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Abstract
In this paper, in connection with the program of extending the Curry–Howard isomorphism to classi-
cal logic, we study the λμ-calculus of Parigot emphasizing the difference between the original version of
Parigot and the version of de Groote in terms of normalization properties. In order to talk about a satisfac-
tory representation of the integers, besides the usual β-,μ-, andμ′-reductions, we consider the λμ-calculus
augmented with the reduction rules ρ, θ and ε. We show that we need all of these rules for this purpose.
Then we prove that, with the syntax of Parigot, the calculus enjoys the strong normalization property even
when we add the rules ρ, θ , and ε, while the λμ-calculus presented with the more flexible de Groote-style
syntax, in contrast, has only the weak normalization property. In particular, we present a normalization
algorithm for the βμμ′ρθε-reduction in the de Groote-style calculus.
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1. Introduction
The works of Murthy (1991) and Griffin (1990) revealed in the nineties that the Curry–Howard
correspondence can be extended to classical logic. Since then, many different calculi have ap-
peared with the aim of representing natural deduction or Gentzen-style derivations in classical
logic (Barbanera and Berardi 1994; Curien and Herbelin 2000; Munch-Maccagnoni 2013; Parigot
1992; Rehof and Sørensen 1994; Saurin 2008; Wadler 2003, 2005). The systems based on the se-
quent calculus, like the λμμ̃-calculus of Curien-Herbelin (Curien and Herbelin 2000), have the
advantage of possessing symmetric reduction rules, which makes their study more pleasant. This
is also the case for the system of Barbanera-Berardi (Barbanera and Berardi 1994), which is ex-
clusively based on two connectives ∧ and ∨. Parigot’s λμ-calculus (Parigot 1992) was originally
defined as a calculus for establishing connections between logical calculi and natural deduction-
style proofs in second-order predicate logic. The λμ-calculus can be considered as a simple
extension of the λ-calculus: one obtains the λμ-calculus by adding classical variables (so-called
μ-variables) to the λ-calculus together with their term formation rules and reduction rules.

The λμ-calculus has two distinct presentations. One of them is the original calculus of Parigot,
and the other one was introduced by de Groote by relaxing some of the term formation rules. The
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investigation of the difference between the two presentations in terms of normalization properties
can be considered as the main aim of the paper. It turns out that, despite their great resemblance,
the two calculi differ in important respects: if one adds to the β-, μ-, and μ′-reductions some
structural rules, e.g., the ρ- or ε-rules, which are necessary to ensure the uniqueness of the rep-
resentation of data, one can find that the Parigot-style calculus retains its strong normalization
property, whereas the de Groote-style calculus does not. We will return to this question in several
parts of the paper, and we will give the precise definitions for the different calculi in Sections 2
and 4.

Regarding the Parigot-style λμ-calculus, originally, his system contains only two reductions
(the β- and μ-rules). They stem from cut eliminations with respect to the implicational fragment
of natural deduction both in the intuitionistic and in the classical case. He adds two more rules
(ρ and θ), which he calls simplification rules, and which correspond to cut elimination regarding
negation. From a logical point of view, the λμ-calculus makes it possible to easily encode the
mathematical proofs. However, the calculus is not symmetric, which makes the examination of
its properties more difficult. We note that we are concerned with the simply typed version of the
λμ-calculus throughout the paper.

The simply typed λμ-calculus enjoys many useful proof-theoretical properties, like confluence
(Parigot 1993; Py 1998), subject reduction, and strong normalization (Parigot 1993). The calculus
has, from the computer science point of view, a severe drawback: it does not meet the requirement
of the unique representation of data. In the second-order typed λ-calculus, any term having the
integer type N is β-equal to a Church numeral. This property enables the automatic generation
of programs for the integers. In fact, a λ-term of type N →N is a program that represents a
function for the integers: it takes a Church-integer and returns, after reduction, another one. This
is no longer true in the λμ-calculus: we can find normal terms of integer type that are not Church
numerals. This should not come as a surprise, since we are able to prove that a type isN by indirect
reasoning. Hence, when we consider a type even as simple asN , it is only the intuitionistic proof
of the type that we can recover by utilizing exclusively the existing reduction rules.

There are several possible solutions to this problem. One can define an algorithm that, to every
classical integer, assigns its value, which is represented by a Church numeral (Nour 1997; Parigot
1993). The other possibility is to apply output operators in order to transform a classical integer
into an intuitionistic one, namely, into a Church numeral (Nour 1997; Parigot 1993). We choose
here another solution which was also proposed by Parigot (1993). If we add the reduction rule μ′
to the λμ-calculus, which is the symmetric counterpart of the μ-rule and can be justified by the
underlying logical rules, we get closer to reducing the Church integers to normal forms by simply
applying the rules of the calculus. We discuss this question in more detail in Section 3. Similar
assertions hold for the other algebraic data types defined formally in Krivine (1994).

The calculus augmented with the μ′-rule preserves the subject reduction property (at least
for the simply typed version), but confluence is lost. The μ′-rule, however, plays an important
role in the presentation of the call-by-value λμ-calculus. It permits a calculated value, as the
functional part, to find its argument. De Groote (1998) managed to integrate this rule with the
λμ-calculus while preserving confluence. Py studied the call-by-value μ′-reduction in his thesis
(Py 1998). In particular, he proved confluence and strong normalization properties for μ- and μ′-
reductions. He also enriched the syntax with new operators so that the subject reduction property
was preserved and computational contents were given to the quantifiers.

Parigot (1997) proved by an application of the Tait-Girard reducibility argument that the strong
normalization property holds for the λμ-calculus with second-order type assignments. It was a
long standing open problem of Parigot whether the μμ′-rules in the untyped calculus enjoy the
strong normalization property. This was solved by David and the second author (David and Nour
2005, 2007). Subsequently, we have found in Battyányi and Nour (2020) another proof for this
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result. Until now, no simple weak normalization algorithm has been known for theμμ′-reduction.
In this paper, we also provide one.

As was mentioned, there has mainly been two different presentations of the λμ-calculus.
Originally, Parigot defined his calculus with severe restrictions on the term formation rules. His
syntax, however, does not make it possible to encode with typed λμ-terms any proof of the clas-
sical tautology ¬¬A→A without free variables of type ¬⊥ (similarly for some other classical
tautologies). Furthermore, in this syntax with many reduction rules Böhm’s theorem does not
hold. In fact, Py (1998) gave two distinct closed normal termsM and N for which there is no term
L, such that (L)M reduces to the first projection λx.λy.x and (L)N reduces to the second projec-
tion λx.λy.y. De Groote proposed a syntax that is less restrictive than that of Parigot’s by splitting
the rule concerning negation into two: one for the introduction and one for the elimination of
negation and he even omitted certain restrictions that applied to the original calculus of Parigot.
In this calculus, new rules can be considered like the ε-rule, which allows to handle two consecu-
tive proofs both leading to absurdity. The version proposed by de Groote (1998) allowed him to
construct an abstract machine for the λμ-calculus. Additionally, Saurin (2012) proved that the de
Groote version enjoys the separation property. Taking all these into account, we have adopted the
de Groote-style calculus for the majority of our work. Our results also show that the two calculi
are quite different: one of them has the strong normalization property while the other one only
possesses the weak normalization property. The paper is structured in the following way.

• In the second section, we present the definitions necessary for our discussion.
• The third section demonstrates the role of the structural rules: by making use of the addi-
tional rules we can prove that every term of integer type that weakly normalises behaves like
a Church numeral in the sense that when it occurs in applications formed with terms of
appropriate types it reduces to the well-known form of Church numerals.

• The fourth section contains a proof that the Parigot-style λμ-calculus enjoys the strong
normalization property. The proof generalizes Py’s method (Py 1998): we prove that the sim-
plification rules can be strongly postponedwith respect to the β-,μ- andμ′-rules and thenwe
resort to the alreadymentioned result of David and the second author, which states that the de
Groote-style λμμ′-calculus enjoys the strong normalization property (David and Nour 2005,
2007). The Parigot-style λμμ′-calculus is a subsystem of the de Groote-style λμμ′-calculus,
hence, its strong normalization property follows.

• In the subsequent sections, we discuss the normalization properties of the de Groote version
of the symmetric calculi μμ′ and λμμ′ when augmented with the structural rules ρ, θ , and
ε. We show by an example that μμ′ρε-reduction is not strongly normalizing. Then we con-
struct explicit algorithms in order to demonstrate that the weak normalization property for
μμ′ρε-reduction is still valid. We point out that our algorithm allows finding several normal
forms for the same term.

• In the last section, we extend our result to the case of β-reduction in the setting of typed
calculus. More precisely, we show that, if we alternate our weak normalization algorithm for
μμ′ρε-reduction together with an arbitrary one for β-reduction, the process necessarily ter-
minates. In fact, performing these reductions strictly reduces the maximal rank of β-redexes.
The proofs of this section are rather technical and are based on a fine analysis of the ori-
gin of the redexes in the reduction sequences. We observe that θ-reduction does not give
rise to any particular problem and we can postpone it. Our method allows us to give a weak
normalization algorithm for the complete calculus.

Some of the results of this paper, especially the results in Sections 4, 5, and 6, have already been
presented in the thesis of the first author (Battyányi 2007). We would like to clarify, however,
that these results have not been published before and some of the proofs of the thesis were
even incorrect. We found that it was very difficult to correct them using the same methods. The
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method applied here for proving the different variants of weak normalization properties are totally
different. The proof of weak normalization of μμ′ρθε-reduction is direct and gives an easy algo-
rithm. The demonstration of weak normalization of βμμ′ρθε-reduction does not utilize residuals
(which are quite complicated to properly formulate), rather we proceed, in most of the cases, by a
simple induction on the structure of terms.

2. The λμ-Calculus
The λμ-calculus was introduced by Parigot (1992) with the intention of providing a term encod-
ing for classical natural deduction. In our paper, we restrict ourselves to the simply typed calculus.
The λμ-calculus possesses two kinds of variables: one of them is the original set of λ-variables, the
so called intuitionistic variables, and the other kind of variables is the set of μ-variables, which are
termed classical variables. Parigot’s calculus has certain restrictions imposed on the term forma-
tion rules: namely, a μ-abstraction must be followed by an application with a μ-variable and vice
versa. That is, a term μα.M can only be of the form μα.[β]N for some N.

De Groote (1998) has proposed a new version of the λμ-calculus by modifying this syntax.
Namely, the term formation rules became more flexible: a μ-abstraction can now be followed by
an arbitrary term (in the untyped version); hence, it does not need to be of the form μα.[β]N.
Since in the greater part of the paper we are concerned with the de Groote version, we introduce
the de Groote-style calculus in what follows. In Section 4, we deal with the Parigot-style calculus.
We postpone defining the Parigot-style syntax until then.

Definition 2.1 (λμ-terms).

1. Let Vλ = {x, y, z, . . .} denote a set of λ-variables and Vμ = {α, β , γ , . . .} denote a set of
μ-variables, respectively. The λμ-term formation rules are the following.

T := Vλ | λVλ.T | (T )T | [Vμ]T | μVμ.T

We decided to adopt Krivine’s notation for the applications, i.e., we write (M)N instead of
(MN) if we apply M to N.

2. In a λμ-term, the λ and μ operators bind the variables in their scope. We therefore con-
sider terms modulo equivalence, which allows to rename the variables bound by a λ- or a
μ-abstraction.

3. For every λμ-term M, we define by induction on M the set fv(M) of free μ-variables of M:
fv(x)= ∅, fv(λx.M)= fv(M), fv((M)N)= fv(M)∪ fv((N), fv([α]M)= fv(M)∪ {α} and
fv(μα.M)= fv(M) \ {α}.

The notion of subterm plays a very important role in our paper. Many of our subsequent results
require a fine analysis of the propagation and creation of certain subterms. A subterm N of a term
M is a term that appears in the formation tree for M. Obviously, M can contain several identical
subterms. However, when we consider a subterm N of M, we intend to take only one particular
occurrence of N inM.

Definition 2.2 (Subterms).

1. We apply the notation N 
M if N occurs as a subterm in the λμ-term M. We call this
occurrence strict and write N ≺M if, in addition, M �=N.

2. Let N 
M and α ∈ Vμ. An occurrence of the λμ-term N in M is said to be named with α, if
it is preceded by [α], that is, [α]N 
M for that occurrence.
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Definition 2.3 (Type system). The types are built from a set VT of atomic types and the constant ⊥
with the connectives ¬ and →. The type formation rules are the following.

