ISOMORPHISM OF SOME SIMPLE 2-GRADED LIE ALGEBRAS

DRAGOMIR Ž. DJOKOVIĆ

Introduction. The grading is by integers modulo 2 and we refer to it as 2 -grading. For the definition of 2 -graded Lie algebras L and their properties we refer the reader to the papers $[\mathbf{1} ; \mathbf{2} ; \mathbf{3}]$. All algebras considered here are finite-dimensional over a field F of characteristic zero.

We recall that if L is a 2 -graded Lie algebra then $L=L_{0} \oplus L_{1}$ and we have

$$
\begin{aligned}
& {[y, x]=-(-1)^{\alpha \beta}[x, y]} \\
& {[x,[y, z]]=[[x, y], z]+(-1)^{\alpha \beta}[y,[x, z]]}
\end{aligned}
$$

for $x \in L_{\alpha}, y \in L_{\beta}, z \in L$.
Thus L_{0} is an ordinary Lie algebra, L_{1} is an L_{0}-module and in addition to that we have a bilinear map

$$
L_{1} \times L_{1} \rightarrow L_{0}
$$

sending (x, y) to $[x, y]$, which is symmetric and satisfies the identity
(1) $[x, y] \cdot z+[y, z] \cdot x+[z, x] \cdot y=0$.

Here $x, y, z \in L_{1}$ and for $a \in L_{0}, x \in L_{1}$ we write $a \cdot x$ instead of $[a, x]$. Moreover, the corresponding linear map $L_{1} \otimes L_{1} \rightarrow L_{0}$ is a homomorphism of $L_{0^{-}}$ modules. Conversely, if all these conditions are satisfied then $L=L_{0} \oplus L_{1}$ is a 2 -graded Lie algebra.

A 2 -graded Lie algebra L is simple if its only homogeneous ideals are L and 0 and $L \neq 0$. The list of all simple 2 -graded Lie algebras over an algebraically closed field F of characteristic 0 will soon be known (see [4]).

The object of this paper is to prove that the series III and IV of [1] coincide. That this may be so was suggested by I. Kaplansky.

We first describe the series III and IV and supply the details which were omitted in [1] and [2].

Series III. Let F be a field of characteristic 0 and V a finite-dimensional F-vector space. Let V^{*} be the dual of V. Then we have the canonical isomorphism
$V \otimes V^{*} \rightarrow \operatorname{End}_{F}(V)$
which we use to identify these two spaces. Recall that for $a \in V, f \in V^{*}$ we

Received January 12, 1976. This research was supported in part by NRC Grant A-5285.
then have $(a \otimes f)(x)=f(x) a$ for all $x \in V$. Hence, $V \otimes V^{*}$ becomes an associative algebra with identity such that

$$
(a \otimes f) \circ(b \otimes g)=f(b) a \otimes g
$$

and the trace map is given by

$$
\operatorname{tr}(a \otimes f)=f(a)
$$

Because of our identification, $V \otimes V^{*}$ considered as a Lie algebra is nothing else but $\mathrm{gl}(V)$, the Lie algebra of endomorphisms of V. The elements of trace zero in $V \otimes V^{*}$ form a Lie-subalgebra, $\operatorname{sl}(V)$.

We denote by $S V$ and ΛV the symmetric and exterior algebras of V, respectively. We shall only use the second symmetric and exterior powers $S^{2} V$ and $\Lambda^{2} V$. For $a, b \in V$ we write $a b$ and $a \wedge b$ for their products in $S V$ and ΛV. In fact, $a b \in S^{2} V$ and $a \wedge b \in \Lambda^{2} V$.

We identify $S^{2}\left(V^{*}\right)$ with $\left(S^{2} V\right)^{*}$ by

$$
(f g)(x y)=f(x) g(y)+f(y) g(x)
$$

where $x, y \in V ; f, g \in V^{*}$. Similarly, we identify $\Lambda^{2}\left(V^{*}\right)$ and $\left(\Lambda^{2} V\right)^{*}$ by

$$
(f \wedge g)(x \wedge y)=f(x) g(y)-f(y) g(x)
$$

We construct now a 2 -graded Lie algebra $P=P(V)$ by taking $P_{0}=V \otimes V^{*}$ and $P_{1}=S^{2} V \oplus \Lambda^{2}\left(V^{*}\right)$. Clearly, P_{0} is an ordinary Lie algebra and since V is a P_{0}-module so are $S^{2} V$ and $\Lambda^{2}\left(V^{*}\right)$. We define a symmetric bilinear map $P_{1} \times P_{1} \rightarrow P_{0}$ as follows:
(i) it is zero on $S^{2} V \times S^{2} V$ and on $\Lambda^{2}\left(V^{*}\right) \otimes \Lambda^{2}\left(V^{*}\right)$
(ii) $[a b, f \wedge g]=[f \wedge g, a b]=f(a) b \otimes g+f(b) a \otimes g$

