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Abstract

The main goal of this paper is to construct a compactification of the moduli space of
degree d � 5 surfaces in P3

C, i.e. a parameter space whose interior points correspond to
(equivalence classes of) smooth surfaces in P3 and whose boundary points correspond
to degenerations of such surfaces. We consider a divisor D on a Fano variety Z as a pair
(Z, D) satisfying certain properties. We find a modular compactification of such pairs
and, in the case of Z = P3 and D a surface, use their properties to classify the pairs on
the boundary of the moduli space.

1. Introduction

The aim of this paper is to construct a compactification of the moduli space of degree-d surfaces
in P3. In the case of plane curves, using the Hilbert scheme or geometric invariant theory (GIT)
techniques, one can find a compactification of the space parameterizing smooth degree-d curves
in P2, but the boundary does not always have a good modular interpretation. For instance, there
are points on the boundary that correspond to several different limits of families of plane curves.
In [Has99] for the degree-four case and [Hac04] for general degree, instead of studying curves
C, the authors worked with pairs (P2, C) and certain allowable degenerations. Remembering
the embedding of C in P2 and extracting certain properties yielded a compactification with a
modular interpretation.

This paper stems from the natural generalization of Hacking’s work: find a good compactifi-
cation of the moduli space of degree-d surfaces S in P3 using pairs. In fact, because the framework
is not specific to P3, we solve a more general problem and find a modular compactification of
anticanonical divisors DZ on a fixed Fano variety Z using degenerations of the pair (Z, DZ).

For Z = P3 and D a surface of degree d = 5, the moduli space of smooth surfaces has been
understood by [Hor73]. However, even for smooth surfaces, this moduli space is not irreducible.
When fixing the numerical invariants K5

S = 5, pg = 4, and q = 0 of quintic surfaces, even in the
smooth case, one obtains a moduli space with two components. These details will be further
explored in § 5, but we mention it here to indicate the increase in complexity when passing from
curves to surfaces and motivate our focus on smoothable pairs.

To find a meaningful compactification of the moduli space of degree-d surfaces in P3,
and more generally, divisors DZ that are a rational multiple of the anticanonical divisor on
a fixed Fano variety Z, we follow Hacking’s approach and study pairs (X, D) that arise as
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limits of pairs (Z, DZ). In fact, we only consider what we call (Zsm, p, q) H-stable pairs (X, D)
(see Definition 2.1) which have prescribed singularities and satisfy the relationship pKX + qD ∼ 0
and admit a smoothing to Z. As in Hacking’s work, this class of pairs is particularly well-behaved.
In the case of Z = P3, remembering the embedding of D into P3 allows us to not only have a
modular compactification of a space parameterizing (P3, D) but also to classify the pairs appear-
ing on the boundary of the moduli space. The first result is that the class of pairs defined does
actually give a compactification of the moduli space of pairs (Z, DZ).

Theorem 1.1. The moduli space of (Zsm, p, q) H-stable pairs is a proper Deligne–Mumford stack.

Although the smoothability assumption restricts us to one component of the moduli space,
we can remove the assumption in the case of odd degree surfaces in P3. However, this moduli
space is not irreducible.

Theorem 1.2. For odd degree d, the moduli space of three-dimensional (P3, d, 4) H-stable pairs
is a proper Deligne–Mumford stack.

The reason for requiring oddness of degree is that, without the smoothability assump-
tion, the class of pairs defined is not obviously a bounded family. If boundedness was known,
Hacking’s arguments in the plane curve case [Hac04] would imply that the moduli space is
a Deligne–Mumford stack and properness would follow from a relatively standard arguments.
Hacon, McKernan, and Xu proved a strong result about boundedness of families of certain pairs
(X, D). It requires the coefficients of the divisors appearing in D to belong to a set satisfying
the descending chain condition (DCC). Here, in the definition of a (Z, p, q) H-stable pair, one
requires that (X, (q/p + ε)D) is semi-log-canonical (slc) for ε sufficiently small. However, ε is
not bounded from below, so results on boundedness such as those in [HMX14b] do not directly
apply. If ε was required to belong to a DCC set, [HMX14b, Theorem 1.1] would apply to show
the given pairs belong to a bounded family.