T := VT ∪ {⊥} | ¬T | T→T

In the definition below 
 denotes a (possibly empty) context, that is, a finite set of declarations of the
form x :A (resp. α : ¬A) for a λ-variable x (resp. a μ-variable α) and type A such that a λ-variable
x (resp. a μ-variable α) occurs at most once in an expression x :A (resp. α : ¬A) of 
. The typing
rules are as follows.


, x :A � x :A


, x :A � M : B

 � λx.M :A→ B


 � M :A→ B 
 � N :A

 � (M)N : B


, α : ¬A � M :A

, α : ¬A � [α]M : ⊥


, α : ¬A � M : ⊥

 � μα.M :A

We say that the λμ-term M is typable with type A, if there is a context 
 and a derivation tree
such that the uppermost nodes of the tree are axioms and the bottom node is 
 � M :A.

Observe that, in the typed λμ-calculus, not every term is accepted as well typed. For example, we
cannot write a λμ-term of the form ([α]M)N or μα.λx.M.

In this paper, we work with several kinds of substitutions. All of them are implicitly understood
with the necessary renaming of bound variables to avoid the capturing of the free variables coming
from the substitution. We present μ-substitution in detail. We need it in Definition 2.6.

Definition 2.4 (μ-substitution).

1. A μ-substitution is an expression of the form σ = [α :=s N] where s ∈ {l, r}, α is a μ-variable
and N is a λμ-term.

2. Let σ = [α :=s N] and let M be a λμ-term. We define by induction the λμ-term Mσ . We
adopt the convention of renaming bound variables before a substitution so that no variable
collision occurs. Then we can assume that the free variables of the λμ-term N and variable α

are not bound by any μ-abstraction in the λμ-term M.
• If M = x, then Mσ = x.
• If M = λx.M′, then Mσ = λx.M′σ .
• If M = (M1)M2, then Mσ = (M1σ )M2σ .
• If M = μβ .M′, then Mσ = μβ .M′σ .
• If M = [β]M′ and β �= α, then Mσ = [β]M′σ .
• If M = [α]M′ and s= r, then Mσ = [α](M′σ )N.
• If M = [α]M′ and s= l, then Mσ = [α](N)M′σ .
We adopt the convention that substitution has higher precedence than application and
abstraction.

In order to define ε-reduction, we need the following notion.
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Definition 2.5 (α-translation). Let M be a λμ-term and α a μ-variable. We define the
α-translation Mα of M by induction on M.

• If M = x, then Mα = x.
• If M = λx.M′, then Mα = λx.M′

α .
• If M = (P)Q, then Mα = (Pα)Qα .
• If M = μβ .M′, then Mα = μβ .M′

α .
• If M = [β]M′ and β �= α, then Mα = [β]M′

α .
• If M = [α]M′, then Mα =M′

α .

Intuitively, Mα is the result of replacing every subterm [α]N in M with N.

In what follows, we define the redexes examined in this paper and the reductions induced by
them. Next, we recall some results about the λμ-calculus. Regarding the necessary notions and
definitions and the λ-calculus analogues of the results listed below, the reader is referred to the
standard textbooks, for example Girard et al. (1989), Krivine (1993).

Definition 2.6 (Redex).

1. A β-redex is a λμ-term of the form (λx.M)N and we call M[x :=N] its contractum. The
λμ-term M[x :=N] is obtained from M by replacing every free occurrence of x in M by N.
This substitution is sometimes referred to as β-substitution.

2. A μ-redex is a λμ-term of the form (μα.M)N and we call μα.M[α :=r N] its contractum.
Intuitively, M[α :=r N] is obtained fromM by replacing every subterm inM of the form [α]P
by [α](P)N.

3. A μ′-redex is a λμ-term of the form (N)μα.M and we call μα.M[α :=l N] its contractum.
Intuitively, M[α :=l N] is obtained fromM by replacing every subterm in M of the form [α]P
by [α](N)P.

4. A ρ-redex is a λμ-term of the form [β]μα.M and we call M[α := β] its contractum. The
λμ-term M[α := β] is obtained from M by replacing every free occurrence of α by β.

5. A θ-redex is a λμ-term of the form μα.[α]M where α �∈ fv(M) and we call M its contractum.
6. An ε-redex is a λμ-term of the form μα.μβ .M and we call μα.Mβ its contractum.

The six reductions presented in Definition 2.6 can be justified by the cut elimination rules
in natural deduction. This is why we will have type preservation property in the calculus
(Theorem 2.10), which is also known as subject reduction property.

Remark 2.7.

1. The intuitive meaning of reducing (μα.M)N to μα.M[α :=r N] is that the argument N
of the function μα.M is passed as an argument to all the functions in M named with the
symbol [α].

2. The intuitive meaning of reducing (N)μα.M to μα.M[α :=l N] is that the function N hav-
ing μα.M as argument becomes the functional part of the applications (N)P, where P is a
subterm ofM named with the symbol [α].

Definition 2.8. (Reduction and normalization). LetR⊆ {β ,μ,μ′, ρ, θ , ε}.
1. Let M and M′ be two λμ-terms. We write M →R M′, if M′ is obtained from M by replacing

an r-redex in M, where r ∈R, by its contractum. The reductions (on the redexes) take the
following forms (the θ-redex has an additional condition).
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(λx.M)N →β M[x :=N]
(μα.M)N →μ μα.M[α :=r N]
(N)μα.M →μ′ μα.M[α :=l N]
[β]μα.M →ρ M[α := β]
μα.[α]M →θ M if α �∈ fv(M)
μα.μβ .M →ε μα.Mβ

2. We denote by�R the reflexive, transitive closure of→R. I.e., M�R M′ iff M →R M1 →R
M2 → · · · →R Mk =M′. Finally, we write M →n

R M′ iff M →R M1 →R M2 →R · · · →R
Mn =M′ and M →+

R M′ iff there is an n> 0 such that M →n
R M′.

3. We denote by NFR the set of all λμ-terms in R-normal form, i.e., λμ-terms that do not
contain an r-redex for any r ∈R.

4. A λμ-termM is said to beR-weakly normalizable if there existsM′ ∈NFR such thatM�R
M′. We denote byWNR the set ofR-weakly normalizable terms.

5. A λμ-term M is said to be R-strongly normalizable, if there exists no infinite R-reduction
paths starting from M. That is, any possible sequence of reductions eventually leads to a
normal term. We denote by SNR the set ofR-strongly normalizable terms.

Remark 2.9. When talking about reductions, it is customary to define residuals, that is, the results
of performing reductions in a term. However, in Section 6, when we examine the outcome of
a reduction starting from a term N and leading to N′, we are not interested in knowing about
the residuals of a given subterm of N occurring in N′ (which is a one-to-many correspondence).
Rather, we consider redexes of N′ and we are interested in their possible origin in N, that is, we
trace back the reduction path, and this is a one-to-one correspondence. From the technical point
of view, we do not need to formulate the notions of origin or residual to state the results of that
section.

We list here the most important results that we are going to use in our paper. For the proofs
of the next theorems, the interested reader is referred to Battyányi and Nour (2020), David and
Nour (2005), Py (1998).

Theorem 2.10. The βμμ′ρθε-reduction preserves types, that is, if 
 �M :A andM�βμμ′ρθε M′,
then 
 �M′ :A.

Theorem 2.11. The μμ′-reduction is strongly normalizing for the untyped λμ-terms.

Theorem 2.12. The βμμ′-reduction is strongly normalizing for the typed λμ-terms.

In the sequel, let IH be an abbreviation for the phrase “the induction hypothesis”.

3. Natural Numbers
The aim of this section is to justify our choices regarding the reduction rules. The major benefit of
the “proof as program” paradigm (also known as Curry–Howard isomorphism) is that the proof
itself ensures that the program extracted is correct (Krivine 1993; Leivant 1983). For example,
in intuitionistic second-order λ-calculus, to program functions on integers, it suffices to encode
the proof of the totality of the function to extract the correct program. Since the only λ-terms
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up to β-reduction that have an integer type are the Church numerals, to run the program one
just has to apply it to a Church numeral and then reduce it to find the exact result. In classical
logic the situation is different. Without μ′-reduction we can have closed λμ-terms of integer type
that are not Church numerals themselves (see Example 3.8). For data types, like integers, Parigot
(1993) observed that the classical integers (the terms that encode proofs of integer type) may
contain subterms which can be discarded by simple reduction rules without changing the type.
This phenomenon comes from the fact that one does not need double negation elimination in
order to prove that these terms are well typed. Hence, the idea is to add rules to tidy up the terms
for classical integers. We must keep in mind, however, that we are not able to do the same thing in
higher order logics, since, in that case, the μ′-rule does not preserve the types. We emphasize that
this method does not mean that every classical proof can be transformed into an intuitionistic one
but, at least for many of the data types in the simply typed lambda calculus, it is possible. In higher
order logics there exists another solution: one can give computational content to the quantifiers
in such a way that the μ′-rule preserves the types (Py 1998).

Henceforth, we adopt the strategy of adding certain rules to the calculus, most notably the μ′-
rule. In this section, we prove that in the presence of all of ourmentioned rules, the only λμ-terms,
regarding the de Groote syntax, that can be typed with integer type are the λμ-terms that behave
as Church numerals. In order to obtain the result, all the rules are necessary, that is, we consider
βμμ′ρθε-reduction. The results of this section can be generalized to the various algebraic data
types defined by Krivine in (1994). We omit their treatment in our paper.

Definition 3.1 (Natural numbers).

1. Let X be a variable type andN = X → ((X → X)→ X) be the integer type.
2. For every n ∈ IN and M,N ∈ T , we define by induction the λμ-term (M)nN as follows:

(M)0N =N and, ∀ k ∈ IN, (M)k+1N = (M)(M)kN; then (M)nN = (M) . . . (M)
︸ ︷︷ ︸

n times

N.

3. For every n ∈ IN, we define the Church natural number (or Church numeral) as n=
λx.λf .(f )nx.

4. Let s= λn.λx.λf .(f )((n)x)f . The λ-term s is considered to be the successor function for Church
numerals.

We remark that the successor function really behaves as the arithmetical operator on natural
numbers: we can verify that, for all n ∈ IN, (s)n�β n+ 1.

The following results are valid for λ-terms only. Later, we shall see examples of λμ-terms of
typeN (see Example 3.3).

Theorem 3.2. Let M be a λ-term. If �M :N , then, ∃ n ∈ IN, M�β n.

Proof. See Krivine (1993).

With the introduction of the μ′-rule, we have lost confluence. It is easy to construct terms
leading to different normal forms. More interestingly, we are able to define a λμ-term of integer
type that can evaluate to different integers. This permits us the coding of algorithms that can yield
multiple possible results. The following example shows how a typed λμ-term can be reduced to
two different Church numerals. This phenomenon is not a shortcoming of the calculus. On the
contrary, it even allows us the construction of programs that generate a set of solutions for a given
problem.
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Example 3.3. Let n,m ∈ IN andM = μα.[α](μγ .[α]n)μβ .[α]m. We have

• α : ¬N , β : ¬N �m :N and α : ¬N , γ : ¬(N →N )� n :N , then α : ¬N � μβ .[α]m :N
and α : ¬N � μγ .[α]n :N →N , thus α : ¬N � (μγ .[α]n)μβ .[α]m :N , therefore �M :N ,

• M→μ μα.[α]μγ .[α]n→ρ μα.[α]n→θ n,
• M→μ′ μα.[α]μβ .[α]m→ρ μα.[α]m→θ m.

Lemmas 3.4 and 3.5 are technical and indispensable for obtaining the characterization of λμ-
terms of typeN .

Lemma 3.4. Let 
 = x : X, f : X → X, α : ¬X.

1. There is no λμ-term M such that M = (M1)M2 ∈NFβμμ′ρθε for any terms M1,M2 and

 �M :A→ B.

2. There is no λμ-term M such that M = (M1)M2 ∈NFβμμ′ρθε for any terms M1,M2 and

 �M : ⊥.

Proof.

1. By induction on M. If ∃M = (M1)M2 ∈NFβμμ′ρθε and 
 �M :A→ B, then, 
 �M1 :
C → (A→ B) for some C. Since M is normal and, by inspecting the typing rules, M1 �= x,
M1 �= f ,M1 �= [α]M′

1,M1 �= μβ .M′
1 andM1 �= λy.M′

1.We deduce thatM1 = (M′
1)M

′
2 which

is impossible by IH.
2. If ∃M = (M1)M2 ∈NFβμμ′ρθε and 
 �M : ⊥, then, 
 �M1 : B→ ⊥. Since M is normal

and, by inspecting the typing rules,M1 �= x,M1 �= f ,M1 �= [α]M′
1,M1 �= μβ .M′

1 andM1 �=
λy.M′

1. We deduce thatM1 = (M′
1)M

′
2, which is impossible by 1.

