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1. Introduction

It is well known that the so-called reduced Borel algebra, that is, the Boolean
algebra of all Borel subsets of the unit interval modulo the meager Borel sets of
this interval, can be abstractly characterized as a complete, totally non-atomic
Boolean algebra containing a countable join dense subset. (For an indication of
the history of this result, see, for example, ([2], p. 483, footnote 12.) From this
characterization, it easily follows that the reduced Borel algebra B is "homo-
geneous" in the sense that every non-trivial interval in B is isomorphic to B.

In the present paper, we shall construct a class of orthomodular lattices
([1], p. 53), including the reduced Borel algebra B, with the following analogous
property: If L is any orthomodular lattice in this class, then every interval in L
is isomorphic to L* for some cardinal number k (depending on the chosen
interval).

The constructions set forth in this paper and the class of orthomodular
lattices obtained as a consequence are of importance in connection with the
program outlined in [8] aimed at providing a new approach to the logic of
empirical science; however, this connection will not be emphasized here.

2. The Free Orthogonality Monoid

An orthogonality space is denned to be a pair (X, -L) consisting of a non-
empty set X and a symmetric, anti-reflexive binary relation _L denned on X.
A classical orthogonality space is one of the form (X, ¥"). Suppose that J is a
nonempty indexing set and that for each j e J, (Xjy ±j) is an orthogonality space.
Suppose further that {XjijeJ} is a pairwise disjoint family of sets. (If this were
not so, one could replace Xj by {j} x Xj and proceed in the obvious manner.)
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[2] Orthomodular generalizations of Boolean algebras 95

Put X = \JJeJ Xj and for x,yeX define xLy if and only if for some
j e J, {x, y) £ Xj and xL}y. Evidently (X, -L) is an orthogonality space, called
the disjoint sum of the given family of orthogonality spaces. A semi-classical
orthogonality space is defined to be a disjoint sum of classical orthogonality
spaces.

Let (X, 1) be an orthogonality space and let A £ x . We define

Ax = {xeX; xLa for all aeA},

Axx = (Ax)x, etc. Evidently A £ Ax±, A± = Ax±x, and if B £ A then Ax £ Bx.
If A = Axx we say that A is a c/osed subset of (Z, -L). We denote by &(X, 1)
the set of all closed subsets of (X, 1 ) . If ^{X, 1) is partially ordered by set in-
clusion, then it is clear that < (̂X, ±) is a complete ortholattice ([1], p. 52)
with the map A -> A± as its orthocomplementation. When there is no danger
of confusion, we shall often write <€ in place of ^(X, ± ) .

Let (X, # ) be a given orthogonality space and let T be the free monoid
(semigroup with unit 1) over X. Thus an element beT may be considered to be
a "word" b = xy---z whose "letters" x,y,---,z come from X (with the under-
standing that the monoid unit 1 is regarded as being an "empty word"). If
x1,x2,---,xneX then we call the natural number n the length of the word
x1x2---xn in r and we write \xlx2---xn\ = n. Of course we define | l | = 0.
The words in T are multiplied by simple juxtaposition; hence for a, beT,
\ab\ = | a | + | fc| . Naturally the words of length one in T are identified with
the corresponding elements of X, so that X £ F . The orthogonality relation #
on X can be extended naturally to an orthogonality relation 1 on T "lexico-
graphically" as follows: For a,beT, define alb if and only if there exist
c, d, e e r and x, y e X with a = cxd, b = eye and x # y. The resulting ortho-
gonality space (r , X) is called the free orthogonality monoid over the base space
(X,#).

Let (r , 1) be the free orthogonality monoid over the base space (X, # ) .
If A,B £ T we define AB = {ab; aeA, beB}. We do not trouble ourselves
over the distinction between an element beT and the singleton set {b}, so that
for example, Ab means A{b}. We agree to call a word w isolated in case
wx = 0 . Of course it may turn out that 1 is the only isolated word in T. For
convenience in notation the letters u, v, w will be reserved for isolated words;
letters in the first part of the alphabet will denote arbitrary words in F , and the
letters x, y, z (with or without subscripts) will always denote elements of X.
When we write a = ala2--- an, however, it will be understood that each at eX.

If a,beT we shall make frequent use of the fact that (ab)x = a(£x) U ax.
It follows for example that for u isolated, (au)x = ax. In view of this we may
assume that for a±xe'if, a is reduced in the sense that a = ala2---an with an
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a non-isolated element of X. In particular, then 1 is the only reduced isolated
word in P .