$$
-g(a) b \otimes f-g(b) a \otimes f
$$

for $a, b \in V$ and $f, g \in V^{*}$.
We claim that the corresponding linear map $\theta: P_{1} \otimes P_{1} \rightarrow P_{0}$ is a homomorphism of P_{0}-modules. For this it suffices to check that

$$
\begin{aligned}
\theta((c \otimes h) \cdot((a b) \otimes(f \wedge g)))=(c \otimes h) \cdot & (f(a) b \otimes g+f(b) a \otimes g \\
& -g(a) b \otimes f-g(b) a \otimes f)
\end{aligned}
$$

for all $a, b, c \in V$ and $f, g, h \in V^{*}$. This is so because

$$
\begin{aligned}
& (c \otimes h) \cdot((a b) \otimes(f \wedge g))=((c \otimes h) \cdot(a b)) \otimes(f \wedge g) \\
& =(h(a) b c+h(b) a c) \otimes(f \wedge g) \quad+(a b) \otimes((c \otimes h) \cdot(f \wedge g)) \\
& +(a b) \otimes(-f(c) h \wedge g-g(c) f \wedge h)
\end{aligned}
$$

and

$$
\begin{aligned}
(c \otimes h) \cdot & (f(a) b \otimes g+f(b) a \otimes g-g(a) b \otimes f-g(b) a \otimes f) \\
= & f(a)(h(b) c \otimes g-g(c) b \otimes h)+f(b)(h(a) c \otimes g-g(c) a \otimes h) \\
& \quad-g(a)(h(b) c \otimes f-f(c) b \otimes h)-g(b)(h(a) c \otimes f-f(c) a \otimes h)
\end{aligned}
$$

We also claim that θ satisfies (1), i.e., that
(2) $\theta(u, v) \cdot w+\theta(v, w) \cdot u+\theta(w, u) \cdot v=0$
for $u, v, w \in P_{1}$. It suffices to verify this in the following two cases:
Case 1. $u=a b, v=c d, w=f \wedge g$
Case 2. $u=a b, v=f \wedge g, w=h \wedge k$
where $a, b, c, d \in V$ and $f, g, h, k \in V^{*}$.
In Case 1, (2) becomes

$$
[c d, f \wedge g] \cdot a b+[f \wedge g, a b] \cdot c d=0
$$

This is true because

$$
\begin{aligned}
& {[f \wedge g, a b] \cdot c d=(f(a) b \otimes g+f(b) a \otimes g-g(a) b \otimes f-g(b) a \otimes f) \cdot c d} \\
& =f(a)(g(c) b d+g(d) b c)+f(b)(g(c) a d+g(d) a c) \\
& \quad-g(a)(f(c) b d+f(d) b c)-g(b)(f(c) a d+f(d) a c) \\
& =((f \wedge g)(a \wedge c)) b d+((f \wedge g)(a \wedge d))(b c) \\
& \quad+((f \wedge g)(b \wedge c)) a d+((f \wedge g)(b \wedge d)) a c
\end{aligned}
$$

and the last term changes sign if we interchange (a, b) with (c, d).
In Case 2, (2) reads

$$
[a b, f \wedge g] \cdot(h \wedge k)+[h \wedge k, a b] \cdot(f \wedge g)=0
$$

This is true because

$$
\begin{aligned}
& {[a b, f \wedge g] \cdot(h \wedge k)=(f(a) b \otimes g}+f(b) a \otimes g-g(a) b \otimes f \\
&-g(b) a \otimes f) \cdot(h \wedge k) \\
&=-f(a)(h(b) g \wedge k+k(b) h \wedge g)-f(b)(h(a) g \wedge k+k(a) h \wedge g) \\
&+g(a)(h(b) f \wedge k+k(b) h \wedge f)+g(b)(h(a) f \wedge k+k(a) h \wedge f) \\
&=((f h)(a b)) k \wedge g+((f k)(a b)) g \wedge h \quad+((g h)(a b)) f \wedge k+((g k)(a b)) h \wedge f
\end{aligned}
$$

and the last term changes sign if we interchange (f, g) with (h, k).
Hence, we have proved that $P=P_{0} \oplus P_{1}$ is a 2 -graded Lie algebra. Note that $\operatorname{tr}([a b, f \wedge g])=0$ and hence $\left[P_{1}, P_{1}\right] \subset \operatorname{sl}(V)$.