Lemma 3.5. Let 
 = x : X, f : X → X, α : ¬X. If M ∈NFβμμ′ρθε , M �= μβ .M′ and 
 �M : X,
then ∃ n ∈ IN,M = (f )nx.

Proof. By induction onM.

• Because of the typing rules and by our assumption,M �= [α]M′,M �= μα.M′ andM �= λy.M′.
• IfM = x, thenM = (f )0x.
• If M = (M1)M2, then 
 �M1 :A→ X and 
 �M2 :A. Since M1 is normal and, if we take
into account the typing rules, we find that M1 �= [α]M′

1, M1 �= μγ .M′
1 and M1 �= λy.M′

1. By
Lemma 3.4, we haveM1 �= (M′

1)M
′
2. IfM1 is a λ-variable, thenM1 = f and A= X. Since 
 �

M2 : X and, by the fact that M is normal, M2 �= μγ .M′
2, then, by IH, ∃ n ∈ IN, M2 = (f )nx,

thusM = (f )n+1x.

We are now in a position to prove the main result in this section.

Theorem 3.6. If M ∈NFβμμ′ρθε and x : X, f : X → X �M : X, then ∃ n ∈ IN, M = (f )nx.

Proof. If M = μα.M′, then 
 = x : X, f : X → X, α : ¬X �M′ : ⊥. We prove by examining the
form of the λμ-termM′ thatM �= μα.M′.

• Since M is normal, and because of the typing rules, we have M′ �= x, M′ �= f , M′ �= μβ .M′′
andM′ �= λy.M′′.
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• If M′ = [α]M′′, then M′′ �= μβ .N and 
 �M′′ : X. By Lemma 3.5, ∃ n ∈ IN, M′′ = (f )nx and
M = μα.[α](f )nx which is a θ-redex. Contradiction.

• IfM′ = (M′
1)M

′
2, then we obtain a contradiction by Lemma 3.4.

We deduce thatM �= μα.M′, and we apply Lemma 3.5.

Hence, we obtain the following characterization of λμ-terms of typeN .

Corollary 3.7. Let x, f be two different λ-variables. If �M :N and ((M)x)f ∈WN βμμ′ρθε , then
∃ n ∈ IN, ((M)x)f �βμμ′ρθε (f )nx.

Proof. Let N ∈NFβμμ′ρθε such that ((M)x)f �βμμ′ρθε N. We have x : X, f : X → X �
((M)x)f : X, then, by Theorem 2.10, x : X, f : X → X �N : X, and, by Theorem 3.6, ∃ n ∈ IN,
N = (f )nx.

In the light of our subsequent results, the assumption ((M)x)f ∈WN βμμ′ρθε can in fact be
omitted in the above corollary. Namely, we will show in the subsequent sections that βμμ′ρθε-
reduction is weakly normalizing. Hence, if we wish to obtain the corresponding Church numeral,
it is enough to applyM to the numeral 0 and to the successor s, thus one arrives at the result (s)n0,
which reduces to n.

The following example presents a λμ-term of integer type for which we need all reduction rules
to obtain its value.

Example 3.8. LetM = λx.μα.[α]λg.(g)μβ .μγ .[α]λf .(f )x.

• Let x : X, f : X → X, g : X → X, α : ¬((X → X)→ X), β : ¬X and γ : ¬⊥, then we have the
typing relation �M :N .

• In the rest of the paper, in order to make the reductions more readable, at each step we
underline the successive redexes. We have

((M)x)f = ((λx.μα.[α]λg.(g)μβ .μγ .[α]λf .(f )x)x)f
→β (μα.[α]λg.(g)μβ .μγ .[α]λf .(f )x)f
→μ μα.[α](λg.(g)μβ .μγ .[α](λf .(f )x)f )f
→β μα.[α](λg.(g)μβ .μγ .[α](f )x)f
→β μα.[α](f )μβ .μγ .[α](f )x
→ε μα.[α](f )μβ .[α](f )x
→μ′ μα.[α]μβ .[α](f )x
→ρ μα.[α](f )x
→θ (f )x.

Remark 3.9. We recover the Church numerals directly from M if we make use of the ν-rule,
which was introduced by Parigot (1993). The rule can be presented as follows:

μα.M →ν λx.μα.M[α :=r x] if α is of type A→ B.

If we consider again Example 3.8, we obtain the following reduction sequence.

M = λx.μα.[α]λg.(g)μβ .μγ .[α]λf .(f )x
→ν λx.λh.μα.[α](λg.(g)μβ .μγ .[α](λf .(f )x)h)h
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→β λx.λh.μα.[α](λg.(g)μβ .μγ .[α](h)x)h
→β λx.λh.μα.[α](h)μβ .μγ .[α](h)x
→ε λx.λh.μα.[α](h)μβ .[α](h)x
→μ′ λx.λh.μα.[α]μβ .[α](h)x
→ρ λx.λh.μα.[α](h)x
→θ λx.λh.(h)x
= 1.

We prefer not to use the ν-rule, however, since it contains a constraint on the type of a bound
variable. If we considered the untyped calculus together with the ν-rule, then the calculus would
diverge for all λμ-terms containing aμ. We prefer a calculus where reduction does not depend on
the types of terms, hence we omit the ν-rule. In addition, the ν-rule is not strictly necessary for our
main goal in this section, which is the demonstration that the introduction of certain rules suffices
for finding the value of a term of integer type. We need βμμ′ρθε- reduction for this purpose, this
is the statement of Corollary 3.7.

4. The Parigot-Style λμ-Calculus
Prior to turning to our main task and detailing the normalization results for βμμ′ρθε-reduction,
we make a little detour and examine the original version of the λμ-calculus due to Parigot (1992).
We will refer to the calculus discussed in this section as the Parigot-style λμ-calculus as opposed
to the one appearing in Definition 2.1, which was developed by de Groote (1998). The term for-
mation rules of Parigot’s calculus differ from the ones discussed so far in the following manner:
in Parigot’s calculus the forms of λμ-terms are restricted in such a way that μ-abstractions and
applications with μ-variables are tied together. This is achieved by distinguishing named and
unnamed λμ-terms. Named λμ-terms are formulated from unnamed terms by an application
of a μ-variable. Conversely, μ-abstracting over named terms returns unnamed terms. This is
formalized in the definition below.

T := Tu ∪ Tn

Tu := Vλ | μVμ.Tn | λVλ.Tu | (Tu)Tu
Tn := [Vμ] Tu

The typing rules are the same as in Definition 2.3, except that the last two rules are replaced with
the following single rule:


, α : ¬A, β : ¬B � M : B

, β : ¬B � μα.[β]M :A

Concerning the reduction rules, due to the syntax of λμ-terms, the ε-rule cannot be defined here,
hence it is omitted.

To better understand the difference between the Parigot and de Groote-style versions, we
present an example that will be discussed in detail in the rest of the paragraph. We can check that
the λμ-term T = λx.μα.x is of type ⊥ → X. This term can be formulated in the de Groote syntax
only, since, following the μα, there is no [β]. The λμ-term T behaves quite interestingly. We can
verify that, when we apply T to an arbitrarily long finite sequence of λμ-terms, after some steps
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of μ-reduction we obtain μα.P, provided P was the first element of the list. Roughly speaking, T
takes the first element of a list and erases the others. The second author has proved with Saber
(Nour and Saber 2009) that every λμ-term of type ⊥ → X enjoys the same property. The simplest
proof of the formula⊥ → X in the Parigot-style calculus turns out to be T′ = λx.μα.[ϕ]x. The free
variable ϕ is of type ¬⊥, and it is quite embarrassing to acknowledge that we need to resort to a
free variable of type¬⊥ in order to construct a term of type⊥ → X, which is a classical tautology.
Anyway, the λμ-term T′ behaves in the same way as T.

In what follows, we prove that Parigot’s λμ-calculus with ρθ-reduction possesses the strong
normalization property. First of all, we show that ρ- and θ-reduction can be strongly postponed
with respect to β-, μ-, and μ′-reduction.

Definition 4.1 (Strong postponement). Let →1 and →2 be two reduction relations. The reduction
→2 can be strongly postponed with respect to →1, if, for every M, N, P ∈ T such that M�2 P →+

1
N, we have M →+

1 Q�2 N for some Q.

Our first aim is to demonstrate the following theorem.

Theorem 4.2. In the Parigot-style calculus, ρθ -reduction can be strongly postponed with respect to
μμ′β.

We prove the theorem in two steps. First, we establish that θ-reduction can be strongly post-
poned with respect to all the other rules, namely, β ,μ,μ′, ρ. We then show that the ρ-rule can be
strongly postponed with respect to μ, μ′, and β .

First of all, we define two reductions that are special cases of μ- and μ′-reductions. These new
rules appear in the permutation lemmas that we are going to prove and are easy to handle.

Definition 4.3 (μ0 and μ′
0-reduction). A μ0-redex (resp. μ′

0-redex) is a λμ-term of the form
(μα.M)N (resp. (N)μα.M) where α occurs at most once in M, and we call μα.M[α :=r N] (resp.
μα.M[α :=l N]) its contractum. We write M →μ0 M′ (resp. M →μ′

0
M′), if M′ is obtained from M

by replacing a μ0-redex (resp. μ′
0-redex) in M by its contractum. As usual, we define the reductions

�μ0 ,�μ′
0
, →n

μ0 , →n
μ′
0
, →+

μ0 and →+
μ′
0
.

4.1 The case of θ -reduction
We show that, in the Parigot-style λμ-calculus, θ-reduction can be strongly postponed with re-
spect to βμμ′ρ-reduction. We prove for β-, μ-, μ′-, and ρ-reductions, one by one, that the
execution of a θ-reduction followed by either of the mentioned reductions can be replaced by
a reduction sequence where the respective reductions precede θ-reduction (Lemmas 4.4, 4.5, 4.6,
4.7). Additionally, new μ0- or μ′

0-redexes may be created, but these redexes can be executed be-
fore the θ-redex. We can generalize the results on swapping θ-reduction with βμμ′ρ-reductions
to reduction sequences by reasoning by induction on the length of the reduction sequences. This
is stated in Theorem 4.9.

The following lemma shows how θ-reduction relates to the β-rule. In the next lemma, we
observe the usefulness of the new μ0-reduction rule.

Lemma 4.4. LetM →θ P →β N. Then either we have a Q such thatM →β Q�θ N, or there are
R, Q for whichM →μ0 R→β Q→θ N.

Proof. By induction onM.
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• The casesM = [α]M1,M = μα.M1 andM = λx.M1 are straightforward.
• AssumeM = (M1)M2.
– If M1 →θ M′

1, the only nontrivial case is M′
1 = λx.M3 and M1 = μα.[α]M′

1
with α �∈ fv(M′

1). Now we obtain M = (μα.[α]λx.M3)M2 →μ0 μα.[α](λx.M3)M2
→β μα.[α]M3[x :=M2]→θ M3[x :=M2].

– IfM2 →θ M′
2, the only interesting case isM1 = λx.M3, N =M3[x :=M′

2]. Then, with Q=
M3[x :=M2], we haveM →β Q�θ N.

The next lemma shows how θ-reduction commutes with μ-reduction. We notice the appear-
ance of μ0-reduction.

Lemma 4.5.

1. Let M →θ P →μ N. Then either we have a Q such that M →μ Q�θ N or there are R, Q
such thatM →μ0 R→μ Q→θ N.

2. Let M →θ P →μ0 N. Then either M →μ0 Q→θ N for some Q or there are R, Q such that
M →μ0 R→μ0 Q→θ N.

3. LetM →n
θ P →μ0 N. Then there is a Q such thatM�μ0 Q→n

θ N.

Proof.

1. By induction onM.

• The casesM = [α]M1 andM = λx.M1 are straightforward. Regarding whenM = μα.M1,
if M1 →θ M′

1, then the IH applies. Otherwise, M1 = [α]M2 and M →θ M2 = P →β N.
ThenM →β μα.[α]N →θ N.

• AssumeM = (M1)M2.
– If M1 = μα[α]M′

1 →θ M′
1, the only interesting case is M′

1 = μβ .M3. Since α /∈M′
1,

we have M = (μα.[α]μβ .M3)M2 →μ0 μα.[α](μβ .M3)M2 →μ μα.[α]μβ .M3[β :=r
M2] →θ μβ .M3[β :=r M2].