We close this section with one final remark about notation. The meet opera-
tion in & is set intersection and will be denoted as such; the join operation, how-
ever, will be denoted by the symbol " V"- We leave to the reader the routine
verification that for A, BeV, A \J B = (AuB)±A-.

3. Standard Free Orthogonality Monoids

By a standard free orthogonality monoid, we mean a free orthogonality
monoid (T, 1) over a semi-classical base space (X, # ) . Those orthomodular
lattices that are isomorphic to the lattice of closed subsets of some standard free
orthogonality monoid comprise the class of orthomodular lattices referred to
in the introduction.

For the remainder of this section it will be assumed that (T, ±) is a standard
free orthogonality monoid over the base space (X, # ) . If (X, # ) is the disjoint
sum of a family of one element classical orthogonality spaces, then every word
in r is isolated and ^ is a two element Boolean algebra. For this reason it will
be assumed that at least one of the classical orthogonality spaces in question has
more than one element. Our goal will be to prove that ^ forms a complete atomless
orthomodular lattice having the property that every interval of the form
^[0,a±±)'\ is ortho-isomorphic to &. We begin with a few technical results
that will be used throughout the paper. We mention the fact that we in no way
rule out the possibility that (X, # ) be a classical space.

LEMMA 1. If a is a reduced word in F then axx = aT. It follows that
b±x c a

±J- o beaT.

PROOF. If a = 1 there is nothing to prove, so we may assume that a = ex
with x a non-isolated element of X. Evidently aF £ a±x. Assume bea±±.
If yeX is chosen so that y#x we then have cyeax ^ bx so bec(yx)u c±.
Now b_Lc would force b-La, contrary to bea±±. Thus bec(yx) so we may
write b = czd with y#z and d e T. If z ^ x we would have z # x. (Note the
strong use of the fact that the base space (X, # ) is semiclassical!) which would
again lead to be a1-. We conclude that z = x so that b = cxd = adeaT.

LEMMA 2. Let a,beT. Then:

(1) ax± O b±x # 0 => a±x c b±x or b1^ c a X i .

(2) Let a^ O bJ"L = 0 with a not orthogonal to b. There exists a word
ceT such that axx V b±x = c^ and \c\< min(|a |, | b | ) .

PROOF. The proof of (1) will be omitted as it follows immediately from
Lemma 1. We therefore concentrate on (2). We may clearly write a = cxd,
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b = eye with c, d, e (possibly isolated) words in T and x, y distinct elements
of X. Since a is not orthogonal to b we cannot have x # y. The proof would
be complete if we could establish that cxx = axx V b±±, and this is clearly equiv-
alent to the assertion that cx = a i n i i . Evidently cx £ ax n bx. If on the
other hand, j e a 1 n Z>x then

0 e ax = cx U c{xd)x.

geb1- = cx U c(Cye)x •

Let /ie(xd)x. If the first letter of h is x, then /i£(_ye)x; otherwise,
hezF with z # x . Since (X, # ) is semi-classical we cannot have z#y and once
again h$(ye)x. Thus (xrf)x n ( » x = 0 . It follows that c(xd)x nc(j'e)1- = 0
and from this that g e cx.

In the next theorem we gather up a few important facts about the lattice

THEOREM 3. # is a complete atomless orthomodular lattice. If the base
space (X, # ) is classical then ^ is a homogeneous Boolean algebra; otherwise
^ is simple but has the property that it is ortho-isomorphic to every interval
of the form r#l(l),a±±~] ( a e l ) .

For convenience the proof of the above theorem will be broken up into a
number of individual "facts".

Fact A. *<f is a complete orthomodular lattice.

PROOF. Since # is a complete ortholattice, it suffices ([1], p. 54) to show
that for M,Ne^, M c N ^ - N n M 1 ^ . We begin by observing that
M <=. N => Nx c Mx. Hence there is a reduced word a e Mx \ iVx. Now a £ JVX

forces the existence of a word b of smallest length in N such that a is not ortho-
gonal to b. Such a word is clearly reduced. The proof now breaks into three cases.

Case 1. bxxr\ax1-^ 0. Then b±J-r>a^eN nMx and we are done.

Case 2. bXA~C\ax^ 0. Let c e b x x n a x . Then c = bd for some
Since aJ.fr fails we must have aeb(dx) £ ftxx. This puts a±± £ bx x and we
are back in Case 1.