In a different direction, an initial goal of this project was to classify the singular pairs
appearing on the boundary of the moduli space of (P3,sm, d, 4) H-stable pairs. In working on this
problem, the classification results gave enough control of the singularities of the boundary of the
moduli space for odd degree d to obtain boundedness even for non-smoothable pairs. In other
words, regardless of what set ε lives in, the classification results for odd degree d actually imply
boundedness. Therefore, for (P3, d, 4) H-stable pairs, the following theorems serve two purposes:
explicit classification of singular threefolds appearing in the moduli space and a means to achieve
boundedness without carefully studying the numbers ε that appear in H-stable pairs. The first
result is about ambient spaces X with mild singularities. Because D ∼Q −(d/4)KX , classifying
all the possible threefolds X appearing is the first step toward understanding D.

Theorem 1.3. Given a (P3,sm, d, 4) H-stable pair (X, D), if d is odd and X has canonical
singularities, then:

(a) X ∼= P3;
(b) X is isomorphic to the cone over the anticanonical embedding of the quadric surface P1 × P1;

or
(c) X ∼= P(1, 1, 2, 4), the cone over the anticanonical embedding of the singular quadric surface;

and D ∈ |OX(−(d/4)KX)| such that (X, (4/d)D) is log-terminal.

Certainly there are other examples of threefolds X with canonical singularities and −KX

ample that do not appear in the previous list, even some appearing in the boundary for even
degree. However, in the odd-degree case, the boundary is very special. For any degree, the
previous theorem gives a divisorial component of the boundary of the moduli space.
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Theorem 1.4. Let X be the cone over the anticanonical embedding of P1 × P1. For any degree
d > 4, (the closure of) the locus of (P3,sm, d, 4) H-stable pairs (X, D) in the moduli space forms
a divisor DQ in M(P3,sm,d,4) and the moduli space is smooth at the generic point of DQ.

More generally, in the moduli space of (d, n + 1)Pn-smoothable H-stable pairs, the locus
parameterizing divisors on a cone over a quadric always forms a divisor.

Theorem 1.5. Let X ⊂ P(1n+1, 2) be the cone over the degree-two embedding of a smooth
quadric Q ∈ |OPn(2)|. For any degree d > n + 1, (the closure of) the locus of (d, n + 1)Pn-
smoothable H-stable pairs (X, D) forms a divisor DQ in the moduli space MPn-sm,(d,n+1).

In the case of P3-smoothable H-stable pairs, we also study more complicated singularities.
In order to guarantee a proper moduli space, we consider slc pairs. In § 4, we show that pairs
with strictly slc singularities can only appear in the moduli space of pairs with even degree d.
Therefore, for odd degree, we only need to consider semi-log-terminal pairs to construct the
moduli space.

Theorem 1.6. Given a (P3, d, 4) H-stable pair with d odd, (X, (4/d)D), each component of the
normalization of (X, (4/d)D) is divisorial log-terminal (dlt).

Considering for a moment the H-stable pairs (X, D) with X normal, the canonical threefolds
X appearing are described in Theorem 1.3. From Theorem 1.6, it remains to classify the (non-
canonical) log-terminal threefolds appearing as H-stable pairs. Partial progress toward this goal
is obtained in § 4.5. We hope to continue this study and classify non-normal threefolds (via a
similar analysis of their normalization) in future work.

1.1 A map of this paper
In the first half of the paper, we study (Z, p, q) H-stable pairs for an arbitrary smooth Fano variety
Z. We begin in § 2 with a brief explanation of motivating ideas for this paper, we define H-stable
pairs, and use the existence of minimal models to prove that a family of pairs over a punctured
curve can be extended in an essentially unique way, justifying the definition. In § 3, we study
deformation theory of H-stable pairs and further analyze the moduli space M(Zsm,p,q), proving
that it is a proper Deligne–Mumford stack. In the case of Z = P3, we remove the smoothabil-
ity assumption for odd degree d and prove that M(P3,d,4) is a proper Deligne–Mumford stack.
In the second half of the paper, we focus primarily on the case Z = P3 to obtain finer classi-
fication results, generalizing to Z = Pn when possible. In § 4, we prove a number of technical
lemmas about extremal contractions in the minimal model program, use them to understand
log-canonical singularities appearing in degree dP3 H-stable pairs, and build up the necessary
machinery to prove Theorem 1.6. We prove a number of related results on the structure of slc
Fano varieties and their connections to boundedness of odd degree P3 H-stable pairs. We also
discuss canonical and log-terminal Fano degenerations of Pn as a step toward classifying all Pn-
smoothable H-stable pairs. Finally, in § 5, we explicitly study MP3-sm,(5,4), the moduli space of
quintic surfaces in P3. We compare this to existing compactifications and discuss the differences
between M(P3,d,4) and M(P3,sm,d,4).