Let P^{\prime} be the derived algebra $[P, P]$ of P. Then $P_{0}{ }^{\prime}=\operatorname{sl}(V)$ and $P_{1}{ }^{\prime}=P_{1}$. The 2 -graded Lie algebra P^{\prime} is simple and for $\operatorname{dim} V=2,3,4, \ldots$ we obtain an infinite series which is the series III of [1].

Series IV. We use the notation from the previous section. We shall construct a 2-graded Lie algebra $Q=Q(V)$ such that $Q_{0}=V \otimes V^{*}$ and $Q_{1}=S^{2}\left(V^{*}\right)$ $\oplus \Lambda^{2} V$. The symmetric bilinear map $Q_{1} \times Q_{1} \rightarrow Q_{0}$ is defined by
(i) it is zero on $S^{2}\left(V^{*}\right) \times S^{2}\left(V^{*}\right)$ and on $\left(\Lambda^{2} V\right) \times\left(\Lambda^{2} V\right)$;
(ii) $[a \wedge b, f g]=[f g, a \wedge b]=-f(a) b \otimes g-g(a) b \otimes f$

$$
+f(b) a \otimes g+g(b) a \otimes f
$$

for $a, b \in V$ and $f, g \in V^{*}$.

This time we omit the verifications of the facts that the corresponding linear $\operatorname{map} Q_{1} \otimes Q_{1} \rightarrow Q_{0}$ is a homomorphism of Q_{0}-modules and that it satisfies the identity (1). These verifications are similar to ones in the preceeding section.

Hence, $Q=Q_{0} \oplus Q_{1}$ is a 2 -graded Lie algebra. Since $\operatorname{tr}([a b, f \wedge g])=0$ we have again $\left[Q_{1}, Q_{1}\right] \subset \mathrm{sl}(V)$.

Let Q^{\prime} be the derived algebra $[Q, Q]$ of Q. Then $Q_{0}{ }^{\prime}=\operatorname{sl}(V)$ and $Q_{1}{ }^{\prime}=Q_{1}$. The 2 -graded Lie algebra Q^{\prime} is simple and for $\operatorname{dim} V=2,3,4, \ldots$ we obtain an infinite series which is the series IV of [1].

Series III and IV coincide. Using the notation from the previous sections, we want to prove that if $P=P(V)$ and $Q=Q(V)$ then the 2 -graded Lie algebras P^{\prime} and Q^{\prime} are isomorphic. Clearly, it suffices to prove that the 2 graded Lie algebras P and Q are isomorphic.

Theorem. The 2-graded Lie algebras $P=P(V)$ and $Q=Q(V)$ are isomorphic.

Proof. Let $u: V \rightarrow V^{*}$ be any vector space isomorphism. Then its transpose ${ }^{t} u:\left(V^{*}\right)^{*}=V \rightarrow V^{*}$ is also an isomorphism and we define $u^{*}=\left({ }^{t} u\right)^{-1}$: $V^{*} \rightarrow V$.

Using u and u^{*} we define vector space isomorphisms:

$$
\begin{aligned}
& S^{2} u: S^{2} V \rightarrow S^{2}\left(V^{*}\right), \\
& \Lambda^{2}\left(u^{*}\right): \Lambda^{2}\left(V^{*}\right) \rightarrow \Lambda^{2} V \\
& \theta_{0}: P_{0}=V \otimes V^{*} \rightarrow Q_{0}=V \otimes V^{*}
\end{aligned}
$$

where $S^{2} u$ is the canonical extension of $u, \Lambda^{2}\left(u^{*}\right)$ the canonical extension of u^{*} and

$$
\theta_{0}(a \otimes f)=-u^{*}(f) \otimes u(a)
$$

for $a \in V, f \in V^{*}$.
We define a vector space isomorphism $\theta: P \rightarrow Q$ to be the direct sum of the isomorphisms $\theta_{0}, S^{2} u$ and $\Lambda^{2}\left(u^{*}\right)$.

We shall write $f(x)=\langle x, f\rangle=\langle f, x\rangle$ for $x \in V$ and $f \in V^{*}$. By the definition of u^{*} we have

$$
\begin{aligned}
& u(x)\left(u^{*}(f)\right)=\left\langle u(x), u^{*}(f)\right\rangle=\left\langle u(x),{ }^{t} u^{-1}(f)\right\rangle \\
&=\left\langle u^{-1}(u(x)), f\right\rangle=\langle x, f\rangle=f(x) .
\end{aligned}
$$

