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OBLIQUE DERIVATIVE PROBLEM FOR QUASILINEAR ELLIPTIC
EQUATIONS WITH VMO COEFFICIENTS

GUISEPPE Di FAZIO AND DIAN K. PALAGACHEV

Strong solvability and uniqueness in the Sobolev space W3'*(n), q > n, are proved
for the oblique derivative problem

n

£) a'3(x, u)Dijii+ 6(i, u, Du) = 0 almost everywhere in fi,

du/dl + tr{x)u -f> on dfi,

assuming the coefficients of the quasilinear elliptic operator to be Caratheodory
functions, a'3 £ VM0nL°° with respect to x, and b to grow at most quadratically
with respect to the gradient.

1. INTRODUCTION

In this paper we axe concerned with strong solvability and uniqueness results for
the regular oblique derivative problem for second order quasilinear elliptic equations.
More precisely, we deal with the uniformly elliptic operator

fcik^+6(a;'u> Du)

in a bounded domain f2 C R™, and first order boundary operator of the form

t = i

supposing the unit vector field l(x) = (^1(x), . . . , tn(x)) that prescribes B to be Lips-
chitz continuous and nowhere tangential to the boundary 9fi. The coefficients a^(x, z)
and 6(x, z, p) ((x, z, p) £ £1 x R x R n ) of Q are assumed to satisfy Caratheodory's
condition.
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502 G. Di Fazio and D.K. Palagachey [2]

Our main goal here is to prove existence and uniqueness of a strong solution to the
oblique derivative problem

Qu = 0 almost everywhere in fi, Bu = <p(x) on dfi.

As usual, by a strong solution of (1.1) we mean a function u(x) belonging to the
Sobolev space W2'q{Cl) with a suitable q ^ 1 that satisfies the equation Qu = 0 almost
everywhere in fi and such that the boundary condition Bu = (p holds in the trace sense
on dfl.

The classical oblique derivative problem (1.1) with Holder continuous coefficients
has been extensively studied (see [6] and [10] for quasilinear Q, and [11] for the general
fully nonlinear case). Further, strong solvability for (1.1) was proved by Amann and
Crandall [2] in the case of a semilinear operator Q (a t J (x, z) = o*J'(as)) with uniformly
continuous principal coefficients a*J'(sc). All these results assume the nonlinear term
b(x, z, p) to grow at most quadratically with respect to the gradient. On the other
hand, a classical result due to Miranda [14] asserts W2'2 strong solvability for the
problem (1.1) if a l J (z) 6 W1>n and strictly sub-quadratic growth in b(x, z, p) with
respect to p is assumed.

The aim of the present paper is to investigate the problem (1.1) weakening the
regularity assumptions on the principal coefficients al}(x, z) with respect to a;. More
precisely, we suppose these coefficients to belong to the class of functions with van-
ishing mean oscillation (VMO) locally uniformly in z (see [16, 3, 4]). The natural
background for these considerations is the Lp theory of the oblique derivative problem
for linear elliptic equations with VMO DL°° coefficients developed in [5]. We assume
the nonlinear term b(x, z, p) grows quadratically with respect to the gradient. It is
worth noting that both the cases a1'* € C°(f2) and a" £ W 1 - " ^ ) imply a'> £ VMO

(see [3]). In such a way, our result generalises those proved by Miranda [14] and Amann
and Crandall [2].