2. H-stable pairs

Throughout, we work with varieties over C. A pair (X, D) is a variety X with a divisor D =∑
aiDi that is a formal linear combination of prime divisors. We restrict to the case ai ∈ Q.

1331

https://doi.org/10.1112/S0010437X22007552 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007552


K. DeVleming

We use the standard definitions for (log-)terminal and (log-)canonical singularities found, for
example, in [KM98, § 2.3].

2.1 Previous work
We will construct a compactification of the moduli space of degree d surfaces in P3 using ideas
first introduced in [KS-B88] and mention here the relationship between this compactification
and related ones. The Kollár–Shepherd-Barron (KSB) compactification is a construction of a
parameter space for stable objects with slc singularities. Our precise definition of stable objects
appears in § 2. One can consider these compactifications as higher-dimensional analogues of M̄g,n,
the moduli space of stable genus g curves with n marked points [Ale96].

The framework motivating this definition of the compactification comes from earlier work of
Hassett and Hacking, studying moduli spaces of degree d plane curves by considering them as
pairs (P2, C). A compactification of the moduli space of the space of pairs (P2, C4), where C4 has
degree four was studied in [Has99] and, more generally, for any degree d � 4, a compactification
of pairs (P2, Cd) was constructed in [Hac04]. The work in [Hac04] provides much of the foundation
for this paper as the study of pairs (P3, Sd) is a natural generalization. In a different direction,
one could generalize [Hac04] to study pairs (S, D) for other del Pezzo surfaces. In particular,
a compactification of the space of pairs (P1 × P1, C3,3) using similar machinery is described in
[DH21]. In general, Kollár and Xu show that one can make a coarse moduli space of polarized
log Calabi Yau pairs where each irreducible component is projective [KX20].

There is another approach to the study of plane curves and surfaces in P3 using the tools
provided by GIT. However, as discussed in [WX14], GIT begins to fail for higher degree d. In the
GIT construction, the moduli space depends on the power r of ωS (or other ample line bundle)
being used to embed smooth surfaces into projective space and it is shown that the moduli
spaces in this construction do not stabilize. In particular, in [WX14, Theorem 1 (2)], there are
families of degree d > 30 smooth surfaces over a punctured base whose limit does not stabilize
as r increases. Therefore, it benefits us to approach the problem for general degree d surfaces
using the framework of stable pairs instead of GIT. Some comparison to the GIT case for degree
d = 5 will be given in § 5.

2.2 Definitions
We are interested in studying the moduli space of hypersurfaces S (of a fixed degree) in P3. As
motivated in the introduction, instead of studying moduli of such S directly, we study moduli
of pairs (X, D) where X is a degeneration of P3 and D is a degeneration of S. The motivating
work for plane curves in [Hac04] considered moduli of pairs (X, D) where X was a slc surface
that smoothed to P2 and D was a divisor such that dKX + 3D ∼ 0 and KX + (3/d + ε)D was
ample for some (and hence all) ε sufficiently small. Hacking was able to show that, for d not a
multiple of 3, this moduli stack is proper, separated, and smooth, and was also able to explicitly
determine the surfaces X (and thus the divisors D) appearing on the boundary of the moduli
space.

Now, consider the direct generalization of [Hac04]: a compactification of the moduli space
of degree d hypersurfaces in P3. We present the following definitions. This paper will focus on
dimension 3, but the definitions make sense for general Fano varieties and divisors of arbitrary
dimension. First, we define a (Z, p, q) stable pair.