Case 3. b^na^ = <j> = fexxnax. Then ceM => cea x so cxx £ axand
£>xx n cxx = 0 .If b were not orthogonal to c we could apply Lemma 2 to show
that frxx V cxx = exx with | e | < | b |. Now, b, ceN clearly implies eeN, and
we cannot have eLa, so this contradicts our initial choice of b. We conclude
that beN n Mx.

Facf B. Let aeT be reduced. Then the mapping M -> aM is an ortho-
isomorphism of' & onto "if [</>, axx] .
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PROOF. We begin by observing that ablac o bLc. It follows that for

M £ T, a(Mx) = {aM)x r> axx. Hence

a(MX1-) = (aMx)x n a±x = [_(aM)x n a±x]x n a±x

= [(aM)^ V a"1] O a-1-1 = (aM)±x.

Thus M e ^ = > aMe#[0,a" 1 - 1 ] . Evidently M £ JV o «M £ aJV so we need only
show that the mapping in question is in fact onto. If M £ ax± is closed, then
by Lemma 1, M £ a F . Hence if JV = {b; abeM} we have aJV = M and so

a(AT-L-L) = M±x = M .

Fact C. ^ is atomless.

PROOF. Any atom of ^ must clearly be of the form ax± with a eF. Now
apply Fact B.

Fact D. / / the base space (X, #) is not classical then ft is simple.

PROOF. It suffices to show that for each non-isolated word aeF, aXJ"
and a x have a common complement in #'. This we shall now establish. If X
has no isolated letters we may write a = xd with deT. Choose yeX so that
x # y fails and let fr = y. On the other hand, if X has an isolated letter ux, we
may write a = uxd with x e l non-isolated and take b = ut^x. In either case
we have found a word b not orthogonal to a such that a±A-n bx± = 0 and
a"1"1- V b i X = r . If c e t r then c l a fails, so a±rib

x± = 0 . Similarly,
a-11- n b1- = 0 so ax V bxs- = T. This shows bxx to be the desired common
complement for a±x and ax.

Fact E. If the base space (X, # ) is classical then *€ is a homogeneous
Boolean algebra.

PROOF. Let (X, #) be classical. It turns out that the lattice ^ is of a type
that has been studied in some detail by Pierce in [7]. To see this, we present
herewith a portion of Pierce's construction. Let <S> be the set of all functions <f>
from finite (possibly empty) subsets of the positive integers to X, together with
a zero symbol 0. Partially order <D by the rule 0 ^ <j> for all <j> and <f> ^ \j/
if the domain of ip (in symbols, r>(i/0) is contained in the domain of (f> and
0|D ( W = ii. As in [7], p. 131, <I> is a disjunctive semilattice and can therefore
be imbedded as a dense subsemilattice of a complete Boolean algebra ([6], Theorem
3.3, p. 6). This Boolean algebra is determined up to isomorphism by 4) and (fol-
lowing Pierce's notation) will be denoted Baay where a = Ko and y denotes the
cardinality of the set X. Furthermore, by [7], Lemma 3.12, p. 136, Bxa[y is homo-
geneous. Our goal will be to show that Bxty is isomorphic to <&.

An easy induction argument shows that for a, b e F a±±Cb±± in the sense
of [1], p. 52. It follows from [1], Theorem 23, p. 53 that ^ is a Boolean algebra.
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Let us adjoin a zero symbol 0 to T and partially order the resulting set
To = r u {0} by the rule 0 ^ a for all a e T and for a, b e T, a ^ b <=> a±J- c bx±.
Evidently r 0 is a meet semi-lattice and the mapping 0 -> 0 , a -» a±J~ imbeds F o

as a dense subsemilattice of '<?. In view of [6], Theorem 3.6, p. 7 we need only
show that r 0 may be imbedded as a dense subsemilattice of $ . We define F: f0 ->• tf>
as follows: F(0) = 0; .F(l) = the element of <E> having empty domain; if
a = axa2--- aneT, F(a) is defined by the rule F(a)(i) = at for i = 1,2, ••-,«.
Evidently F imbeds To as a subsemilattice of <D and we must show the imbedding
to be dense. Accordingly, let </> e <t>. There exists a positive integer n such that
D{4>) £ {1,2, ••- ,«}. Define at = <p(i) for ieD(<t>) and at an arbitrary element
of X otherwise. Then a = a1a2---aneT, D(F(a)) = {1,2, ••-,«} 2 D($), and

| = <j). Hence F(a) ^ <j), thereby showing the imbedding to be dense.