The main tool in proving existence for the problem (1.1) is Leray and Schauder's
fixed point theorem that reduces the solvability of (1.1) to the establishment of an a
priori estimate in the space W1<2q(fl), q> n, for all possible solutions of a family of
problems related to (1.1). We split the proof of that estimate into three steps. The
first one is devoted to a bound for ||u||LOo(n) and this follows easily from a variant of
Aleksandrov-Bakelman-Pucci maximum principle proved by Trudinger [17] (see [12,
13]). To apply the i^-theory [5] of linear elliptic operators with VMO coefficients,
we must control the VMO-modulus of the composition al](x, u(x)). Due to a simple
result on composition, that control is equivalent to an a priori bound for suitable Holder
norm of u which follows from Harnack type inequalities (see [11]). Finally, in order
to estimate the L2q(Q) norm of the gradient Du we employ an approach inspired by
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Amann and Crandall [2]. The idea is to imbed our problem (1.1) into a family of similar
problems depending on a parameter p £ [0, 1] and having solutions u(p; x). Then the
norm ||I?«||i3«(n) = ||-E>xw(l; 3)|IL*«(O) can be estimated in terms of ||I>xtt(0; x)||La«(n)
after iterations on p, assuming the difference u(pi; x) — tt(/>2i *) to be under control for
small pi— pz- The crucial step in these investigations is ensured by the 1? theory [5] of
the oblique derivative problem for linear elliptic equations with VMOnL°° coefficients.

At the end, the uniqueness result is a consequence of the Aleksandrov, Bakelman
and Pucci maximum principle (Theorem 2.6.2 in [17]), assuming in addition b(x, z, p)

to be Lipschitz continuous with respect to z and p.

2. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Let n C R n , n ^ 3, be a bounded domain. The symbol Wk'q(£l), k an
integer, stands for the usual Sobolev space of fc-times weakly differentiable func-
tions with i«-summable derivatives Dau (\a\ < k), while W'tq(dQ), a > 0 a
non integer, denotes the Besov space of functions defined on the boundary dfl of
fi (see [1]). We adopt here the standard summation convention and Di — d/dxi,

Dij = d2/dxidxj, Du = ( D i n , . . . ,Dnu). On the boundary dQ is defined a unit
vector field l(x) = (P(x),... ,£n(x)) that is nowhere tangential to dil.

Our aim in the present paper is to study strong solvability of the oblique derivative
problem

{ Qu = a*'(x, u)DijU + b(x, u, Du) = 0 almost everywhere in Cl,

Bu = du/de + <r{x)u = <p on an.

We shall treat here a uniformly elliptic operator Q and oblique operator B that
satisfy certain regularity and structural conditions. Throughout the paper we assume
the functions alJ(x, z) and b(x, z, p) to be Caratheodory functions, that is, they are
measurable with respect to x £ n for all (z, p) £ R x Rn and continuous in z and
p for almost all x £ $7. Letting A denote a positive and non-increasing function, and
VK, wjc and fi positive and non-decreasing functions we may list our assumptions as
follows:

uniform ellipticity of Q:

(2.2)

j'{x, *)CV > A(|z|) |£|2 for almost all x G Q, Vz £ R, V£ 6 Rn and aij = aji;

ali(x, z) is a VMO function with respect to x, locally uniformly in z:

(2.3) sup - J - / |oy(«, z) - - J - / aij{y, z) dy\ dx = t]K{r) - ^ 0 as r - • 0,
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for all z G [-K, K], where ftp — ft n Bp and Bp ranges over the class of the balls with
radius p and centred at the points of ft (we refer to T\K(r) as the VM0-modulus of

the coefficients aX}{x, z) are locally uniformly continuous with respect to z, uni-

formly in x:

(2-4)

aij(x, z) - aij(x, z') < a(x)uK(\z - z'\) almost everywhere in ft, Vz,z' G [-K, K]

with a(x) G L°°(n), limt_>0wK-(0 = 0 and al'(x, 0) G I°°(ft);

the function b(x, z, p) grows at most quadratically with respect to the gradient:

(2.5)

for almost all x G ft, V(z, p) G R x R", c(x) G L9(Q), q > n;

b(x, z, p) is "monotone" with respect to z:

(2.6)

for almost all x G ft, \z\ > M = const > 0, Vp G R", where j e l ' f f ) ) , he Lloc(R
n)

are positive functions such that Jng{x) dx < JRn h(p) dp.

