample example in the circular
Couette flow configuration and then will generalize this conclusion.

If the inner cylinder is slippery and the outer cylinder is jagged/treated to eliminate slip,
then at the yield limit,

B = τ̂y

K̂

(
d̂

R̂1Ω̂1

)n

→∞ or Y = τ̂yR̂2
1

T̂
→ Y−c , (C5)

the material fully slides over the inner surface and the whole gap is unyielded. Here,
T̂ denotes the applied torque on the inner cylinder per unit length. Hence, in the [R]
formulation where the scale of the velocity is R̂1Ω̂1 and d̂ is the length scale

u∗s (r = R1) = 1 = βs
(
τ ∗i − Bs

)k = βs
(
τ ∗i − αsB

)k (C6)

and

T∗ = 2π

(
k

√
1
βs
+ αsB

)
. (C7)

Considering the map between the Bingham and the yield number

Y = B
μ̂R̂3

1Ω̂1

T̂d̂
= B

T∗
R2

1, (C8)

we can conclude that the critical yield number is Yc = R2
1/2παs. Hence, the yield limit

is independent of n and k. This has been demonstrated in the problems studied in the
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present study that viscous dissipation is at least one order of magnitude less than the
plastic dissipation at the yield limit. Frigaard (2019) has shown this before more generally.
We have also demonstrated that ‘viscous’ slip dissipation is much less than the ‘plastic’
viscous dissipation at the yield limit for k = 1. This statement is generally acceptable for
k /= 1. Considering that the total slip dissipation term can be split into∫

Γ

|σ ∗ntu
∗
s | dS = 1

βk
s

∫
Γ

u∗s
(1/k)+1 dS+ Bs

∫
Γ

|u∗s | dS, (C9)

it can be easily understood why the yield limit is independent of k: since the ‘plastic’ slip
dissipation term, which is dominant at the yield limit, is independent of k. Definition (3.6)
is also valid in the case k /= 1 and one can extract the critical ratio of the yield stress to the
driving stress by knowing τ̂s, or alternatively αs from the slip law.
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