– If M2 = μα[α]M′
2 →θ M′

2, the only interesting case is M1 = μβ .M3, N =
μβ .M3[β :=r M′

2], where, with Q= μβ .M3[β :=r M2], we obtainM →μ Q�θ N.

3. The proof follows the pattern of point 1 of this lemma with the necessary changes
implemented.

4. Applying case 2 of this lemma and proceeding by induction on n.

The following lemma illustrates how θ-reduction commutes with μ′- and μ′
0-reduction.

Lemma 4.6.

1. Let M →θ P →μ′ N. Then either M →μ′ Q�θ N for some Q or there are R, Q such that
M →μ′

0
R→μ′ Q→θ N.

2. Let M →θ P →μ′
0
N. Then either we have M →μ′

0
Q→θ N for some Q or there are R, Q

such thatM →μ′
0
R→μ′

0
Q→θ N.

3. LetM →n
θ P →μ′

0
N. Then there is a Q such thatM�μ′

0
Q→n

θ N.

Proof. Similar to Lemma 4.5.
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The lemma below demonstrates that θ-reduction can be strongly postponed with respect to
ρ-reduction.

Lemma 4.7. LetM →θ P →ρ N. Then we have a Q such thatM →ρ Q→θ N.

Proof. An obvious induction onM.

We are now in a position to prove the next theorem, which describes how θ-reduction
commutes with all the other rules.

Theorem 4.8. Let M�θ P →βμμ′ρ N. Then there exists Q such that M →+
βμμ′ρ Q�θ N.

Proof. Let M →n
θ P →βμμ′ρ N. The proof proceeds by induction on n and by applying the

previous lemmas. Let us suppose first thatM →n
θ P →μ N.

• n= 0: the result is immediate.
• n=m+ 1> 0: let M →m

θ K →θ P for some K. By Lemma 4.5, either K →μ R�θ N or
K →μ0 R→μ L→θ N. In the former case, the IH applies to M →m

θ K →μ R. In the latter
case, by Lemma 4.5, there exists an S such that M�μ0 S→m

θ R, and we can apply the IH to
S→m

θ R→μ L.

The cases P →μ′ N and P →β N are analogous. Finally, the case P →ρ N is straightforward by
Lemma 4.7.

We have obtained the strong postponement of →θ with respect to →βμμ′ρ . This is stated in
the next theorem.

Theorem 4.9. Let M�θ P →+
βμμ′ρ N. Then there exists a Q for which M →+

βμμ′ρ Q�θ N.

Proof. By induction on the reduction sequence P →+
βμμ′ρ N using Theorem 4.8.

Remark 4.10. We notice that the above proofs, hence Theorem 4.9, are also valid in the de
Groote-style calculus. By contrast, the ρ-rule exhibits a different behavior in de Groote’s calculus.
In what follows, we show that ρ-reduction can be strongly postponed with respect to βμμ′-
reduction in the simply typed Parigot calculus, and we demonstrate by giving counterexamples
that this is not valid in the de Groote-style syntax.

4.2 The case of ρ-reduction
Now we show that, in the simply typed Parigot-style λμ-calculus, ρ-reduction can be strongly
postponed with respect to βμμ′-reduction. The proofs of this subsection can also be found in
Py (1998). The presentation there, however, may differ in some places from ours. For the sake
of completeness, we outline the proofs below. We prove that ρ-reduction commutes with β-, μ-
and μ′-reduction. This results in a reduction sequence starting with β-reduction (or with a μ-
or μ′-reduction, respectively) and ending in ρ-reduction (Lemmas 4.12 and 4.14). The subsec-
tion culminates in Theorem 4.16, which can be obtained from the above-mentioned results by
induction on the length of the reduction sequences.

The following lemma will be used in the proof of Lemma 4.12.
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Lemma 4.11. LetM →ρ M′, thenM[x :=N]→ρ M′[x :=N].

Proof. By induction onM.

The next lemma proves postponement of ρ-reduction with respect to β-reduction.

Lemma 4.12.

1. LetM →ρ P →β N. Then there exists Q such thatM →β Q�ρ N.
2. LetM�ρ P →β N. Then there exists Q for whichM →β Q�ρ N.

Proof.

1. By induction onM.

• The casesM = μα.M1 andM = λx.M1 are straightforward.
• Assume M = [α]M1. If M′ = [α]M′

1 and M1 →ρ M′
1, the IH applies. Otherwise M =

[α]M1 = [α]μβM2 →ρ M2[β := α]= P →β N, which is also straightforward.
• AssumeM = (M1)M2.

– IfM1 →ρ M′
1, we argue by induction onM1.

* M′
1 →β M′′

1 : we apply IH.
* M2 →β M′

2: straightforward.
* M1 = λx.M3: M′

1 = λx.M′
3 for some M3 →ρ M′

3 and N =M′
3[x :=M2]. Then,

by Lemma 4.11, we obtainM →β M3[x :=M2]→ρ M′
3[x :=M2]=N.

* M1 = [α]M3: impossible by the term formation rules.
* M1 = μα.M3 orM1 = (M3)M4: we apply IH.

– AssumeM2 →ρ M′
2.

* IfM1 →β M′
1 orM

′
2 →β M′′

2 , we conclude by applying IH.
* M2 = λx.M3 orM2 = μα.M3: IH applies.
* M2 = [α]M3: impossible by the term formation rules.

2. By the previous point of this lemma.

The following lemma is useful for proving Lemma 4.14.

Lemma 4.13. Let M →ρ M′ and assume α /∈ fv(N). Then either M[α :=r N]→ρ M′[α :=r
N] (resp. M[α :=l N]→ρ M′[α :=l N]) or M[α :=r N]→μ P →ρ M′[α :=r N] (resp. M[α :=l
N]→μ′ P →ρ M′[α :=l N]) for some P.

Proof. By induction onM. The only interesting case isM = [γ ]μβ .M1.

• If γ �= α, thenM[α :=r N]= [γ ]μβ .M1[α :=r N]→ρ M1[β := γ ][α :=r N].
• If γ = α, thenM[α :=r N]= [α](μβ .M1[α :=r N])N

→μ [α]μβ .M1[α :=r N][β :=r N]→ρ M1[α :=r N][β :=r N][β := α]
=M1[β := α][α :=r N].

The following lemma proves postponement of ρ-reduction with respect to μ- and
μ′-reductions.
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Lemma 4.14.

1. LetM →ρ P →μ N. Then there exists Q for whichM →+
μ Q�ρ N.

2. LetM →ρ P →μ′ N. Then there exists Q for whichM →+
μ′ Q�ρ N.

3. LetM�ρ P →μ N (resp.M�ρ P →μ′ N). Then there exists Q such thatM →+
μ Q�ρ N

(resp.M →+
μ′ Q�ρ N).

Proof. We only detail some of the more interesting cases of the first point.

1. By induction onM.

• The casesM = μα.M1 andM = λx.M1 are straightforward.
• Assume M = [α]M1: if M1 →ρ M′

1, we obtain the result by IH. Otherwise, M =
[α]μβ .M2 →ρ M2[β := α]→R

μ N. Then M →R′
μ [α]μβ .M3 →ρ M3[β := α]=N for

someM3, where R= R′[β := α].
• AssumeM = (M1)M2.

– IfM1 →ρ M′
1, we distinguish the following cases.

* M′
1 →μ M′′

1 : we apply IH.
* M2 →μ M′

2: by IH.
* M1 = μγ .M3 and M3 →ρ M′

3 and N = μγ .M′
3[γ :=r M2]. Then, by

Lemma 4.13, we have M = (μγ .M3)M2 →μ μγ .M3[γ :=r M2]�μ Q →ρ

μγ .M′
3[γ :=r M2] for some Q.

* M1 = λx.M3: the IH applies.
* M1 = [α]M3: impossible by the term formation rules.

– The case M = (M1)M2 and M2 →ρ M′
2 is similar to the above one. The only

additional point is M1 = μα.M3 and N = μα.M3[α :=r M′
2]. Then, with Q=

μα.M3[α :=r M2],M →μ Q�ρ N holds.

2. Analogous to the above case. The proof makes use of Lemma 4.13.
3. By Points 1 and 2 of this lemma.

Remark 4.15. We emphasize that Lemmas 4.12 and 4.14 rely heavily on the fact that, in Parigot’s
calculus, a μ-application must always be preceded by a μ-abstraction. The lemmas mentioned are
not valid in the de Groote-style λμ-calculus which is shown by the following examples:

• Let M = ([α]μβ .λx.P)Q. Then M →ρ (λx.P[β := α])Q→β P[β := α][x :=Q], and we are
not able to reverse the order of the β- and ρ-reductions.

• Let M = ([α]μβ .μγ .P)Q. Then M →ρ (μγ .P[β := α])Q→μ μγ .P[β := α][γ :=r Q], and
we are not able to reverse the order of the μ- and ρ-reductions.

This phenomenon gives rise to the counterexample falsifying the strong normalization property
of the de Groote-style calculus. We will discuss this in Section 5.

Now we can prove the theorem below, which asserts that the ρ-rule can be strongly postponed
with respect to βμμ′-reduction.
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Theorem 4.16. Let M�ρ P →+
βμμ′ N. Then there is a Q for which M →+

βμμ′ Q�ρ N.

Proof. A consequence of Lemmas 4.12 and 4.14.

Theorems 4.9 and 4.16 together yield Theorem 4.2.

4.3 Strong normalization
We are now in a position to state the main assertion of this section, which is Theorem 4.18.

Theorem 4.17. The ρθ-reduction is strongly normalizing.

Proof. AssumeM →ρθ M′. Then it is easy to observe thatM′, as a word, consists of fewer symbols
thanM, which proves our assertion.

We are now ready to prove our strong normalization result.

Theorem 4.18. In the simply typed Parigot-style λμ-calculus, βμμ′ρθ-reduction is strongly
normalizing.

Proof. It is known that de Groote’s simply typed λμ-calculus with βμμ′-reduction is strongly nor-
malizing (David and Nour 2005). Since de Groote’s calculus is an extension of the original Parigot-
style calculus, we immediately have the strong normalization property for the simply typed Parigot
calculus with βμμ′-reduction. Let η(M) denote the longest βμμ′-reduction sequence starting
fromM. LetM be such that there is an infinite βμμ′ρθ-reduction sequence starting fromM and
η(M) is minimal. By Theorem 4.17, the infinite reduction sequence starting fromM must contain
a βμμ′-reduction, hence there is an M′ and M′′ such that M�ρθ M′ →βμμ′ M′′ and M′′ has an
infinite βμμ′ρθ-reduction sequence. If we apply Theorem 4.9 successively to the reduction se-
quence M�ρθ M′ →βμμ′ M′′, then we obtain an N and P such that M�ρ N →+

βμμ′ P�θ M′′.
Obviously, P has an infinite βμμ′ρθ-reduction sequence, since the reduction sequence P�θ M′′
can be continued with the infinite reduction sequence starting from M′′. We distinguish the
following cases:

• M�ρ N is empty: since η(P)< η(M), this contradicts the assumption onM.
• M�ρ N is not empty: by Theorem 4.16, there is a Q such that M →+

βμμ′ Q�ρ P, then
η(Q)< η(M). This is a contradiction again.

5. Theμ-Calculus
For the rest of the paper, we return to the de Groote-style syntax. With the creation of the λμ-
calculus, Parigot introduced a formal method to encode proofs in classical logic via terms of an
appropriate calculus. The addition of the rules in connection with classical variables made it pos-
sible to represent the proof-theoretical machinery called reasoning by absurdity, which is very
characteristic of classical reasoning. Parigot posed the question whether the rules corresponding
to classical variables, that is, the rules without β , are normalizing. In this spirit, we devote this
section to the calculus with rules other than β . The rationale behind our choice is the expectation
that examining the proof-theoretical properties can be simpler without the β-rule, since we know
that the β-rule in the untyped case is not strongly normalizing and we know, for example, from
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Battyányi and Nour (2020) and David and Nour (2005) that the μμ′-calculus has the strong nor-
malization property even in the untyped case. It looks quite tempting to try and prove the strong
normalization property for the calculi obtained by adding more simplification rules like ρ-, ε-,
and θ-rules to the μμ′-rules. The θ-rule actually does not cause any difficulty, since it is strongly
normalizing and, moreover, we can always move a θ-redex to the end of a reduction sequence.
However, contradicting our first guess, μμ′-reduction fails to be strongly normalizing with the
simplification rules ρ or ε, however, innocent these rules may look. We demonstrate by examples
thatμμ′ρ- andμμ′ε-reductions are not strongly normalizing.We are able to prove, however, that
weak normalization is preserved: in the second half of this section we show that μμ′ρε-reduction
is weakly normalizing. We call the above calculus without β-rule the μ-calculus, that is, we con-
sider μμ′ρε-reduction. In this respect, we talk about μ-normalization and μ-normal form if the
reduction is clear from the context. Otherwise, we indicate explicitly the reductions we are deal-
ing with. We could retain the structure of λμ-terms by encoding a λμ-term with a μ-term by
inductively replacing the subterms of the form λx.M with ((l)x)M, where l is a constant. This
way any μμ′ρε-reduction of a λμ-term would be simulated by an identical μμ′ρε-reduction of
the appropriate μ-term. For the sake of simplicity, we abandon this option. Since only the typed
β-reduction is strongly normalizing, in the last section, when we consider β-rule, we exclusively
remain in the typed setting. Several results of this section, however, work in the untyped case as
well. This is the reason why most of the present section will be concerned with the untyped calcu-
lus. Let us first define the μ-terms, where we have deliberately omitted λ-abstractions, since they
do not play any role concerning the normalization properties of the calculus without β-rule.