The boundary operator B prescribed in terms of the directional derivative with

respect to the unit vector field l(x) — (t}(x),... ,£n(x)) we assume to be a regular

boundary operator:

(2.7)

{ £(x) • u(x) - £x(x)ux(x) ^ K = const > 0 on 9ft, a(x) < -a0 - const < 0,

V(x), a{x) G C°<\dSl), dn G C1'1,

where v{x) — {y1 («) , . . . ,un{x)~) is the unit inner normal to e?ft and C0'1 denotes the

space of Lipschitz continuous functions.

We are now in a position to state our existence result.

THEOREM 2 . 1 . Let conditions (2.2) — (2.7) be satisfied. Then for each <p G
Wl~llq'q{dQ), where q > n is the number in (2.5), t ie problem (2.1) admits a strong
solution u G W2'9(ft). In particuiar, u G G1'1^^^) .

PROOF: AS usual, Theorem 2.1 will be proved with the aid of the Leray and
Schauder fixed point theorem (see [8, Theorem 11.3]). With this goal, we define a
nonlinear operator P whose fixed points will be solutions of the problem (2.1) as follows.
Let v G W1>29(ft). Then, v G C°(ft) (q > n) and a^(z, v{x)) G VMO R X°°(ft) as
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a consequence of Proposition 3.3 below. Moreover, (2.5) leads to b(x, v(x), Dv(x)) £
Lg(fl). Applying now the solvability result for the obhque derivative problem for linear
elliptic equations with VMO principal coefficients [5, Theorem 1.2] we conclude the
existence of a unique strong solution u(x) 6 W2>q(Cl) of the linear problem:

( a*i(x, v(x])DijU — —b(x, v(x), Dv(x)) almost everywhere fl,

\ du/ei + <T(X)U = <p on an.

The nonlinear mapping

is defined by the formula Tv — u. Indeed, by virtue of Sobolev's imbedding theorem,
T is a compact operator considered as a mapping from W1>2q(il) into itself. To prove
the continuity of T let us set uk = Tvk, u = Tv, where Vk —» v in PK1'2*(n) as
k —» oo. The difference it* — u G W2<q(£l) satisfies the equation

aij(x, v)Dij{uk -u) = b{x, v, Dv) - b(x, vk, Dvk) + AjUfc

almost everywhere in fl and satisfies the boundary condition

-u) = 0 on

It follows from Proposition 3.3 below, the linear a priori estimate [5, Theorem 1.2] and
the maximum principle for the obhque derivative problem ([17, Theorem 2.6.2], [13,
Theorem 3.1], or [12, Theorem 1.5]) that

(\\b(x, vk, Dvk) - b(x, v, Dv)\\Lq{0) + ||AiU*(aij'(x, vk) - a^x, *)) \\^ J .

The first term in the right-hand side above tends to 0 as k —> oo by means of (2.5) and
the fact that the Nemytskii operator defined by 6 is a continuous mapping [7, Theorem
16.11]. The same conclusion holds true on the second term because of the boundedness
of ||A;«fc||L,(O). (2-4) and \\vk-v\\LOO{n) - 0 {q > n). Therefore uk -» « in W2<i{Sl)
as k —* oo. That proves the continuity of T by virtue of the continuity of the imbedding
W2<q(£l) "-> W1>2'(n). Finally, in order to apply the Leray-Schauder fixed point
theorem, that is, to assert existence of solution of the problem (2.1), it remains to prove
the a priori estimate

(2-8) Nlw
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with a constant C independent of u £ Wll2q(n) and r £ [0, 1], for each solution u of
the operator equation u — TTU , that is equivalent to the problem

( a^{x, u)DijU + rb(x, u, Du) = 0 almost everywhere in ft,
(2.9) \

y du/dl + a(x)u = rip on 80..