COROLLARY 4. The reduced Borel algebra is obtainable as ^(T, ±) for a
suitable standard free orthogonality monoid (T, J-).

PROOF. Take as a base space a classical orthogonality space (X, ^) with X
a two element set. Then ^(T, J.) will be a complete, atomless Boolean algebra
containing a countable join-dense subset.

4. Indexed Elements in ^ ( r , l )

Let Lbe an orthomodular lattice. An element a of Lis called upper nearly
central ifa^b<l=>a central in L[0, b~] and lower nearly central if its ortho-

complement a' is upper nearly central. If be Lis both upper and lower nearly
central we say that b is nearly central in L. The near center of L, in symbols
NC(L), is defined to be the set of all nearly central elements of L, and it has been
shown [3], Theorem 9 that NC(L) is a suborthomodular lattice of L. It is in
fact clear from the proof of [3], Theorem 9, that NC(L) is closed under the for-
mation of any existing joins or meets in L.

A nonzero element e of L is said to be indexed in L if there is a finite chain

1 = e0 > ex > ••• > en = e

such that et is nearly central in L[0,e{^{\ for j = 1,2, •••,«. Such a chain is
called an indexing chain and it is said to have length n if it contains n + 1 distinct
elements. By [3], Theorem 12, every indexed element e can be connected to 1
by a unique indexing chain of minimal length. The length of this unique chain
is called the index of e, and is denoted K(e). By [3], Theorem 11, the indexing
chain 1 = e0 > et > ••• > en = e is minimal if and only if et is an atom of
NC[0, £,_!] for i = 1,2, •••,« — 1. If this also holds for i — n, we say that e is
a minimally indexed element of L. The lattice Lis called {minimally) indexed
if the (minimally) indexed elements are join-dense in L.
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If the base space (X, # ) is a classical space, then ^ (F , 1) is a Boolean
algebra and the theory of indexed elements is trivial. Thus we assume for the
remainder of this section that (X, # ) is semiclassical but not classical. Our
goal will be to prove that ^(T, ±) is minimally indexed. We begin by charac-
terizing the near center of ^ . In connection with this it will be convenient to let
Xo denote the set of those words of the form ux with u an isolated word and x
a non-isolated element of X.

LEMMA 5. Q £ Xo => Q x x nearly central.

PROOF. (1) We begin by showing Q x x to be upper nearly central. Let B e #
be such that Q x x \J B c=T. We must show that Q±J- commutes with B. This
would follow if we could show that ux e Q, b e B => (ux)x xCbx x. If (ux)xx n 6XX

# 0 , them by Lemma 2 they are comparable elements of c€. If (ux)"1""1 n bXJ~ = 0
and if they were not orthogonal, we would have by Lemma 2 that (ux)x x V 6XX = F.
This however,, leads to the contradictory assertion that Q±± V B = F . In either
case, we have (ux)xx C b^ as claimed.

(2) It is enough now to prove that (ux)1"L is nearly central for all ux e Xo.
If Y = {yeX;x#y} then (ux)1 = (uY)^. By (1), (uY)^ is upper nearly
central, so (ux)±x is nearly central.

LEMMA 6. The near center of <€ is atomic, and the atoms are those ele-
ments of the form (ux)±x with uxeX0.

PROOF. Let N be in the near center of # and aeN. If a = uxd with x non-
isolated, then (ux)xxr\N i= 0 => (wx)xx C N. Now (ux)^ O Nx is nearly central
in <$, hence central in #[<£, ( u x ) ^ ] . By Theorem 3, <<?[>, (ux)"^] is simple
so we must have (ux)±J- n JVX = 0 or (ux)-1-1. Since (ux^CiN ^ 0 , we
cannot have (ux)x± £ N x . We deduce that (MX)1 1 nNx = 0 and, since (ux)-1-1

commutes with JV, that (ux)L± 9 N . If î  c M g (wx)"1"1" with M nearly central,
then M s uxF and the above argument would show that M = (ux)±J~ . This
shows that NC&) is atomic and the atoms are precisely those elements of the
form (ux)Xi with uxeX0.

As an immediate consequence of Lemmas 5 and 6, we have

THEOREM 7. The near center of<£ is the set of all Q±J- such that Q £ Xo.

We are finally able to establish the main result of this section.

THEOREM 8. ^ (F , 1 ) is minimally indexed.