Definition 2.1. For a given Fano variety Z, let n = dimZ, and fix integers p, q > 0 such that
q/p < 1. A pair (X, D), where X is an n-fold and D is an effective Q-Cartier Z-divisor, is said
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to be (Z, p, q) stable in the sense of Hacking, or (Z, p, q) H-stable, if:

(i) the pair (X, (q/p + ε)D) is slc and the divisor KX + (q/p + ε)D is ample for some ε > 0;
(ii) the divisor pKX + qD is linearly equivalent to zero;
(iii) Kn

X = Kn
Z and X is Cohen–Macaulay.

Note that this definition does not require that Z admits a deformation to X.
Next, we define Z-smoothable pairs. Note that the last condition implies the last condition

in the non-smoothable definition by Proposition 4.2.

Definition 2.2. Fix a smooth Fano variety Z and integers p, q > 0 such that q/p < 1. A pair
(X, D), where X is an n-fold and D is an effective Q-Cartier Z-divisor, is said to be (Zsm, p, q)
stable in the sense of Hacking, or (Zsm, p, q) H-stable if:

(i) the pair (X, (q/p + ε)D) is slc and the divisor KX + (q/p + ε)D is ample for some ε > 0;
(ii) the divisor pKX + qD is linearly equivalent to zero;
(iii) there is a deformation (X ,D)/T of (X, D) over the germ of a curve such that the general

fiber Xt is smooth, Xt admits a smooth deformation to Z, and the divisors KX/T and D are
Q-Cartier.

Note that the last condition in Definition 2.2 serves two purposes: one, to ensure that X
is smoothable (restricting to certain components of the moduli space) but two, to ensure that
X is smoothable to a fixed component of the moduli space. For example, the Fano surfaces
P1 × P1 and F1 have the same volume, but are not deformation equivalent, and correspond to
two different components of a moduli space. If, for example, Z = P1 × P1, we would require that
X admits a smoothing to P1 × P1. If Z itself has moduli (for example, Z a cubic surface in P3),
we require that X admit a smoothing to a smooth cubic surface, deformation equivalent to Z.

Our goal is to construct a moduli space M(Zsm,p,q) of these pairs.

Remark 2.3. Note that the relationship pKX + qD ∼ 0 implies that, if Kn
X is fixed, so is the

volume of the pair (KX + D)n. The condition that X is Cohen–Macaulay potentially restricts us
to some components of the general moduli space, but by [KK10, Corollary 7.13], the components
parameterizing non-Cohen–Macaulay pairs are disconnected from these components.

Remark 2.4. In [DH21], for del Pezzo surfaces S and curves C, the authors make the natural
generalization of Hacking’s definition and refer to pairs (S, C) as almost K3 stable. This definition
coincides with their definition.

There are trivial advantages to studying (Z, p, q) (and (Zsm, p, q)) H-stable pairs, summarized
in the following lemma. These are the primary reasons (P3,sm, d, 4) H-stable pairs are classifiable.

Lemma 2.5. If (X, D) is an H-stable pair, the following hold:

(a) KX is anti-ample;
(b) D is ample;
(c) both KX and D are Q-Cartier;
(d) if X is strictly slc, the strictly slc locus of X is not contained in the support of D.

2.3 Limits of H-stable pairs exist
In recent work [KX20], János Kollár and Chenyang Xu prove the following theorem.

Theorem 2.6 [KX20, Theorem 2]. The irreducible components of the coarse moduli space of
(Z, p, q) H-stable pairs are projective.
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We are very grateful to János Kollár for pointing our attention to this result and the crucial
steps of the proof. In particular, this implies that each component of the moduli stack M(Z,p,q)

is proper.

Theorem 2.7. Let 0 ∈ T be the germ of a curve and write T× = T − 0. Let X be a smooth Fano
variety and D× ⊂ X× × T× be a family of smooth hypersurfaces over T× such that pKX + qD ∼
0, 0 < q/p < 1. Then, there exists a finite surjective base change T ′ → T and a family (X ,D)/T ′

of H-stable pairs extending the pullback of the family (X × T×,D×)/T× such that the divisors
KX and D are Q-Cartier. Any two such families become isomorphic after a further finite surjective
base change.