The desired a priori estimate, however, is a consequence of Lemmas 3.1, 3.2 and 3.4
proved in Section 3 and thus the existence of a strong solution u £ W2>*(fi) to the
problem (2.1) follows from the Leray-Schauder theorem. Finally, u £ C1>1~n/q(Tl) as
consequence of Morrey's lemma. This completes the proof of Theorem 2.1. D

Uniqueness of the solution to the oblique derivative problem (2.1) can be proved
in the wider class Wjo'c

n($7) l~l C1 (fi) in a special case concerning the structure of the
coefficients and the nonlinear term of Q.

THEOREM 2 . 2 . Let the principal coefficients a1J of the operator Q be bounded
and measurable functions that are independent of z, and assume conditions (2.2) (with
X = const > 0) and (2.7) to be satisfied. Suppose further that b(x, z, p) is non-
increasing function with respect to z for almost all x £ fi, Vp £ R n , and let b(x, z, p)
be Lipschitz continuous with respect to z and p :

(2.10)

\b(x, z, p) - b(x, z', p)\ ^ /?i(a;, z, z', p) \z - z'\

for almost all x £ Q, Vz, z' £ R, Vp £ Rn,

\b(x, z, p) - b(x, z, p')| ^ /?2(x, z, p, p') \p - p'|

for almost all x £ fi, \/z £ R, ^p,p' £ R",

where sup|z|+|2/|+|J)|^K-/9i(-, z, z', p) £ Ln(Q), sup|z|+|p|+|p;|^if/92(-, 2, P, p') £ Ln(fl),
K > 0 .

Then, if ui, u2 £ WfoJ1^) H C1(H) are two solutions of the oblique derivative
problem (2.1), we iave U\ = u2 on fl.

PROOF: The difference u = u1-u2 e W?o'c
n(Q) n C^Q) solves the linear oblique

derivative problem

{ d'i(x)DijU + B'(x)DiU + C(x)u — 0 ahnost everywhere Cl,

du/d£ + <r(x)u = 0 on dQ,

where

j ^{x,u1(x
JO °P*

/

I 01

—(x, su(x) + u2(x), Du2(x)) ds.
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Indeed, the partial derivatives db/dpi and db/dz exist almost everywhere in fixRxR™
by virtue of the Rademacher theorem and (2.10). Moreover, BX,C € Ln(Q) and C(x) ^
0 since b(x, z, p) is a non-increasing function with respect to z.

Therefore, (2.7) and the maximum principle [17, Theorem 2.6.2] imply u = 0 on

n. D
3 . A PRIORI ESTIMATES

This section is devoted to deriving the a priori estimate (2.8) with a constant C
independent of u and T, for all possible solutions of the problem (2.9). This procedure
is a three-step process involving successive estimation of ||u||£,oo(n), the modulus of
continuity of u and ||^M||£,29([J) I

 anc^ each of these estimates presupposes the preceding
ones. Let us note that the bound on ||M||j,oo(n) is necessary in order to control be-
haviour with respect to z in ov(x, z) and b(x, z, p). Further, the information on the
modulus of continuity of u allows us to control the VMO-modulus of the composition
a^(x, u(x)) (the function T]ic(r) with K = ||u||£,oo(fj\ , in (2.3)) through a simple result
on composition (Proposition 3.3).

A maximum principle of Aleksandrov-Bakelman-Pucci type is the main tool in
estimating ||«||£oo(n) • To control the modulus of continuity of u{x) on fi, we shall
derive stronger estimate on the norm of u in a Holder space C°'7(T2) with a suitable
7 € (0, 1). This bound for the Holder norm (see [11]) is obtained by a technique
due to Krylov and Safonov which generalises classical estimates of De Giorgi-Nash-
Moser, and it is based on the weak Harnack inequalities. Finally, the a priori bound
for ||-DM||x,j«(n) is derived after embedding our problem into a one-parameter family of
related oblique derivative problems and iterating with respect to the parameter the L2q-
norms of the gradients. This method is inspired by Amann and Crandall's approach (see
[2]) in obtaining L°°-gradient estimates for semilinear elliptic equations with continuous
coefficients.