T := Vλ | (T )T | [Vμ]T | μVμ.T

5.1 The reductionsμμ′ρ andμμ′ε
It is already known that μμ′-reduction is strongly normalizing (Battyányi 2007; Battyányi and
Nour 2020; David and Nour 2005). We demonstrate in this section that this property is lost when
we add either ρ- or ε-reduction to these rules. This phenomenon is actually a peculiarity of the
de Groote-style syntax. In Theorems 5.1 and 5.3, we present examples of μ-terms that are either
not strongly or even not weakly normalizing. Both results appeared first in the thesis of the first
author (Battyányi 2007).

Theorem 5.1. The μμ′ρ-reduction in the typed μ-calculus is not strongly normalizing.

Proof. Let P = μα.[α][α]x, Q= μβ .P andM = (Q)P.

• We observe that the term M can be typed. Let α : ¬⊥ and β : ¬(⊥ → ⊥), then we have the
typing relations x : ⊥ � P : ⊥, x : ⊥ �Q : ⊥ → ⊥ and x : ⊥ �M : ⊥.

• The following reduction steps show that there exists an infinite reduction sequence starting
fromM.

M = (Q)μα.[α][α]x
→μ′ μα.[α](Q)[α](Q)x
→μ μα.[α](Q)[α]μβ .P
→ρ μα.[α](Q)P = μα.[α]M
...
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Remark 5.2.

1. Note that the μ-termM cannot be written in Parigot syntax because we will not be able to
write two successive [α]s.

2. We remark that, when θ-reduction is allowed, the example above returns the initial
μ-termM.

3. We can normalize the μ-termM as follows :M = (Q)P→μQ.
4. We can use this example to find a λμ-term of integer type which is not strongly

normalizable. Just consider the λμ-termW = λy.λf .μγ .M[x := [γ ]y].

Theorem 5.3. The μμ′ε-reduction in the typed μ-calculus is not strongly normalizing.

Proof. Let K = μα.[α][α]x, L= μβ .[β](z)[β]y and N = μγ .(L)K.

• We first observe that the term N can be typed. Let α : ¬⊥, β : ¬(⊥ → ⊥) and γ : ¬⊥.
We have the typing relations x : ⊥ �K : ⊥, y : ⊥ → ⊥, z : ⊥ → (⊥ → ⊥)� L : ⊥ → ⊥ and
x : ⊥, y : ⊥ → ⊥, z : ⊥ → (⊥ → ⊥)�N : ⊥.

• The following reductions show that there exists an infinite reduction sequence starting
from N.

N = μγ .(μβ .[β](z)[β]y)K
→μ μγ .μβ .[β]((z)[β](y)K)K
→ε μγ .((z)(y)K)K
→μ′ μγ .μα.[α]((z)(y)K)[α]((z)(y)K)x
→ε μγ .((z)(y)K)((z)(y)K)x
→μ′ μγ .((z)(y)K)((z)μα.[α](y)[α](y)x)x
→μ′ μγ .((z)(y)K)(μα.[α](z)(y)[α](z)(y)x)x
→μ μγ .((z)(y)K)μα.[α]((z)(y)[α]((z)(y)x)x)x
→μ′ μγ .μα.[α]((z)(y)K)((z)(y)[α]((z)(y)K)((z)(y)x)x)x
→ε μγ .((z)(y)K)((z)(y)((z)(y)K)((z)(y)x)x)x
...

To convince ourselves that this reduction can be continued without reaching a normal form,
it is enough to observe that there is a certain analogy between lines 5 and 10. The idea of
the proof of non-termination is roughly as follows. We have two occurrences of the subterm
K in the μ-term μγ .((z)(y)K)K, from which we can start an infinite reduction sequence. In
the first stage of each iteration, we reduce exclusively the μ- and μ′-redexes lying around the
second occurrence of K until we arrive at the first occurrence of K wrapped in a subterm
(z)(y)K. Then we distribute that copy of (z)(y)K among all the subterms of the emerging μ′-
redex which are named with α, and afterwards we finish the actual iteration round with an
ε-reduction. Intuitively, none of the performed reduction steps decreases the total number
of μ- and μ′-redexes in the term, which anticipates that the reduction sequence cannot be
terminating.

Let us now properly formalize the proof. First of all we need some notations. For every se-
quence of μ-terms P,Q0, . . . ,Qn, we define by induction on n, the μ-term 〈P;(P0, . . . , Pn)〉
by 〈P;(P0)〉 = ((z)(y)P)P0 and ∀1≤ k≤ n, 〈P;(P0, . . . , Pn)〉 = 〈((z)(y)P)Pn;(P0, . . . , Pn−1)〉.
Intuitively 〈P;(P0, . . . , Pn)〉 = ((z)(y) . . . ((z)(y)((z)(y)P)Pn)Pn−1 . . . )P0.
We define now two sequences of μ-terms (Qn)n and (Rn)n by :
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Q0 = x, ∀n ∈ IN, Qn+1 = 〈x;(Q0, . . . ,Qn)〉 and
∀n ∈ IN, Rn = μγ .((z)(y)K)〈K;(Q0, . . . ,Qn)〉.
We have R0 = μγ .((z)(y)K)((z)(y)K)x and N �+

μμ′ε R0.
We prove that ∀n ∈ IN, Rn �+

μμ′ε Rn+1.

Rn = μγ .((z)(y)K)((z)(y) . . . ((z)(y)((z)(y)K)Qn)Qn−1 . . . )Q0

�+
μμ′ μγ .((z)(y)K)μα.[α]((z)(y) . . . ((z)(y)[α]Qn+1)Qn . . . )Q0

→μ′ μγ .μα.[α]((z)(y)K)((z)(y) . . . ((z)(y)[α]((z)(y)K)Qn+1)Qn . . . )Q0

→ε μγ .((z)(y)K)((z)(y) . . . ((z)(y)((z)(y)K)Qn+1)Qn . . . )Q0

= Rn+1.

Remark 5.4.

1. The variable z is used only to type the μ-term N.
2. We can show that the μ-term N is not μμ′ε-normalizable. We omit the rather technical

proof of this result, since it is not needed in the sequel.

We may guess that one of the reasons for the failure of strong normalization for the above
terms could be the presence of two successive μ-applications [.] (M and N contain [α][α]). To
represent these terms in a typed environment, we need variables of type¬⊥. We have already seen
in the beginning of the previous section that terms of this type appear in the first works of Parigot
with the aim of encoding classical tautologies with typed terms. Let us give another example to
better understand this phenomenon. In Parigot’s syntax, it is not possible to write a λμ-term with
type ¬¬X → X without using a free variable of type ¬⊥. The simplest λμ-term he proposed is:
λy.μα.[ϕ](y)λx.μδ.[α]x. In this term, the variable ϕ is free and has type¬⊥. In de Groote’s syntax,
we can write a term with type ¬¬X → X without free variables and without a variable of type
¬⊥. Here is an example: λy.μα.(y)λx.[α]x. Many researchers have been interested in this kind of
variables. For example, Ariola and Herbelin have made use of variables of type ¬⊥ in Ariola and
Herbelin (2003) (they called them variables for continuation) in order to establish translations
between calculi based on classical logic. It is clear that due to the type of these variables, we can
pile up two μ-applications [α][α], which causes the loss of the strong normalization property.
The first author studied a calculus in his thesis (Battyányi 2007) where variables are not allowed
to have type ¬⊥. He showed that the obtained calculus enjoys strong normalization.

5.2 Weak normalization of theμ-calculus
In this section we show thatμμ′ρε-reduction is weakly normalizing. This result can be surprising
in view of the results that we have discussed before, in particular, given that μμ′ε-reduction is
not even normalizing. We will see that the normalization property of μμ′ρε-reduction essentially
originates from the structure of normal form terms with respect to all four rules. For the proof,
we generalize our method for the weak normalization ofμμ′-calculus (Battyányi and Nour 2020).
We obtain a very simple normalization algorithm that is discussed in detail at the end of the
section. The algorithm will be able to provide us with different normal forms of a given μ-term.
The main idea of our approach is to decide what to do when we face an application (M)N. We
start with normalizing the μ-terms M and N separately to obtain the normal forms M′ and N′.
The calculation can only continue if either M′ or N′ starts with μ. This is where the necessity
of studying the substitutions P[α :=s Q], where s ∈ {r, l} and P,Q are in normal form, emerges.
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Lemma 5.7 characterizes the redexes that can be created in such substitutions, and Lemma 5.9
demonstrates how to handle them properly.

We present the proofs in more detail in order to help the reader to easier understand the
algorithm.

The following lemma depicts theμ-terms obtained by erasingμ-variables from a normal form.

Lemma 5.5. Let M be a μ-term and α a μ-variable. If M ∈NFμμ′ρε , then Mα ∈NFμμ′ρε and,
ifM �= μβ .M′ for some β , then there is no γ such thatMα = μγ .M′′.

Proof. By induction onM using Definition 2.5.

The next lemma is intuitive and has the consequence that we are not able to create a head
μ-redex by a μ- or μ′-substitution.

Lemma 5.6. Let M,N be μ-terms and s ∈ {r, l}. If M[α :=s N]= μγ .Q for some term Q, then
M = μγ .P for some term P.

Proof. By induction onM.

Now we characterize the redexes that can occur in a term of the formM[α :=r N] orM[α :=l
N], whereM and N are normal forms.

Lemma 5.7. LetM,N be μ-terms such thatM,N ∈NFμμ′ρε , σ = [α :=r N] and σ ′ = [α :=l N].

1. We haveMσ ∈NFμρε and the only possible μ′-redexes ofMσ are named with α and are
of the form (L)N provided N = μγ .K for some term K. In particular, Mσ ∈WNμμ′ρε if
N �= μγ .K.

2. We haveMσ ′ ∈NFμ′ρε and the only possibleμ-redexes ofMσ ′ are named with α and are
of the form (N)L provided N = μγ .K for some term K. In particular, Mσ ∈WNμμ′ρε if
N �= μγ .K.

Proof. We only prove the first point. The proof proceeds by induction onM.

• The result is obvious ifM = x.
• If M = μα.P, then P �= μβ .P′ and Mσ = μα.Pσ . By IH, Pσ ∈NFμρε and, by Lemma 5.6,
Pσ �= μβ .Q, thenMσ ∈NFμρε .

• If M = [β]P where β �= α, then P �= μγ .P′ and Mσ = [β]Pσ . By IH, Pσ ∈NFμρε and, by
Lemma 5.6, Pσ �= μγ .Q, thenMσ ∈NFμρε .

• If M = [α]P, then Mσ = [α](Pσ )N. By IH, Pσ ∈NFμρε and, by Lemma 5.6, Pσ �= μβ .Q,
thenMσ ∈NFμρε .

• If M = (P)Q, then Mσ = (Pσ )Qσ and, since M is neither a μ- and nor a μ′-redex, we have
P �= μβ .P′ and Q �= μβ .Q′. Using IH, Pσ ,Qσ ∈NFμρε and, by Lemma 5.6, Pσ �= μβ .P′′,
Qσ �= μβ .Q′′. Hence,Mσ ∈NFμρε and the stipulation for the μ′-redexes is valid forMσ .

The requirement for the μ′-redex can be checked in all the above cases.

Definition 5.8 (μ- and μ′-good).

1. A μ-term M is said to be μ-good if M ∈NFμρε and its μ′-redexes are named with
μ-variables.
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2. A μ-term M is said to be μ′-good if M ∈NFμ′ρε and its μ-redexes are named with
μ-variables.