Proof. (Sketch.) This is a consequence of Kollár and Xu’s Theorem, although we provide a brief
sketch of the proof for convenience of the reader. By [AK00, Theorem 0.3], we can complete
(X × T×,D×)/T× to a locally stable family (X ,D)/T ′. Let r = q/p. Choosing an appropriate
ample divisor L on X , one can run a relative minimal model program with scaling of L + D to
obtain a minimal family over a smooth base, which is locally stable by [KNX18, Corollary 10].
Furthermore, the total space is Q-factorial and one can show that KXmin + rDmin is relatively
trivial and Dmin is relatively big, so by [HX13, Theorem 1.1] one can find a relative canonical
model (X c, (r + ε)Dc). This is a stable family and one can show that KX c + rDc is relatively
semiample and trivial on the generic fiber, so trivial on the central fiber. Because both KX c +
rDc and KX c + (r + ε)Dc are Q-Cartier, we have KX c and Dc are both Q-Cartier. Therefore,
(X c,Dc) is the desired family of H-stable pairs. Uniqueness follows from uniqueness of canonical
models. �

3. The moduli space

3.1 Boundedness
First, we show the moduli functor is bounded. This argument is inspired by that in [Kar00,
Theorem 1.1] and is similar to the proof of Kollár and Xu’s Theorem (Theorem 2.6). As before,
this is also a consequence of Theorem 2.6.

Theorem 3.1. For a given Fano variety Z, the set of (Zsm, p, q) H-stable pairs (X, D) form a
bounded family.

Proof. By a theorem of Matsusaka [Mat86, Theorem 2.4], there is a fixed integer m such that all
smooth Fano varieties X with fixed anticanonical Hilbert polynomial HX(l) = χ(X,−lKX) =
χ(Z,−lKZ) have −mKX very ample with no higher cohomology, hence a fixed projective space
Pn containing all such X. In particular, Z is one such X, as is any smooth variety W deformation
equivalent to Z. Let r = q/p. Similarly, we can choose m such that −mKW |D is very ample with
no higher cohomology for any smooth D ∼Q −r−1KW . We can find a product Hilb of Hilbert
schemes parameterizing embeddings D ⊂ W ⊂ Pn. Let B0 ⊂ Hilb be the subscheme parameter-
izing such pairs. Taking its closure B0 ⊂ B ⊂ Hilb, there is a universal family (X ,D) → B whose
general fiber is deformation equivalent to the smooth Fano variety Z with a smooth divisor D. By
[AK00, Theorem 0.3], we can apply weak semistable reduction to obtain a locally stable family
(Y,DY) → B′, where B′ → B is a modification of B and Y → X ′ = X ×B B′ is a modification
of X ′. We can apply the techniques of proof of Theorems 2.6 and 2.7 to find the KY + (r + ε)DY
canonical model over B′ for any ε sufficiently small; call it (Yc,Dc). It is straightforward to show
that every fiber satisfies the conditions of being an H-stable pair; now it suffices to show that
every H-stable pair appears as a fiber.
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Because the weak semistable reduction potentially modifies even smooth fibers, we first need
to show the generic smooth fibers are isomorphic to the generic fibers of the canonical model.
Let (X 0,D0) be the universal family over B0 and let (X 0′,D0′) be the family over the preimage
B′

0 ⊂ B′. Let (Y0,c,D0,c) → B′
0 be the fibers of the canonical model over B′

0. Because the fibers of
(X 0′,D0′) → B′

0 are smooth Fano varieties with smooth divisors D over a smooth base, it follows
that (X 0′,D0′) is its own relative canonical model, and birational to (Y0,c,D0,c) by construction.
Therefore, by uniqueness of canonical models, we must have (X 0′,D0′) ∼= (Y0,c,D0,c).

Now, let (Y, DY ) be any H-stable pair. By the smoothability assumption, (Y, DY ) admits a
smoothing over the germ of a curve to (W, DW ) for some DW , so (Y, DY ) is the central fiber of
some family (X ,D) → T , where T is a discrete valuation ring. Up to a finite base change, the
generic fiber (X×,D×) → T× gives an embedding T× → B′ which can be completed to a curve
T ′ ⊂ B′. The family over T ′ has the same generic fiber as (X ,D) → T , but up to a finite base
change, both families are canonical models of a common semistable resolution. Therefore, their
central fibers are isomorphic. �

As mentioned in § 2, one could define an alternate class of pairs, omitting the condition that
each pair admits a smoothing. Indeed, even for quintic surfaces in P3, there should be a second
component of the moduli space of smooth surfaces as discussed in § 5, so it seems natural to
relax this condition. Although we do not have boundedness of non-smoothable pairs in general,
we can prove boundedness of (P3, d, 4) H-stable pairs when d is odd. This is further discussed in
§ 4 and proven in Theorem 4.32.