Before starting to realise our program, let us note that we must prove estimate
(2.8) for each possible solution of problem (2.1) instead of (2.9) since r £ [0, 1]. The
letter C will denote a constant, independent of u, that may vary from line to line.

3.1 A PRIORI ESTIMATE FOR ||u||LOO(n) .

LEMMA 3 . 1 . Suppose conditions (2.2), (2.6) and (2.7) are satisfied. Then

H| L - ( 0 ) < max JM, °"»»M«>I I + R | JL +

for eacii solution u G W2>9(Q) of the problem (2.1), wiere R is given by

f h(p) dp= f g(x) dx and BR(0) = { P £ R n : \p\ < R}.
JBR(.O) JO
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PROOF: This is a direct consequence of Theorem 2.6.1 in Trudinger's Lecture Notes
[17]. The only remark we have to point out is that tp G W1~1/g'<!(dSl) and q > n imply

<pec°{dn). D

3.2 A PRIORI ESTIMATE FOR THE MODULUS OF CONTINUITY OF u.

LEMMA 3 . 2 . Let u G W2'9(Cl) be a strong solution of the oblique derivative

problem (2.1) and suppose conditions (2.2), (2.4), (2.5) and (2.7) are satisfied. Then

CK 1 ^ sun M*) <
(o.l) sup _ — : ^— $-O

**v, *,»en I* ~ 3/1

where 7 G (0, 1) is a constant depending on n, q, ^\\\u\\too^n^\, M( llulli<»(n)J, «,

Ua'^x, 0) | | i o o , n . and C depends in addition on ||c||x,?(n)> ^i1)) f{x)> 9SI.

PROOF: The estimate (3.1) follows in the same manner as in the proof of [17, The-
orem 2.3] using interior and boundary inequalities of Harnack type. Due to the fact that
we are dealing with strong solutions, however, a maximum principle of Aleksandrov-
Bakelman-Pucci type ([12, Theoreml.5], [17, Theorem 2.6.1]) is to be used instead of
the classical maximum principle. u

3.4 A PRIORI ESTIMATE FOR ||-Du||LJ,(n) •

As mentioned above, the desired bound for ||jDw||ijS(t}) will be derived by employ-
ing an approach inspired by the method of Amann and Crandall (see [2]) in proving
an i°°(fl)-gradient estimate for semilinear elliptic equations. However, in order to be
able to apply the linear theory developed in [5], first of all we must prove the following
simple result on composition.

PROPOSITION 3 . 3 . Let assumptions (2.3) and (2.4) be satisfied and suppose
u(x) G C°(Q) . Then the composition (ji{x, u(x)) G VMO D Z°°(fi) and its VMO-
modulus is bounded in terms of ||tt||£oo(n) and the continuity modulus of u(x).

PROOF: It follows from (2.4) that the composition aij(x, u(x)) G Z°°(fi) C BMO
(see [9]). Let Bp be an arbitrary ball centred at a point x§ G fi and p ^ r. Then

J ^) = w i I aii(x> u(x» - w i I °yfo' u(y» dydx ^ Ji^ + J2^>
\ilp\ Jnp \ilp\ Jnp

with

/ dx

dy\ dx-
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It follows from (2.4) that

MP) ^ 2 ||a||LOO(n) v\\»\\LOO(n) (0(u, r ) )

where 6{u, r) is the modulus of continuity of u, while (2.3) ensures

h{p) < fl\\v\\XlO°{n)(
T)-

Therefore

sup J(p) < 2 ||a||x.oo(n)
 u\\u\\LOO(n) (#(«> '•)) + V\\u\\LoO(n)(,

r) —* 0 as r ^ 0.