PROOF. Note first that any reduced non-isolated word a in T may be written
in the form

a = ulxlu2x2---unxn
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where u1,u2,"-,un represent isolated words and xltx2,--,xn are non-isolated
elements of X. Repeated applications of Fact B and Lemma 6 will now produce
the fact that the chain

is a minimal indexing chain for the minimally indexed element a±±. Since
elements of this type are join-dense in &, this completes the proof of the theorem.

5. The Characterization of •«? (T, 1 )

We know from Theorems 3 and 8 that if (X, # ) is a semiclassical orthogo-
nality space that is not classical, then ^(F, 1 ) is a complete, minimally indexed
orthomodular lattice such that for each a e F, ^[<£, a J~LJl is ortho-isomorphic
to <€. Our goal in this section is to prove the converse of this result. The following
lemma provides the key to what is involved.

LEMMA 9. Let a, b denote minimally indexed elements of the orthomodular
lattice L and let

1 = a0 > a1 > ••• > an = a

1 = b0 > bt > ••• > bm = b

denote minimal indexing chains. Then alb if and only if there exists a non-
negative integer p <; min(m, n) such that aplbp and a{ = bt for all i < p.

PROOF. If such a p were to exist, we would clearly have alb. Let us there-
fore assume alb. We cannot have a, = bt for all i ^ min(m,n) so let p be the
first integer at which they differ. Then ap, bp are distinct atoms of the near center
of L[0, a p - i ] . From the proof of [3], Theorem 6, 0 < a ^ ap with alb implies
bCap, we so may apply [3], Lemma 8 to deduce that apCbp, whence aplbp.

At this point we ask the reader to recall the definition of disjoint sum. This
has been given in several places (among them [3]), but for convenience we repeat
it here. If {La; a eA} is a disjoint family of orthomodular lattices with each La

having more than two elements and the indexing set A having cardinality at
least 2, we identify all of the zero elements with the symbol 0, all of the unit
elements with the symbol 1, and let L denote the union of the resulting family
of sets. If L is equipped with the partial order it inherits from the La's, it forms
an orthomodular lattice called the disjoint sum of the family {Lx;oceA}. In
symbols we write L = DS(Lx;aeA). As an aid to understanding the termino-
logy, we mention the easily established fact that if (X, 1) is the disjoint sum
of the family of orthogonality spaces (Xx,la)xeA (with A having cardinality at
least 2) and if Lx = ^{Xx, ± J , then <€(X, 1 ) = DS(LX; ae A).
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THEOREM 10. Let Lbe a complete minimally indexed orthomodular lattice
in which a minimally indexed implies L[0, a] ortho-isomorphic to L. Then
there is a semi-classical base space (X, # ) that is not classical such that L is
ortho-isomorphic to ^(T, 1 ) .

PROOF. If L is a two element Boolean algebra, we may take (X, # ) to be
the disjoint sum of a family of one element classical orthogonality spaces, so
we may as well assume that L has more than two elements. It must therefore
have a minimally indexed element a < 1. It is immediate that NC(L) # {0,1}.
If 0 < z < 1 is nearly central, then z ^ a for some minimally indexed element a .
If 1 = a0 > a, > ••• > a, = a is a minimal indexing chain, then a1 is an atom
of the near center of L, and since z [\aY ^ a > 0 w e must have a t ^ z . It fol-
lows that NC(L) is atomic.

Suppose L were reducible. By [3], Theorem 9 every nearly central element
of L would be central. Let z t be an atom of C(L). Then z1 is minimally indexed,
so by hypothesis L[0, z t ] is ortho-isomorphic to L. There must then exist an
element z2 < zt such that z2 is an atom of the center of L[0, z 2 ] . This implies
z2 e C(L), a contradiction. We deduce that Lis irreducible, so by [3], Theorem 9,
we may write L = DSfX,,; aeA) with each La reducible. There is a correspond-
ing decomposition of the near center of L, NC(L) = DS(NX; aeA) with #« =

C(La) for each xeA. For a e A,"let Xx denote the set of atoms of Na, and
form the classical orthogonality space (Xa, # ) .L e t (X, # ) be the disjoint sum
of this family of orthogonality spaces, and form the standard free orthogonality
monoid (I \ 1) over the base space (X, #). Our goal will be to prove that L
is ortho-isomorphic to ^(T, J.).

