ISOMORPHISM OF SOME SIMPLE 2-GRADED LIE ALGEBRAS

DRAGOMIR Ž. DJOKOVIĆ

Introduction. The grading is by integers modulo 2 and we refer to it as 2-grading. For the definition of 2-graded Lie algebras L and their properties we refer the reader to the papers [1; 2; 3]. All algebras considered here are *finite-dimensional* over a field F of *characteristic zero*.

We recall that if L is a 2-graded Lie algebra then $L = L_0 \oplus L_1$ and we have

$$\begin{bmatrix} y, x \end{bmatrix} = -(-1)^{\alpha\beta} [x, y], \\ [x, [y, z]] = [[x, y], z] + (-1)^{\alpha\beta} [y, [x, z]]$$

for $x \in L_{\alpha}$, $y \in L_{\beta}$, $z \in L$.

Thus L_0 is an ordinary Lie algebra, L_1 is an L_0 -module and in addition to that we have a bilinear map

$$L_1 \times L_1 \rightarrow L_0$$

sending (x, y) to [x, y], which is symmetric and satisfies the identity

(1)
$$[x, y] \cdot z + [y, z] \cdot x + [z, x] \cdot y = 0.$$

Here $x, y, z \in L_1$ and for $a \in L_0, x \in L_1$ we write $a \cdot x$ instead of [a, x]. Moreover, the corresponding linear map $L_1 \otimes L_1 \to L_0$ is a homomorphism of L_0 modules. Conversely, if all these conditions are satisfied then $L = L_0 \oplus L_1$ is a 2-graded Lie algebra.

A 2-graded Lie algebra L is *simple* if its only homogeneous ideals are L and 0 and $L \neq 0$. The list of all simple 2-graded Lie algebras over an algebraically closed field F of characteristic 0 will soon be known (see [4]).

The object of this paper is to prove that the series III and IV of [1] coincide. That this may be so was suggested by I. Kaplansky.

We first describe the series III and IV and supply the details which were omitted in [1] and [2].

Series III. Let F be a field of characteristic 0 and V a finite-dimensional F-vector space. Let V^* be the dual of V. Then we have the canonical isomorphism

 $V \otimes V^* \to \operatorname{End}_F(V)$

which we use to identify these two spaces. Recall that for $a \in V, f \in V^*$ we

Received January 12, 1976. This research was supported in part by NRC Grant A-5285.

289

then have $(a \otimes f)(x) = f(x)a$ for all $x \in V$. Hence, $V \otimes V^*$ becomes an associative algebra with identity such that

 $(a \otimes f) \circ (b \otimes g) = f(b)a \otimes g$

and the trace map is given by

 $\operatorname{tr} (a \otimes f) = f(a).$

Because of our identification, $V \otimes V^*$ considered as a Lie algebra is nothing else but gl(V), the Lie algebra of endomorphisms of V. The elements of trace zero in $V \otimes V^*$ form a Lie-subalgebra, sl(V).

We denote by SV and ΛV the symmetric and exterior algebras of V, respectively. We shall only use the second symmetric and exterior powers S^2V and $\Lambda^2 V$. For $a, b \in V$ we write ab and $a \wedge b$ for their products in SV and ΛV . In fact, $ab \in S^2V$ and $a \wedge b \in \Lambda^2 V$.

We identify $S^2(V^*)$ with $(S^2V)^*$ by

$$(fg)(xy) = f(x)g(y) + f(y)g(x)$$

where $x, y \in V$; $f, g \in V^*$. Similarly, we identify $\Lambda^2(V^*)$ and $(\Lambda^2 V)^*$ by

$$(f \wedge g)(x \wedge y) = f(x)g(y) - f(y)g(x).$$

We construct now a 2-graded Lie algebra P = P(V) by taking $P_0 = V \otimes V^*$ and $P_1 = S^2 V \oplus \Lambda^2(V^*)$. Clearly, P_0 is an ordinary Lie algebra and since Vis a P_0 -module so are $S^2 V$ and $\Lambda^2(V^*)$. We define a symmetric bilinear map $P_1 \times P_1 \to P_0$ as follows:

(i) it is zero on
$$S^2 V \times S^2 V$$
 and on $\Lambda^2(V^*) \otimes \Lambda^2(V^*)$

(ii) $[ab, f \land g] = [f \land g, ab] = f(a)b \otimes g + f(b)a \otimes g$

 $-g(a)b \otimes f - g(b)a \otimes f$

for $a, b \in V$ and $f, g \in V^*$.