This proves 0* (̂3;, «(«)) G FMO. Moreover the VMO-modulus of the composition is
bounded in terms of ||w||x,cx>(n) and of a monotone function of the u-continuity modu-
lus. D

LEMMA 3 . 4 . Let conditions (2.2), (2.3), (2.4), (2.5) and (2.7) be satisfied. Then
there exists a constant C depending on known quantities only and on ||w||x,oo(n) > such
that

(3.2) \\Du\\L3q{n) < C

for each solution u £ W2'q(£l) of the oblique derivative problem (2.1).

PROOF: The function u e W2l9(fi) solves the equation

AX]{x)DijU + B(x) \Du\ — c[x)u(x) = f{x) almost everywhere in fi,

where

( Aij{x) = aij{x, u(x)) 6 VMO (1 L°°(n) (by Proposition 3.3),
_ b(x, u(x), Du(x))

(3.3)

For the fixed solution u(x) of the problem (2.1), we imbed (2.1) into the one-
parameter family of oblique derivative problems
(3.4)

( Aii{x)Diju{p\ x) + B(x) \Du(p; x)\2 - c(x)u(p; x) = pf(x) almost everywhere in Cl,

du(p; x)/d£ + <r{x)u(p; x) = ptp on 80,
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with solutions u(p; x) 6 W2>q(Sl) (p E [0, 1]) if they exist. Let us point out that

q > n and Sobolev's imbedding theorem ensure that the boundary condition in (3.4) is

satisfied in the classical sense on dO.

Indeed, what we know about the problem (3.4) at this moment is that w(0; x) =

0 and rt(l; x) = u{x) is the fixed solution of (2.1). Our aim will be to estimate

\\Dxu(p2; aO||£3«(n) i n terms of \\Dxu(pi\ z)||£a,.(Oy when p2-pi > 0 is small enough.

After that, assuming we have in addition unique solvability in W2'q(Q) of (3.4) for

each value p £ [0, 1], it will be easy to derive the desired estimate (3.2) by iteration of

X29(fi)-norms of Dxu(p; x) for p < 1.

STEP 1. To realise our program, we shall estimate at first the difference of two solutions
of the problem (3.4) in terms of the difference between the corresponding-values of the
parameter p. Let u(pi\ x), u(p2; x) £ W2>q(fl) solve (3.4) with pi ^ p2 • Then
(3.5)

IKpii x)-u(p2; x)\\LOO{n) ^ (p2 - pi

In order to prove (3.5), we set vt[x) = u(pi• x) — u(p2; x) and observe that w £

W2'q(Q) solves the linearised oblique derivative problem

{ Cw = A%i(x)DijW + Bl(x)DiW — c(x)w — (p! — P2)f{x) almost everywhere in Cl,

Mw = dw/dl + <r(x)w = (p! - p2)f on dQ,

where

B\x) = 2B(x) I (sDiW + Diu(p2; xfj da £ L\Q).

On the other hand,

Cw = ( p i -p2)f(x) ^ -c(x)(p2-Pl) M|«||LOO(n)+/*(||«|lioo(n)) + — inax\<p{x)\)

= CUp2-p1) M|tt||£oo(n) + /*(ll«llL~(n)) +

as consequence of (3.3) and (2.5). Further,

()Mw = (pi - p2)<p(x) ̂  {p2 - p i ) ( x )

— m^x \<P(x)\j
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on Oil.

Therefore, it follows from the maximum principle [17, Theorem 2.6.2] that

/ / \ 1 \
suptu ^ (p2 - P i ) I IMIi~(n) + / x ( N l i o o ( n ) ) + —max|v3(z)| I .
n \ v ' fo on j

Similarly, replacing w by — w above we can estimate inf w from below. This leads to
the bound (3.5).

REMARK 3.5. By taking pi — p2 in (3.5), we obtain immediately a uniqueness result
for solutions of the problem (3.4) for each value p £ [0, 1].