We claim that θ is an isomorphism of 2 -graded Lie algebras. We have to check that

$$
\begin{equation*}
\theta([s, t])=[\theta(s), \theta(t)] \tag{3}
\end{equation*}
$$

for $s, t \in P$. It clearly suffices to verify (3) in the following cases:
(i) $s=a \otimes f, t=b \otimes g$;
(ii) $s=a \otimes f, t=b c$;
(iii) $s=a \otimes f, t=f \wedge h$;
(iv) $s=a b, t=f \wedge g$
where $a, b, c \in V$ and $f, g, h \in V^{*}$.
In Case (i) we have

$$
\begin{aligned}
\theta([a & \otimes f, b \otimes g])=\theta(f(b) a \otimes g-g(a) b \otimes f) \\
& =-\langle b, f\rangle u^{*}(g) \otimes u(a)+\langle a, g\rangle u^{*}(f) \otimes u(b) \\
& =-\left\langle u(b), u^{*}(f)\right\rangle u^{*}(g) \otimes u(a)+\left\langle u(a), u^{*}(g)\right\rangle u^{*}(f) \otimes u(b) \\
& =\left[-u^{*}(f) \otimes u(a),-u^{*}(g) \otimes u(b)\right] \\
& =[\theta(a \otimes f), \theta(b \otimes g)] .
\end{aligned}
$$

In Case (ii) we have

$$
\begin{aligned}
\theta([a & \otimes f, b c])=\theta((a \otimes f) \cdot(b c)) \\
& =\theta(f(b) a c+f(c) a b) \\
& =f(b) u(a) u(c)+f(c) u(a) u(b) \\
& =\left\langle u(b), u^{*}(f)\right\rangle u(a) u(c)+\left\langle u(c), u^{*}(f)\right\rangle u(a) u(b) \\
& =-\left(u^{*}(f) \otimes u(a)\right) \cdot(u(b) u(c)) \\
& =\left[-u^{*}(f) \otimes u(a), u(b) u(c)\right] \\
& =[\theta(a \otimes f), \theta(b c)] .
\end{aligned}
$$

In Case (iii) we have

$$
\begin{aligned}
\theta([a & \otimes f, g \wedge h])=\theta((a \otimes f) \cdot(g \wedge h)) \\
& =\theta(-g(a) f \wedge h-h(a) g \wedge f) \\
& =-g(a) u^{*}(f) \wedge u^{*}(h)-h(a) u^{*}(g) \wedge u^{*}(f) \\
& =-\left\langle u(a), u^{*}(g)\right\rangle u^{*}(f) \wedge u^{*}(h)-\left\langle u(a), u^{*}(h)\right\rangle u^{*}(g) \wedge u^{*}(f) \\
& =-\left(u^{*}(f) \otimes u(a)\right) \cdot\left(u^{*}(g) \wedge u^{*}(h)\right) \\
& =\left[-u^{*}(f) \otimes u(a), u^{*}(g) \wedge u^{*}(h)\right] \\
& =[\theta(a \otimes f), \theta(g \wedge h)] .
\end{aligned}
$$

Finally, in Case (iv) we have

$$
\left.\left.\begin{array}{l}
\theta([a b, f \wedge g])=\theta(f(a) b \otimes g+f(b) a \otimes g-g(a) b \otimes f-g(b) a \otimes f) \\
=-\quad-f(a) u^{*}(g) \otimes u(b)-f(b) u^{*}(g) \otimes u(a) \\
\quad+g(a) u^{*}(f) \otimes u(b)+g(b) u^{*}(f) \otimes u(a) \\
= \\
\quad-\left\langle u(a), u^{*}(f)\right\rangle u^{*}(g) \otimes u(b)-\left\langle u(b), u^{*}(f)\right\rangle u^{*}(g) \otimes u(a) \\
\quad \quad \quad\left\langle\left\langle u(a), u^{*}(g)\right\rangle u^{*}(f) \otimes u(b)+\left\langle u(b), u^{*}(g)\right\rangle u^{*}(f) \otimes u(a)\right. \\
= \\
=\left[u(a) u(b), u^{*}(f) \wedge u^{*}(g)\right] \\
=
\end{array}\right] \theta(a b), \theta(f \wedge g)\right] . \quad .
$$

The theorem is proved.

References

1. D. Ž. Djoković, Classification of some 2-graded Lie algebras, J. Pure and Applied Algebra \% (1976), 217-230.
2. D. Ž. Djoković and G. Hochschild, Semi-simplicity of 2 -graded Lie algebras II, Illinois J. Math. 20 (1976), 134-143.
3. G. Hochschild, Semi-simplicity of 2-graded Lie algebras, Illinois J. Math. 20 (1976), 107-123.
4. V. G. Kac, Classification of simple Lie superalgebras, Functional Analysis and its Applications 9 (1975), 91-92 (Russian).

University of Waterloo, Waterloo, Ontario.