Let us now show how a μ-term that is μ or μ′-good can be normalized.

Lemma 5.9.

1. IfM is μ-good, then ∃M′ ∈NFμμ′ρε such thatM�μ′ρ M′ andM′ = μγ .L for some term
L iffM = μγ .K for some term K; in particularM ∈WNμμ′ρε .

2. IfM is μ′-good, then ∃M′ ∈NFμμ′ρε such thatM�μρ M′ andM′ = μγ .L for some term
L iffM = μγ .K for some term K; in particularM ∈WNμμ′ρε .

Proof. We only prove the first point by induction onM.

• The result is obvious ifM = x.
• If M = μα.P, then P is μ-good and P �= μβ .K. By IH, ∃ P′ ∈NFμμ′ρε such that P�μ′ρ P′
and P′ �= μβ .L, thenM�μ′ρ μα.P′ ∈NFμμ′ρε .

• M = [α]P where P is not a μ′-redex, then P is μ-good and P �= μβ .K. Because of IH, ∃ P′ ∈
NFμμ′ρε such that P�μ′ρ P′ and P′ �= μβ .L, thenM�μ′ρ [α]P′ ∈NFμμ′ρε .

• If M = [α](P)μγ .Q, then P,Q are μ-good, P �= μβ .K and Q �= μβ .L. By IH, ∃ P′,Q′ ∈
NFμμ′ρε such that P�μ′ρ P′, Q�μ′ρ Q′, P′ �= μβ .K ′ and Q′ �= μβ .L′. We have
M�μ′ρ [α](P′)μγ .Q′ →μ′ [α]μγ .Q′[γ :=l P′]→ρ Q′[γ := α][α :=l P′], and, by point 2 of
Lemma 5.7, Q′[γ := α][α :=l P′] ∈NFμμ′ρε .

• If M = (P)Q, then P,Q are μ-good, P �= μβ .K and Q �= μβ .L. Applying IH, ∃ P′,Q′ ∈
NFμμ′ρε such that P�μ′ρ P′, Q�μ′ρ Q′, P′ �= μβ .K ′ and Q′ �= μβ .L′, thus M�μ′ρ
(P′)Q′ ∈NFμμ′ρε .

We can now prove our weak normalization result.

Theorem 5.10. The μ-calculus is weakly normalizing.

Proof. LetM be any μ-term. We prove by induction onM thatM ∈WNμμ′ρε .

• The result is obvious ifM = x.
• If M = μα.N, then, by IH, ∃N′ ∈NFμμ′ρε such that N �μμ′ρε N′. We have M�μμ′ρε

μα.N′. We distinguish two cases.
– If N′ �= μβ .K, thenM�μμ′ρε μα.N′ ∈NFμμ′ρε .
– If N′ = μβ .K, then, by Lemma 5.5,M�μμ′ρε μα.μβ .K →ε μa.Kβ ∈NFμμ′ρε .

• If M = [α]N, then, using IH, ∃N′ ∈NFμμ′ρε such that N �μμ′ρε N′. We have M�μμ′ρε

[α]N′. We distinguish two cases.
– If N′ �= μβ .K, thenM�μμ′ρε [α]N′ ∈NFμμ′ρε .
– If N′ = μβ .K, thenM�μμ′ρε [α]μβ .K →ρ K[β := α] ∈NFμμ′ρε .

• If M = (P)Q, then, by IH, ∃ P′,Q′ ∈NFμμ′ρε such that P�μμ′ρε P′ and Q�μμ′ρε Q′. We
haveM�μμ′ρε (P′)Q′. We distinguish four cases.

– If P′ �= μα.K and Q′ �= μβ .L, thenM� (P′)Q′ ∈NFμμ′ρε .
– If P′ = μα.K and Q′ �= μβ .L, then M�μμ′ρε μα.K[α :=r Q′]. Recall that, by P′ ∈
NFμμ′ρε , K �= μγK ′. Hence, by Lemmas 5.7 and 5.6, K[α :=r Q′] ∈NFμμ′ρε and
K[α :=r Q′] �= μγ .O, thenM�μμ′ρε μα.K[α :=r Q′] ∈NFμμ′ρε .

– If P′ �= μα.K and Q′ = μβ .L, then M�μμ′ρε μβ .L[α :=l P′]. By Lemmas 5.7 and
5.6, L[α :=l P′] ∈NFμμ′ρε and L[α :=l P′] �= μγ .O, then M�μμ′ρε μα.L[α :=l P′] ∈
NFμμ′ρε .
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– P′ = μα.K and Q′ = μβ .L, then we can conclude in two different ways.
* We have M�μμ′ρε μα.K[α :=r μβ .L]. By Lemmas 5.7 and 5.6, K[α :=r μβ .L] is

μ-good andK[α :=r μβ .L] �= μγ .O, then, by Lemma 5.9, ∃ T ∈NFμμ′ρε such that
K[α :=r μβ .L]�μ′ρ T and T �= μγ .O′, thusM�μμ′ρε μα.T ∈NFμμ′ρε .

* We have M�μμ′ρε μβ .L[β :=l μα.K]. By Lemmas 5.7 and 5.6, V[β :=l μα.K] is
μ′-good and L[β :=l μα.K] �= μγ .O, then, by Lemma 5.9, ∃ T ∈NFμμ′ρε such
that L[β :=l μα.K]�μρ T and T �= μγ .O′, thusM�μμ′ρε μβ .T ∈NFμμ′ρε .

Remark 5.11. Let us summarize the steps that we took to present a normalization algorithm. We
proceed by induction on μ-terms.

1. If M = μα.N, we normalize N and, if we arrive at a normal form that begins with a μβ ,
then we reduce the ε-redex.

2. IfM = [α]N, we normalizeN and, if we arrive at a normal form that begins with aμβ , then
we reduce the ρ-redex.

3. If M = (M1)M2, we begin with normalizing M1 and M2, say, to normal forms N1 and N2.
At this point, we distinguish four cases.
(a) If neither N1, nor N2 begins with a μ, the normalization is finished.
(b) If N1 = μα.N′

1 and N2 �= μβN′
2, then we reduce the μ-redex in order to obtain the

normal form μα.N′
1[α :=r N2].

(c) If N1 �= μα.N′
1 and N2 = μβN′

2, the we reduce the μ′-redex. Hence, we obtain the
normal form μβ .N′

2[α :=l N1].
(d) If N1 = μα.N′

1 and N2 = μβ .N′
2, then

i. One can reduce the μ-redex so that one obtains a μ-good term μα.N′
1[α :=r N2].

It is now sufficient to reduce the remaining μ′-redexes and then the created ρ- and
ε-redexes starting with the innermost ones.

ii. Or one can reduce the μ′-redex so that one obtains a μ′-good term μβ .N′
2[α :=l

N1]. It is now sufficient to reduce the remaining μ-redexes and then the created
ρ- and ε-redexes starting with the innermost ones.

Observe that in case (d) we can obtain two different normal forms forM.

We now take the μ-terms given in the proofs of Theorems 5.1 and 5.3 and normalize them
with our algorithm.

Example 5.12.

1. Following the algorithm, we have two possibilities to normalize M =
(μβ .μα.[α][α]x)μα.[α][α]x.

M = (μβ .μα.[α][α]x)μα.[α][α]x
→ε (μβ .x)μα.[α][α]x
→μ μβ .x.

M = (μβ .μα.[α][α]x)μα.[α][α]x
→ε (μβ .x)μα.[α][α]x
→μ′ μα.[α](μβ .x)[α](μβ .x)x
→μ μα.[α](μβ .x)[α]μβ .x
→ρ μα.[α](μβ .x)x
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→μ μα.[α]μβ .x
→ρ μα.x.

2. Following the algorithm, we have two possibilities to normalize
N = μγ .(μβ .[β](z)[β]y)μα.[α][α]x.

N = μγ .(μβ .[β](z)[β]y)μα.[α][α]x
→μ μγ .μβ .[β]((z)[β](y)μα.[α][α]x)μα.[α][α]x
→μ′ μγ .μβ .[β]((z)[β]μα.[α](y)[α](y)x)μα.[α][α]x
→ρ μγ .μβ .[β]((z)[β](y)[β](y)x)μα.[α][α]x
→μ′ μγ .μβ .[β]μα.[α]((z)[β](y)[β](y)x)[α]((z)[β](y)[β](y)x)x
→ρ μγ .μβ .[β]((z)[β](y)[β](y)x)[β]((z)[β](y)[β](y)x)x
→ε μγ .((z)(y)(y)x)((z)(y)(y)x)x.

N = μγ .(μβ .[β](z)[β]y)μα.[α][α]x
→μ′ μγ .μα.[α](μβ .[β](z)[β]y)[α](μβ .[β](z)[β]y)x
→μ μγ .μα.[α](μβ .[β](z)[β]y)[α]μβ .[β]((z)[β](y)x)x
→ρ μγ .μα.[α](μβ .[β](z)[β]y)[α]((z)[α](y)x)x
→μ μγ .μα.[α]μβ .[β]((z)[β](y)[α]((z)[α](y)x)x)[α]((z)[α](y)x)x
→ρ μγ .μα.[α]((z)[α](y)[α]((z)[α](y)x)x)[α]((z)[α](y)x)x
→ε μγ .((z)(y)((z)(y)x)x)((z)(y)x)x.

We note that we do not obtain the same normal form.

6. The Case of β-Reduction
In this section, we examine how the weak normalization property is preserved when we extend the
calculus with β-reduction. In what follows, since we include β-reduction in our treatment again,
instead of the abbreviations μ-reduction and μ-normal form for μμ′ρε-reduction and μμ′ρε-
normal form, we explicitly indicate the particular reductions we are talking about. Although the
algorithms of the previous section also work in the untyped setting, we nowmust consider a typed
framework, since β-reduction is not weakly normalizing in the untyped form. Hence, all results
we state in this section are for typed λμ-terms. Our algorithm depends on the weak normaliza-
tion algorithm presented in the previous section, and we also make use of the fact that the typed
λ-calculus has the weak normalization property. The idea of the proof is as follows:

• We start from a λμ-termM1 in μμ′ρε-normal form, i.e., from a λμ-term in which there are
no μ-, μ′-, ρ- or ε-redexes.

• We eliminate all β-redexes from M1 by applying an arbitrary weak β-normalization algo-
rithm. Having done this, we arrive at a λμ-termM2 in β-normal form.

• Next, we find a μμ′ρε-normal form M3 of M2 by our weak normalization algorithm. The
λμ-termM3 may contain β-redexes.

• We prove, however, that the maximum rank of β-redexes in M1 is strictly greater than that
ofM3. We will give the necessary definitions in the section.

By this, the process must terminate. Finally, θ-reduction causes no problem since it is strongly
normalizing and does not create new redexes when applied to μμ′ρε-normal forms.
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We have to consider the evolution of types throughout the reduction. In order to simplify
our presentation, we apply the typability relation of Church (Sørensen and Urzyczyn 2006): we
explicitly write the types of the variables in the abstractions together with the types of some of the
subterms. To begin with, we present the reduction rules in the typed case. Recall that this evolution
of types corresponds exactly to the notion of cut elimination in natural deduction proofs. We will
not indicate the types of all subterms of a particular λμ-term, but only the ones that are relevant
for our purposes.

(λxA.MB)NA →β MB[xA :=NA]
(μα¬(A→B).M⊥)NA →μ μα¬B.M⊥[α¬B :=r NA]
(NA→B)μα¬A.M⊥ →μ′ μα¬B.M⊥[α¬B :=l NA→B]
[β¬A]μα¬A.M⊥ →ρ M⊥[α¬A := β¬A]
μα¬A.[α¬A]MA →θ MA

μα¬⊥.μβ¬⊥.M⊥ →ε μα¬⊥.M⊥
β

Definition 6.1. The length of a type A, which is denoted by lh(A), is defined as the number of arrows
in A.

6.1 The origin of aμ-redex in a β-reduction
The aim of this section is to prove Corollary 6.7, which asserts that the creation of a μ-redex
during β-reduction of aμμ′ρε-normal termM forcesM to contain a β-redex of a particular type.
We start from M and M′, where M ∈NFμμ′ρε and M�β M′. We suppose that M′ contains a
μ-redex (μα¬(A→B).P⊥

1 )Q
A
1 . We intend to say something about the termM, whereM is such that

the sequence of β-reductions leading to M′ has created a new μ-redex in M′. We show that M
must contain a β-redex (λxC.PD2 )Q

C
2 with lh(C →D)> lh(A→ B). We consider this β-redex the

origin of the μ-redex. (In fact, a β-redex like that can be uniquely assigned to every μ-redex of
the above form, but we do not need this statement.) To establish this claim, we have to start from
a more general assumption where the propertyM ∈NFμμ′ρε is no longer valid.