We claim that the corresponding linear map $\theta: P_1 \otimes P_1 \to P_0$ is a homomorphism of P_0 -modules. For this it suffices to check that

$$\theta((c \otimes h) \cdot ((ab) \otimes (f \wedge g))) = (c \otimes h) \cdot (f(a)b \otimes g + f(b)a \otimes g - g(a)b \otimes f - g(b)a \otimes f).$$

for all a, b, $c \in V$ and f, g, $h \in V^*$. This is so because

$$(c \otimes h) \cdot ((ab) \otimes (f \wedge g)) = ((c \otimes h) \cdot (ab)) \otimes (f \wedge g) + (ab) \otimes ((c \otimes h) \cdot (f \wedge g)) = (h(a)bc + h(b)ac) \otimes (f \wedge g) + (ab) \otimes (-f(c)h \wedge g - g(c)f \wedge h)$$

and

$$\begin{aligned} (c \otimes h) \cdot (f(a)b \otimes g + f(b)a \otimes g - g(a)b \otimes f - g(b)a \otimes f) \\ &= f(a)(h(b)c \otimes g - g(c)b \otimes h) + f(b)(h(a)c \otimes g - g(c)a \otimes h) \\ &- g(a)(h(b)c \otimes f - f(c)b \otimes h) - g(b)(h(a)c \otimes f - f(c)a \otimes h). \end{aligned}$$

290

We also claim that θ satisfies (1), i.e., that

(2) $\theta(u, v) \cdot w + \theta(v, w) \cdot u + \theta(w, u) \cdot v = 0$

for $u, v, w \in P_1$. It suffices to verify this in the following two cases:

Case 1. $u = ab, v = cd, w = f \land g$ Case 2. $u = ab, v = f \land g, w = h \land k$

where $a, b, c, d \in V$ and $f, g, h, k \in V^*$.

In Case 1, (2) becomes

 $[cd, f \land g] \cdot ab + [f \land g, ab] \cdot cd = 0.$

This is true because

$$\begin{split} [f \wedge g, ab] \cdot cd &= (f(a)b \otimes g + f(b)a \otimes g - g(a)b \otimes f - g(b)a \otimes f) \cdot cd \\ &= f(a)(g(c)bd + g(d)bc) + f(b)(g(c)ad + g(d)ac) \\ &- g(a)(f(c)bd + f(d)bc) - g(b)(f(c)ad + f(d)ac) \\ &= ((f \wedge g)(a \wedge c))bd + ((f \wedge g)(a \wedge d))(bc) \\ &+ ((f \wedge g)(b \wedge c))ad + ((f \wedge g)(b \wedge d))ac \end{split}$$

and the last term changes sign if we interchange (a, b) with (c, d).

In Case 2, (2) reads

 $[ab, f \land g] \cdot (h \land k) + [h \land k, ab] \cdot (f \land g) = 0.$

This is true because

$$\begin{split} [ab, f \wedge g] \cdot (h \wedge k) &= (f(a)b \otimes g + f(b)a \otimes g - g(a)b \otimes f \\ &- g(b)a \otimes f) \cdot (h \wedge k) \\ &= -f(a)(h(b)g \wedge k + k(b)h \wedge g) - f(b)(h(a)g \wedge k + k(a)h \wedge g) \\ &+ g(a)(h(b)f \wedge k + k(b)h \wedge f) + g(b)(h(a)f \wedge k + k(a)h \wedge f) \\ &= ((fh)(ab))k \wedge g + ((fk)(ab))g \wedge h \\ &+ ((gh)(ab))f \wedge k + ((gk)(ab))h \wedge f) \end{split}$$

and the last term changes sign if we interchange (f, g) with (h, k).