For each minimally indexed element a, let fa: L[0, a] -*• L be a fixed ortho-
isomorphism. Let I be the set of minimally indexed elements of L. Let / be the
set of minimally indexed elements of L. We define a mapping / : / —• F as fol-
lows: / ( I ) = 1. If a < 1 is a minimally indexed element with 1 = a0 > at > •••
> an = a its minimal indexing chain, let

/(a) = fli/ai(fl2)/.2(«3)-/.„-,(«-)•

There are one or two observations to be made at this point. First of all, /„._,
is an ortho-isomorphism of L[0, a,_j] onto L. Since a{ is an atom of the near
center of L[0, at_ ( ] , we have /a,_ ,(ai) e X so / (a ) eT as claimed. In view of the
uniqueness of the minimal indexing chain for a, the function / is well defined.

We now define g: T -*• I by the rule: g(l) = 1; g{axa2 ••• an) = the mini-
mally indexed element b whose minimal indexing chain is constructed as follows:
Take bx = au b2 = / » r 1 ( « 2 ) . - , b = bn = /„„_ ," \an). Then 1 = b0 > bx >
••• > bn = b is a minimal indexing chain for the minimally indexed element b.

We observe that / , g are mutually inverse mappings. But even more can be
said. For let a,bel with aLb. If
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1 = a0 >ai> ••• >an = a

1 = bo>b1 > ••• > bm = b

are the corresponding minimal indexing chains, then by Lemma 9 there exists
a non-negative integer p ^ min(m,ri) such that aplbp and a; = b{ for i < p.
Let c =f(ap_1), x =/„„_,(«,) and y = /,„_,(&,). Note that x , y s l and that
flF±ftp in Limplies that x, y are distinct elements of some Z a , so x#y. It follows
that f(a)±f(b) in T. Suppose conversely that f(a)±f(b) in T. There must then
exist c,d,eeT and x j e l such that x#y and / ( a ) = cxd, f(b) = eye. If
c = ctc2 ••• ck (c,eX) it follows from the fact that xLy in L tha t /^ 1 (x) l / ^ - ^ y ) ,
whence a l fe . Thus/ is an orthogonality preserving bijection of/ onto T . Viewing
/ as an orthogonality space with respect to the orthogonality it inherits from L,
it is immediate that ^(7) is ortho-isomorphic to ^ (T) . By [5], Theorem 2.5,
p. 601, Lis ortho-isomorphic to ^(7), and this completes the proof.

We mentioned in the introduction that we would be considering a class of
orthomodular lattices with the property that for every lattice L in the class, every
interval in L is ortho-isomorphic to J} for some cardinal number k. Our final
goal will be to establish this fact for the lattices of the form # ( r , 1) where T
is a standard free orthogonality monoid. This will in fact follow from the follow-
ing more general result.

LEMMA 11. Let a be an element of the complete minimally indexed ortho-
modular lattice L. Call an element b of L special ifb^a and b is minimally
indexed with a minimal indexing chain 1 = bo> b^> ••• > bn = b such that
bn_1^a. Let {b,\aeA} be the set of special elements of L. Then

b
PROOF. It clearly suffices to show that the special elements are pairwise dis-

joint central elements in L[0, a] whose join is a. We note that bx ^ a and there
is no minimally indexed element c such that bx < c ^ a. It follows from [3],
Theorem 13 and [4], Lemma 1, 29 that {ba;<xeA} is an orthogonal family.
If d ^ a, we are to show that d commutes with every bx. It is enough to establish
this for d minimally indexed. But this is clear, since then d ^ bx for some a e A.
This shows each bx to be central in L[0, a ] . The proof is completed by noting
that

a ^ Vxbx ^ \/{d;d minimally indexed, d ^ a} = a.

THEOREM 12. Let L be a complete orthomodular lattice. The following
conditions are then equivalent:

(1) There exists a standard free orthogonality monoid ( r , _L) over a non-
classical base space such that Lis ortho-isomorphic to ^ (F , -L).
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(2) is minimally indexed and has the property that every interval of L is
ortho-isomorphic to some power of L.

(3) L is minimally indexed and has the property that for every minimally
indexed element a the interval L[0, a] is ortho-isomorphic to L.

PROOF. (1) => (3) This follows from Theorems 3 and 8.
(3) => (1) This is Theorem 10.
(3) => (2) This is an immediate consequence of Lemma 11.
(2) => (3) If a e L is minimally indexed, then L[0, a] must be irreducible,

hence ortho-isomorphic to L.
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