The assertion of the following lemma explicitly shows the origins of β- and μ-redexes in a
β-substitution.

Lemma 6.2.

1. If (λx.P)Q
M[y :=N], then
• either (λx.P)Q
N,
• or (λx.P′)Q′ 
M, P′[y :=N]= P and Q′[y :=N]=Q for some terms P′,Q′,
• or (y)M′ 
M, N = λx.P andM′[y :=N]=Q for some termM′.

2. If (μα.P)Q
M[y :=N], then
• either (μα.P)Q
N,
• or (μα.P′)Q′ 
M, P′[y :=N]= P and Q′[y :=N]=Q for some terms P′,Q′,
• or (y)M′ 
M, N = μα.P andM′[y :=N]=Q for some termM′.

Proof. By induction onM.

Lemmas 6.3 and 6.4 determine in some sense the origin of a β- or μ-redex in a β-reduction
while also stating important relations between the type of the redexes in the original term and in
the resulting term, respectively. We can conclude that, during a β-reduction step, a μ-redex can
stem from either a β- or aμ-redex. When the origin is a β-redex, then it must be a redex of longer
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type. On the contrary, if we consider the origin of a β-redex, then it must be a β-redex again
with type not smaller than that of the descendant. This is the statement of Lemma 6.4. Hence, if
we examine a sequence of β-reductions starting from a term in μ-normal form, the origin of a
μ-redex in the final term must be a β-redex in the original term of longer type (Corollary 6.7).

Lemma 6.3. If M →β M′ and (μα¬(A→B).P⊥
1 )Q

A
1 
M′, then either (μα¬(A→B).P⊥

2 )Q
A
2 
M or

(λxC.PD2 )Q
C
2 
M for some terms P2,Q2 and some types C,D where lh(C →D)> lh(A→ B).

Proof. By induction onM. The only nontrivial cases are

• M = (M1)M2 is not the reduced β-redex andM′ = (μα.P1)Q1,
– IfM1 = μα.P1 andM2 →β Q1, thenM = (μα¬(A→B).P⊥

1 )M
A
2 .

– IfM1 →β μα.P1 andM2 =Q1, we only have two possible cases :
* M1 = μα.P2, P2 →β P1 andM = (μα¬(A→B).P⊥

2 )M
A
2 .

* M1 = (λy.P2)Q2 →β μα.P1 and (λyC.PA→B
2 )QC

2 
M with lh(C → (A→ B))> lh(A→
B).

• M = (λy.M′
1)M2 is the reduced β-redex and M′ =M′

1[y :=M2]. Then, by Lemma 6.2, we
have three cases to examine.
– If (μα.P1)Q1 
M2, then we have the result.
– If (μα.P1)Q1 =K[y :=M2] where K = (μα.P2)Q2 
M′

1, then (μα¬(A→B).P⊥
2 )Q

A
2 
M.

– If (y)O
M′
1, M2 = μα.P1 and O[y :=M2]=Q1, then M = (λyA→B.M′C

1 )MA→B
2 and

lh((A→ B)→ C)> lh(A→ B).

Lemma 6.4. If M →β M′ and (λxA.PB1 )Q
A
1 
M′, then (λxC.PD2 )Q

C
2 
M for some terms P2,Q2

and some types C,D where lh(C →D)≥ lh(A→ B).

Proof. By induction onM. The only nontrivial cases are

• M = (M1)M2 is not the reduced β-redex andM′ = (λx.P1)Q1.
– IfM1 = λx.P1 andM2 →β Q1, thenM = (λxA.PB1 )M

A
2 .

– IfM1 →β λx.P1 andM2 =Q1, we have only two possible cases :
* M1 = λx.P2, P1 →β P2 andM = (λxA.PB2 )M

A
2 .

* M1 = (λy.P2)Q2 →β λx.P1 and (λyC.PA→B
2 )QC

2 
M with lh(C → (A→ B))> lh(A→
B).

• M = (λy.M′
1)M2 is the reduced β-redex and M′ =M′

1[y :=M2]. Then, by Lemma 6.2, we
have three cases to examine.
– If (λx.P1)Q1 
M2, then we have the result.
– If (λx.P1)Q1 =K[y :=M2] where K = (λx.P2)Q2 
M′

1, then (λxA.PB2 )Q
A
2 
M.

– If (y)O
M′
1, M2 = λx.P1 and O[y :=M2]=Q1, then M = (λyA→B.M′C

1 )MA→B
2 and

lh((A→ B)→ C)> lh(A→ B).

We obtain the corollaries below about β-reduction sequences. Intuitively, the origin of a μ-
redex in a β-reduction sequence is either a μ-redex of the same type or a β-redex of a type of
greater length.

Corollary 6.5. IfM�β M′ and (λxA.PB1 )Q
A
1 
M′, then (λxC.PD2 )Q

C
2 
M for some terms P2,Q2

and some types C,D where lh(C →D)≥ lh(A→ B).
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Proof. By induction on the length of the reductionM�β M′ using Lemma 6.4.

Corollary 6.6. IfM�β M′ and (μα¬(A→B).P⊥
1 )Q

A
1 
M′, then either (μα¬(A→B).P⊥

2 )Q
A
2 
M or

(λxC.PD2 )Q
C
2 
M for some terms P2,Q2 and some types C,D where lh(C →D)> lh(A→ B).

Proof. By induction on the length of the reductionM�β M′. IfM =M′, the result is immediate.
IfM�β N →β M′, then, by Lemma 6.3, either (μα¬(A→B).P⊥

3 )Q
A
3 
N or (λxE.PF3 )Q

E
3 
N where

lh(E→ F)> lh(A→ B).

• If (λxE.PF3 )Q
E
3 
N where lh(E→ F)> lh(A→ B), then by Corollary 6.5, (λxC.PD2 )Q

C
2 
M

where lh(C →D)≥ lh(E→ F)> lh(A→ B).
• If (μα¬(A→B).P⊥

3 )Q
A
3 
N, the by IH, either (μα¬(A→B).P⊥

2 )Q
A
2 
M or (λxC.PD2 )Q

C
2 
M

where lh(C →D)> lh(A→ B).

Corollary 6.7. IfM ∈NFμμ′ρε ,M�β M′, and (μα¬(A→B).P⊥
1 )Q

A
1 
M′, then (λxC.PD2 )Q

C
2 
M

for some terms P2,Q2 and some types C,D where lh(C →D)> lh(A→ B).

Proof. Immediate from Corollary 6.6.

6.2 The origin of a β-redex in aμμ′ρε-reduction
The aim of this section is to prove Corollary 6.17, which means that the creation of a β-redex
during a μμ′ρε-reduction sequence starting from a β-normal term M compels M to contain a
μμ′ρε-redex of a particular type. We start fromM and N such thatM ∈NFβ andM�μμ′ρε N.
We assume that N contains a β-redex (λxA.PB1 )Q

A
1 . We show thatM must then contain a μ-redex

(μα¬(A→B).P⊥
2 )Q

A
2 . We consider this μ-redex as the origin of the β-redex. (In fact, a μ-redex

like that can be uniquely assigned to every β-redex of the above form, but we do not need this
statement.) To establish this claim, we have to start from a more general assumption where M ∈
NFβ is no longer valid. We note that two cases can arise here: the origin of a β-redex with respect
to a μμ′ρε-reduction step can either be a β-redex or a μ-redex. When the origin of a β-redex is
a μ-redex, then we have to resort to more subtle methods in our investigation. To this end, we
introduce two notions: we describe when a term is α-good and when it verifies condition (A, B)
for certain types A, B (Definitions 6.9 and 6.12). Intuitively, these notions deal with the situation
when the the name of the μ-variable changes because of a ρ-reduction.

The following lemma gives the location of β- and μ-redexes in a μ-substitution.

Lemma 6.8. Let s ∈ {l, r}
1. If (λx.P)Q
M[β :=s N], then

• either (λx.P)Q
N,
• or (λx.P′)Q′ 
M, P′[β :=s N]= P and Q′[β :=s N]=Q for some terms P′,Q′,
• or s= r, [β]λx.P′ 
M, N =Q and P′[β :=r N]= P for some term P′,
• or s= l, [β]Q′ 
M, N = λx.P and Q′[β :=l N]=Q for some term Q′.

2. If (μα.P)Q
M[β :=s N], then

• either (μα.P)Q
N,
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• or (μα.P′)Q′ 
M, U ′[β :=s N]=U and Q′[β :=s N]=Q for some terms P′,Q′,
• or s= r, [β]μα.P′ 
M, N =Q and P′[β :=r N]= P for some term P′,
• or s= l, [β]Q′ 
M, N = μα.P and Q′[β :=l N]=Q for some term Q′.

Proof. By induction onM.

In what follows, we show that the origin of a μ-redex through a μμ′ρε-reduction sequence is
always a μ-redex of the same type (Lemma 6.14). However, we need to add an auxiliary condition
on the μ-redex to ensure this property during the search for the origin of a redex (Lemma 6.16).
Hence, we give Definitions 6.9 and 6.12.

Definition 6.9. Let M be a λμ-term, A, B types and α¬(A→B) ∈ fv(M). We say that M is α-good if
there exists an occurrence of [α] such that

• either [α]λyA.OB 
M for some term O, or
• [α]μβ¬(A→B).P⊥ 
M for some term P which is β-good.

Intuitively a λμ-term is α-good if it contains a subterm of the following form:
[α]μβ1 . . . [β1]μβ2 . . . [β2]μβ3 . . . [βn]λy.O.

The next lemma helps understanding the notion of α-good with respect to a substitution and
will be used in subsequent proofs.

Lemma 6.10. LetM be a λμ-term.

1. AssumeM = P[β :=s Q], s ∈ {l, r} and β �= α.
(a) IfM is α-good, then either P is α-good or Q is α-good.
(b) If P is α-good, thenM is α-good.
(c) If β ∈ fv(P) and Q is α-good, thenM is α-good.

2. If γ ¬⊥ is a μ-variable, thenM is α-good iffMγ is α-good.
3. If α �∈ fv(N) and s ∈ {l, r}, thenM[α :=s N] is not α-good.

Proof. By induction onM.

The following lemma intuitively means that we will not be able to create an α-good term by a
μμ′ρε-reduction.

Lemma 6.11. LetM�μμ′ρε M′ and assumeM′ is α-good, thenM is α-good.

Proof. It is enough to examine the case of one-step reduction.We proceed by induction onM. The
casesM = λx.N,M = μβ .N,M = (M1)M2, andM = [β]N, where β �= α, are treated by induction
and using Lemma 6.10. AssumeM = [α]N. We examine the form of N.

• If N = λy.O, thenM is α-good.
• The case N = [β]O is impossible, since the type of N differs from ⊥ by reason of α :

¬(A→ B).
• Assume N = μβ .O.
– If M →μμ′ρε [α]μβ .O′ =M′ where O→μμ′ρε O′, then O′ is α-good or β-good, thus, by
IH, O is α-good or β-good, thereforeM is also α-good.

– IfM = [α]μβ .O→ρ O[β := α]=M′, then O is α-good or β-good, thusM is also α-good.
• Assume N = (N1)N2.
– IfM →μμ′ρε [α](N′

1)N2 =M′ where N1 →μμ′ρε N′
1, then N′

1 or N2 is α-good, thus, by IH,
N1 or N2 is α-good, thereforeM is also α-good.

– The caseM →μμ′ρε [α](N1)N′
2 =M′ where N2 →μμ′ρε N′

2 is treated in the same way.

https://doi.org/10.1017/S096012952200041X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952200041X


1094 P. Battyányi and K. Nour

– IfM = [α](μβ .N3)N2 →μ [α]μβ .N3[β :=r N2]=M′, then, by Lemma 6.10, N3[β :=r N2]
is not β-good, thus N3[β :=r N2] is α-good, and, by Lemma 6.10, N3 or N2 is α-good,
thereforeM is also α-good.

– The caseM = [α](N1)μβ .N2 →μ′ [α]μβ .N2[β :=l N1]=M′ is treated in the same way.

In the next definition, we give the condition that should be imposed on the μ-redex to ensure
that our typability assertions hold throughout the reduction sequence. For a redex (μα.P)Q, we
demand that there exists a chain, in the sense of Definition 6.9, that starts with [α] and ends with
a λ-abstraction. We will see in the proof of Lemma 6.13 how this condition propagates and how it
prevents the creation of certain μ-redexes.