Hence, we have proved that $P = P_0 \oplus P_1$ is a 2-graded Lie algebra. Note that tr $([ab, f \land g]) = 0$ and hence $[P_1, P_1] \subset \text{sl}(V)$.

Let P' be the derived algebra [P, P] of P. Then $P_0' = \text{sl}(V)$ and $P_1' = P_1$. The 2-graded Lie algebra P' is simple and for dim $V = 2, 3, 4, \ldots$ we obtain an infinite series which is the series III of [1].

Series IV. We use the notation from the previous section. We shall construct a 2-graded Lie algebra Q = Q(V) such that $Q_0 = V \otimes V^*$ and $Q_1 = S^2(V^*)$ $\bigoplus \Lambda^2 V$. The symmetric bilinear map $Q_1 \times Q_1 \rightarrow Q_0$ is defined by

(i) it is zero on $S^2(V^*) \times S^2(V^*)$ and on $(\Lambda^2 V) \times (\Lambda^2 V)$; (ii) $[a \land b fa] = [fa a \land b] = -f(a)b \otimes a - g(a)b \otimes f$

(ii)
$$[a \land b, fg] = [fg, a \land b] = -f(a)b \otimes g - g(a)b \otimes f + f(b)a \otimes g + g(b)a \otimes f$$

for $a, b \in V$ and $f, g \in V^*$.

This time we omit the verifications of the facts that the corresponding linear map $Q_1 \otimes Q_1 \rightarrow Q_0$ is a homomorphism of Q_0 -modules and that it satisfies the identity (1). These verifications are similar to ones in the preceeding section.

Hence, $Q = Q_0 \oplus Q_1$ is a 2-graded Lie algebra. Since tr $([ab, f \land g]) = 0$ we have again $[Q_1, Q_1] \subset \text{sl } (V)$.

Let Q' be the derived algebra [Q, Q] of Q. Then $Q_0' = \text{sl}(V)$ and $Q_1' = Q_1$. The 2-graded Lie algebra Q' is simple and for dim $V = 2, 3, 4, \ldots$ we obtain an infinite series which is the series IV of [1].

Series III and IV coincide. Using the notation from the previous sections, we want to prove that if P = P(V) and Q = Q(V) then the 2-graded Lie algebras P' and Q' are isomorphic. Clearly, it suffices to prove that the 2-graded Lie algebras P and Q are isomorphic.

THEOREM. The 2-graded Lie algebras P = P(V) and Q = Q(V) are isomorphic.

Proof. Let $u: V \to V^*$ be any vector space isomorphism. Then its transpose ${}^{t}u: (V^*)^* = V \to V^*$ is also an isomorphism and we define $u^* = ({}^{t}u)^{-1}: V^* \to V$.

Using u and u^* we define vector space isomorphisms:

$$S^{2}u: S^{2}V \to S^{2}(V^{*}),$$

$$\Lambda^{2}(u^{*}): \Lambda^{2}(V^{*}) \to \Lambda^{2}V,$$

$$\theta_{0}: P_{0} = V \otimes V^{*} \to Q_{0} = V \otimes V^{*}$$

where S^2u is the canonical extension of u, $\Lambda^2(u^*)$ the canonical extension of u^* and

 $\theta_0(a \otimes f) = -u^*(f) \otimes u(a)$

for $a \in V, f \in V^*$.

We define a vector space isomorphism $\theta: P \to Q$ to be the direct sum of the isomorphisms θ_0 , S^2u and $\Lambda^2(u^*)$.

We shall write $f(x) = \langle x, f \rangle = \langle f, x \rangle$ for $x \in V$ and $f \in V^*$. By the definition of u^* we have

$$u(x)(u^*(f)) = \langle u(x), u^*(f) \rangle = \langle u(x), {}^t u^{-1}(f) \rangle$$

= $\langle u^{-1}(u(x)), f \rangle = \langle x, f \rangle = f(x).$

We claim that θ is an isomorphism of 2-graded Lie algebras. We have to check that

(3)
$$\theta([s, t]) = [\theta(s), \theta(t)]$$

for s, $t \in P$. It clearly suffices to verify (3) in the following cases:

(i) $s = a \otimes f, t = b \otimes g;$ (ii) $s = a \otimes f, t = bc;$ (iii) $s = a \otimes f, t = f \wedge h;$ (iv) $s = ab, t = f \wedge g$

where $a, b, c \in V$ and $f, g, h \in V^*$. In Case (i) we have

$$\begin{aligned} \theta([a \otimes f, b \otimes g]) &= \theta(f(b)a \otimes g - g(a)b \otimes f) \\ &= -\langle b, f \rangle \, u^*(g) \otimes u(a) + \langle a, g \rangle \, u^*(f) \otimes u(b) \\ &= -\langle u(b), u^*(f) \rangle \, u^*(g) \otimes u(a) + \langle u(a), u^*(g) \rangle \, u^*(f) \otimes u(b) \\ &= [-u^*(f) \otimes u(a), -u^*(g) \otimes u(b)] \\ &= [\theta(a \otimes f), \theta(b \otimes g)]. \end{aligned}$$

In Case (ii) we have

$$\theta([a \otimes f, bc]) = \theta((a \otimes f) \cdot (bc))$$

$$= \theta(f(b)ac + f(c)ab)$$

$$= f(b)u(a)u(c) + f(c)u(a)u(b)$$

$$= \langle u(b), u^*(f) \rangle u(a)u(c) + \langle u(c), u^*(f) \rangle u(a)u(b)$$

$$= -(u^*(f) \otimes u(a)) \cdot (u(b)u(c))$$

$$= [-u^*(f) \otimes u(a), u(b)u(c)]$$

$$= [\theta(a \otimes f), \theta(bc)].$$

In Case (iii) we have

$$\begin{aligned} \theta([a \otimes f, g \wedge h]) &= \theta((a \otimes f) \cdot (g \wedge h)) \\ &= \theta(-g(a)f \wedge h - h(a)g \wedge f) \\ &= -g(a)u^*(f) \wedge u^*(h) - h(a)u^*(g) \wedge u^*(f) \\ &= -\langle u(a), u^*(g) \rangle u^*(f) \wedge u^*(h) - \langle u(a), u^*(h) \rangle u^*(g) \wedge u^*(f) \\ &= -(u^*(f) \otimes u(a)) \cdot (u^*(g) \wedge u^*(h)) \\ &= [-u^*(f) \otimes u(a), u^*(g) \wedge u^*(h)] \\ &= [\theta(a \otimes f), \theta(g \wedge h)]. \end{aligned}$$

Finally, in Case (iv) we have

$$\begin{split} \theta([ab, f \land g]) &= \theta(f(a)b \otimes g + f(b)a \otimes g - g(a)b \otimes f - g(b)a \otimes f) \\ &= -f(a)u^*(g) \otimes u(b) - f(b)u^*(g) \otimes u(a) \\ &+ g(a)u^*(f) \otimes u(b) + g(b)u^*(f) \otimes u(a) \\ &= -\langle u(a), u^*(f) \rangle u^*(g) \otimes u(b) - \langle u(b), u^*(f) \rangle u^*(g) \otimes u(a) \\ &+ \langle u(a), u^*(g) \rangle u^*(f) \otimes u(b) + \langle u(b), u^*(g) \rangle u^*(f) \otimes u(a) \\ &= [u(a)u(b), u^*(f) \land u^*(g)] \\ &= [\theta(ab), \theta(f \land g)]. \end{split}$$

The theorem is proved.

DRAGOMIR Ž. DJOKOVIĆ

References

- D. Ž. Djoković, Classification of some 2-graded Lie algebras, J. Pure and Applied Algebra 7 (1976), 217-230.
- 2. D. Ž. Djoković and G. Hochschild, Semi-simplicity of 2-graded Lie algebras II, Illinois J. Math. 20 (1976), 134-143.
- 3. G. Hochschild, Semi-simplicity of 2-graded Lie algebras, Illinois J. Math. 20 (1976), 107-123.
- 4. V. G. Kac, *Classification of simple Lie superalgebras*, Functional Analysis and its Applications 9 (1975), 91–92 (Russian).

University of Waterloo, Waterloo, Ontario.