STEP 2. Let pi < p2 be two arbitrary numbers and suppose there exist solutions
u(pi\ x) and u(p2; x) £ W2'q(Sl) of (3.4). The difference w(x) = u(pi; x)-u(p2; x) £
W2'q{Q) solves the problem

Ai'{x)Dijw = (pi - p2)f{x) - B{x)(\Du{pi; x)\2 - \Du(p2; i ) | 2 ) + c{x)w

almost everywhere in fi,

dw/dl + aw = (pi — p2)f on dil

and the a priori estimate for solutions of the oblique derivative problem for linear elliptic
equations with VMO coefficients [5, Theorem 1.2] asserts

MPi;*)\' ~ \Du(P2; x)\2)

+ \\{Pi-

where the constant C depends on known quantities and on u through HuH^oofo) only.

Therefore,

(3-6) IMIw^o) < C (l + ||D«(pi; z)||2L,,(n) +

as a consequence of (2.5), (3.3) and (3.5), where C depends on ||M||£,oo(n)

independent of (pi — p2).

On the other hand,

^ C(p2-Pi) M|«||I,o0(n)+/*(ll«lli,oo(n)J + —

by virtue of the Gagliardo-Nirenberg interpolation inequality [15] and the estimate

(3.5).
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Thus, making use of (3.6), we have

\\Dw\\l2Hn) ^ Co ( l + (P2-pi)\\Dw\\liq{n) + \\Du(Pl, )\\2
Llq{n))

with a new constant Co that is independent of pi — p2 .

Now, supposing that p2 — pi ^ e where Coe < 1/2, the last inequality leads to

\\Dw\\liq{n) < C (l + \\Du{Pu

whence

(3-7) \\Du(P2, )\\l*Hn) ^C1+C2 \\Du(Pl, ( )

whenever p2 — p\ ^ £ •

Now, taking p\ = 0 and p2 — e above, and bearing in mind the uniqueness result
(Remark 3.5), we have

(3.8) \\Du(e, . ) | | U ( n ) < Cj

whenever there exists the solution u(e; x) £ W2'q(Cl) of the problem (3.4) with p = e.

STEP 3. To complete the proof of Lemma 3.4 it remains to show that the problem (3.4)
is solvable in W2' 9(£l) as p = e. We shall prove this with the aid of the Leray-Schauder
fixed point theorem again. For this goal, we define the compact nonlinear operator

V: W1>2«(ft)—>W2'q(n)<->W1<2''(n)

in the following way: for each v G W1'29^) the image Vv £ W2'*(ft) is the unique
solution of the linear oblique derivative problem:

{ Aij{x)Dij(Vv) = ef(x) - B{x) \Dv\2 + c(x)v almost everywhere in ft,

d(Vv)/dl + <rVv = e<p on Sfi.

Of course, A*> 6 VMO D L°°(Vl), ef(x) - B{x) \Dv\2 + c{x)v G £*(«) and therefore
the above problem is uniquely solvable in the space W2'9(fi) by virtue of [5, Theorem
1.2]. Moreover, the already cited result ensures that V is a continuous operator from
W1-2«(n) into itself. Finally, the estimate (3.8) (with re instead of e) holds true for
each solution of the equation v — TVV , T G [0, 1], that is equivalent to the problem

f A**{x)DijV = rlef(x) — B(x) \Dv\ + c(a:)tM almost everywhere in $7,

\ dv/dl + av = re<p on aft.

Thus the Leray-Schauder theorem asserts the existence of a fixed point of the
mapping V. This proves solvability in W2'q(£l) of (3.4) in the case p = e.

To complete the proof of Lemma 3.4 we put pi = ke, p2 •= {k + l)e, k = 1, 2 , . . . ,
in (3.7) and by applying finitely many times the above procedure, we get the desired
estimate (3.2) for u(x) = u( l ; x). D
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