Definition 6.12. Let M be a λμ-term and A, B be types. We say that M verifies the condition (A, B),
or (A, B) holds for M, if M contains a subterm of the form (μα¬(A→B).P⊥)QA for some terms P,Q
such that P is α-good.

Lemma 6.13. LetM be a λμ-term and γ ¬⊥ be a μ-variable, thenM verifies the condition (A, B)
iffMγ verifies the condition (A, B).

Proof. By induction onM.

Lemma 6.14. LetM�μμ′ρε M′ and assume condition (A, B) holds forM′. Then condition (A, B)
holds forM.

Proof. It is enough to examine the case of one-step reduction. We proceed by induction on M.
The casesM = λx.N,M = μβ .N, andM = [β]N are treated by induction and using Lemma 6.13.

• AssumeM = (M1)M2 andM is not the reduced redex.
– The caseM′ = (M1)M′

2,M2 →μμ′ρε M′
2 and (A, B) holds forM1 or forM′

2, then, using IH,
(A, B) holds forM1 or forM2, thus (A, B) holds forM.

– The case M′ = (M1)M′
2, M2 →μμ′ρε M′

2, M1 = μα¬(A→B).P and P is α-good, then (A, B)
holds forM.

– If M′ = (M′
1)M2, M1 →μμ′ρε M′

1 and (A, B) holds for M′
1 or for M2, then, by IH, (A, B)

holds forM1 or forM2, thus (A, B) holds forM.
– IfM′ = (M′

1)M2,M1 →μμ′ρε M′
1,M

′
1 = μα¬(A→B).P and P is α-good, then we examine the

possible forms ofM1.
* The casesM1 = λx.N andM1 = [β]N are impossible.
* If M1 = μα.N and N →μμ′ρε P, then, by Lemma 6.11, N is α-good, thus M verifies the
condition (A, B).

* If M1 = μα.μγ .N →ε μα.Nγ = μα.P, then, by Lemma 6.10, N is α-good, thus M1
verifies the condition (A, B).

* IfM1 = (μα.K)L→μ μα.K[α :=r L]= μα.P, then K[α :=r L] would be α-good which is
impossible according to Lemma 6.10.

* IfM1 = (L)μα.K →μ′ μα.K[α :=l L]= μα.P, then K[α :=l L] would be α-good which is
impossible according to Lemma 6.10.

• If M = (μβ¬(C→D).M⊥
3 )M2C is the reduced redex and M′ = μβ .M3[β :=r M2], then, by

Lemma 6.8, we have three subcases to examine.
– The case where (A, B) holds forM2 is immediate.
– If (μα¬(A→B).P⊥)QA =O[β :=r M2] for someO= (μα¬(A→B).P⊥

1 )Q
A
1 
M3 and P1[β :=r

M2] is α-good, then, since α �∈ fv(M2), by Lemma 6.10, P1 is α-good, thus M verifies the
condition (A, B).
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– If [β]μα.P1 
M3, (μα¬(A→B).P1[β :=M2]⊥)MA
2 
M′ and P1[β :=M2] is α-good, then

C →D=A→ B and since α �∈ fv(M2), by Lemma 6.10, P1 is α-good, thus M verifies the
condition (A, B).

• If M = (MC→D
1 )μβ¬C.M⊥

3 is the reduced redex and M′ = μβ .M3[β :=l M1], then, by
Lemma 6.8, we have three subcases to consider.
– The case where (A, B) holds forM1 is immediate.
– If (μα¬(A→B).P⊥)QA =O[β :=l M1] for some O= (μα¬(A→B).P⊥

1 )Q
A
1 
M3 and P1[β :=l

M1] is α-good, then, since α �∈ fv(M1), by Lemma 6.10, P1 is α-good, thus M verifies the
condition (A, B).

– If M1 = μα.P, [β]Q1 
M3, (μα¬(A→B).P⊥)Q1[β :=l M1]A 
M′ and P is α-good, then
C →D=A→ B andM verifies the condition (A, B).

The lemma below will be applied in the proof of Lemma 6.16 in the case of ε-reduction.

Lemma6.15. LetM be a λμ-term, γ ¬⊥ aμ-variable andA, B be two types. Assume (λxA.PB)QA 

Mγ . Then (λxA.PB1 )Q

A
1 
M for some terms P1,Q1.

Proof. By induction onM.

The next lemma shows that the origin of a β-redex of type A→ B through a μμ′ρε-reduction
sequence is either a β-redex or a μ-redex verifying the condition (A, B) of the same type.

Lemma 6.16. If M�μμ′ρε M′ and (λxA.PB)QA 
M′, then either (λxA.PB1 )Q
A
1 
M for some

terms P1,Q1 or the condition (A, B) holds forM.

Proof. By Lemma 6.14, it is enough to examine the case of one-step reduction. We proceed by
induction on M. The cases M = λy.N, M = μβ .N, and M = [β]N are treated by induction and
using Lemma 6.15.

• AssumeM = (M1)M2 andM is not the reduced redex.
– IfM′ = (M′

1)M2,M1 →μμ′ρε M′
1 and (λxA.PB)QA 
M′

1 or (λxA.PB)QA 
M2, then, in the
former case, we have the result by applying the IH. The latter case is trivial.

– If M′ = (M1)M′
2, M2 →μμ′ρε M′

2 and (λxA.PB)QA 
M1 or (λxA.PB)QA 
M′
2, then either

we have the result or we can apply the IH.
– If M′ = (λxA.PB)MA

2 and M1 →μμ′ρε λx.P, then the only possible case is M1 = λx.O and
O→μμ′ρε P, henceM = (λxA.OB)MA

2 .
– IfM′ = (λxA.PB)MA

3 andM2 →μμ′ρε M3, thenM = (λxA.PB)MA
2 .

• IfM = (μα¬(A→B)M⊥
3 )M

A
2 andM →μμ′ρε μα.M3[α :=r M2]=M′, then, by Lemma 6.8, we

also have three subcases to examine.
– The case where (λxA.PB)QA 
M2 is immediate.
– If (λxA.PB)QA =O[α :=r M2] for some O= (λxA.PB1 )Q

A
1 
M3, then (λxA.PB1 )Q

A
1 
M,

and we have the result.
– If [α]λxA.PB1 
M3 and (λxA.P1[α :=r M2]B)MA

2 
M′, then M3 is α-good and the condi-
tion (A, B) holds forM.

• IfM = (MA→B
1 )μα¬A.M⊥

3 ,M →μμ′ρε μα.M3[α :=l M1]=M′, then, by Lemma 6.8, we have
the subcases below.
– The case where (λxA.PB)QA 
M1 is immediate.
– If (λxA.PB)QA =O[α :=l M1] for someO= (λxA.PB1 )Q

A
1 
M3, then (λxA.PB1 )Q

A
1 
M, and

we have the result.
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– If M1 = λx.P, [α]Q1 
M3 and (λxA.PB)Q1[α :=l M1]A 
M′, then M =
(λxA.PB)μα¬A.M⊥

3 and our assertion follows.

We obtain the following corollaries about μμ′ρε-reduction sequences. Intuitively, the origin
of a β-redex through a μμ′ρε-reduction sequence is a μ-redex of the same type.

Corollary 6.17. If M ∈NFβ , M�μμ′ρε N and (λxA.PB1 )Q
A
1 
N, then (μα¬(A→B).P⊥

2 )Q
A
2 
M

for some terms P2,Q2.

Proof. By Lemma 6.16.

6.3 Weak normalization
In this subsection, we state ourmain result (Theorem 6.24), which asserts that λμμ′ρεθ-reduction
in the typed λμ-calculus is weakly normalizing.

We define the rank of a β-redex first, and then the rank of a λμ-term. We could also define the
rank of all the other redexes (and, especially, that of a μ-redex), but we do not need this for our
subsequent proofs.

Definition 6.18. Let M be a λμ-term.

1. Let r = (λxA.PB)QA be a β-redex of M. The rank of r in M is defined by
rank(r,M)= lh(A→ B).

2. The rank of M is rank(M)=max{rank(r,M) | r is a β-redex in M}.

At this point, we can combine all of our previous results on the creation of redexes to prove that
βμμ′ρε-reduction is weakly normalizing (Theorem 6.21). In the statements below, we implicitly
make use of the facts that typed β-reduction is strongly normalizing (Krivine 1993) (in fact, weak
normalization suffices here) and that μμ′ρε-reduction is weakly normalizing (Theorem 5.10).

Corollary 6.19. Let M1,M3 ∈NFμμ′ρε and M2 ∈NFβ such that M3 �∈NFβ and M1 �β

M2 �μμ′ρε M3, then rank(M1)> rank(M3).

Proof. Let (λxA.PB1 )Q
A
1 be a β-redex of M3 having maximal rank. By Corollary 6.17,

(μα¬(A→B).P⊥
2 )Q

A
2 
M2 and, by Corollary 6.7, (λyC.P′D

1 )Q′C
1 
M1 where lh(C →D)>

lh(A→ B). Hence rank(M1)> rank(M3).

Corollary 6.20. IfM ∈NFμμ′ρε , thenM ∈WN βμμ′ρε .

Proof. By induction on rank(M). If M �∈NFβ , then M�β M′ and M′ ∈NFβ for some M′. If
M′ �∈NFμμ′ρε , then M′ �μμ′ρε M′′ and M′′ ∈NFμμ′ρε . Finally, if M′′ �∈NFβ , by Corollary
6.19, rank(M)> rank(M′′) and, by IH,M′′ ∈WN βμμ′ρε , thenM ∈WN βμμ′ρε .

We are now in a position to prove our weak normalization result.

Theorem 6.21. In the typed λμ-calculus, βμμ′ρε-reduction is weakly normalizing.
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Proof. Let M be a λμ-term and M�μμ′ρε M′ where M′ ∈NFμμ′ρε . By Corollary 6.20, M′ ∈
WN βμμ′ρε , henceM ∈WN βμμ′ρε .

We can also extend our weak normalization algorithm for the θ-rule. First, we prove that
θ-reduction creates no βμμ′ρε-redex when the starting λμ-term is in βμμ′ρε-normal form.
Hence, θ-reduction can be postponed.

Lemma 6.22. LetM ∈NFβμμ′ρε . IfM�θ M′, thenM′ ∈NFβμμ′ρε .

Proof. It is enough to examine the case of one-step reduction. Letμα.[α]N be the θ-redex reduced
in M. We observe that if μα.[α]N ≺M, then λx.μα.[α]N 
M, and if λx.μα.[α]N ≺M, then
[β]λx.μα.[α]N 
M or (Q)λx.μα.[α]N 
M, whereQ �= λy.Q′ andQ �= μγ .Q′. Thus, θ-reduction
inM cannot create other redexes.

Lemma 6.23. Both in the typed and in the untyped λμ-calculus, θ-reduction strongly normalizes.

Proof. We observe that θ-reduction decreases the size of the terms.

Theorem 6.24. In the typed λμ-calculus, λμμ′ρεθ-reduction is weakly normalizing.

Proof. Follows from Theorem 6.21 and Lemmas 6.22 and 6.23.

7. Future Work

1. Apart from the fact that the μ′-rule destroys confluence, it has another flaw. It is the only
rule (among the rules we have presented in this paper) that does not preserve second-order
types (the classical counterparts of Girard’s system F and Krivine’s system AF2). In Py
(1998), Py has presented an example of a λμ-term discovered by Raffalli which produces a
λμ-term of an arbitrary type starting from another λμ-term of a different type. The prob-
lem is caused exclusively by the μ′-rule. It would be interesting to find conditions under
which, on the one hand, the μ′-rule would preserve types, and, on the other hand, the
uniqueness of the representation of integers and strong normalization would be retained.

2. In Nour and Ziadeh (2017), the second author and Ziadeh have presented a realizability
semantics for the λμ-calculus equipped only with β- and μ-reduction rules. They have ob-
tained a completeness result for this semantics. This type of semantics is interesting since,
on the one hand, it characterizes the algorithmic behavior of typed λμ-terms and, on the
other hand, it can be a tool for proving weak or strong normalization. Adding other reduc-
tion rules (even the simplest ones like ρ- or θ-rules) considerably complicates the study
of these semantics. It would be interesting to find a good realizability semantics for the
λμ-calculus with all rules discussed in this paper.

3. The second author has published (Nour 2002) a calculus that encodes second order, clas-
sical natural deduction. This calculus also contains rules that permit the encoding of a
parallel or operator. It would be interesting to study the μ′-rule in this calculus and prove
its weak normalization.
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