3.2 Algebraicity
Using recent results, we can further analyze the structure of the moduli space of H-stable pairs.
We study Kollár families of pairs, Q-Gorenstein families where ω

[n]
X commutes with base change

for all n. In fact, we will require a stronger condition that both ω
[n]
X and OX (nD) commute with

base change for all n. Using [Hac04, c.f. Theorem 4.4] and following his work, one can show that
the moduli space is indeed an algebraic stack.

Definition 3.2. Let p ∈ X be a germ of an slc variety. Define the index of p in X to be the
minimal N > 0 such that NKX is Cartier. Let V → X be the canonical covering V = SpecXO ⊕
O(KX) ⊕ · · · ⊕ O((N − 1)KX), a μN quotient (cf. [Rei87]). A deformation X/S of X is
Q-Gorenstein if there is a μN -equivariant deformation V/S of V whose quotient is X/S.

Definition 3.3. Let X/S be a flat family of slc varieties. We say that X is weakly Q-Gorenstein
if, for some N > 0, ω

[N ]
X/S is invertible. The minimal such N is called the index of X .

The following lemmas show that Q-Gorenstein implies weakly Q-Gorenstein and that the
conditions are equivalent if the general fiber is canonical and the base is a curve.

Lemma 3.4. Let p ∈ X be a germ of an slc variety. A Q-Gorenstein deformation X/S of X of
index N is weakly Q-Gorenstein of index N .

Proof. This follows directly from [Hac04, Lemma 3.3]. �
Lemma 3.5. Let X/T be a flat family of slc varieties over the germ of a curve. If the general
fiber has canonical singularities and KX is Q-Cartier, then X/S is a Q-Gorenstein deformation
of X0.

Proof. Using the stronger inversion of adjunction result in [Pat16, Lemma 2.10], the proof of
Lemma 3.4 in [Hac04] applies directly. �
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Many properties of Q-Gorenstein deformations are collected in [Hac04, § 3]. In fact,
Q-Gorenstein deformations X are exactly the deformations X of X satisfying the Kollár condi-
tion that ω

[n]
X commutes with base change for all n (see [Hac12, 2.4]). However, the presence of

the divisor D can cause further obstructions to deforming X. In particular, taking the canonical
cover V of X, the associated divisor DV does not have to be a Cartier divisor.

Example 3.6. Let X be the cone over the anticanonical embedding of P1 × P1, a section of OW (2)
in W = P(1, 1, 1, 1, 2). This is a Q-Gorenstein deformation of P3 as computed in Example 4.34 and
appears in (P3,sm, d, 4) H-stable pairs. Note that X has canonical singularities, so the canonical
cover of X is X itself and OX(KX) = OW (−4)|X . A general surface D such that dKX + 4D ∼ 0
is an element of OW (d)|X . If d is odd, D is not a Cartier divisor.

This contrasts the picture for plane curves, (d, 3)P2 H-stable pairs: in [Hac04, Theorem 3.12],
it is shown that DV , the induced divisor on the canonical cover, is always Cartier. In order to
avoid obstructions coming from the divisor D, we consider higher-index covers. By considering
the canonical covering of slightly higher index, we can show that studying deformations of the
pair (X, D) amounts to studying deformations of X because the presence of the divisor D does
not add any further obstructions. In fact, this can be done by taking the canonical covering
V corresponding to N ′KX , where N ′ is the index of the Q-divisor (1/q)KX : the relationship
pKX + qD ∼ 0 implies that DV is Cartier on V . We call such a cover a q-canonical cover and
such a deformation a q-Q-Gorenstein deformation. By the same proof as in [Hac12, 2.4], these
deformations are exactly those such that both KX and D commute with base change.

Theorem 3.7. Let (X ,D)/A be a Q-Gorenstein family H-stable pairs. Let A′ → A be an
infinitesimal extension and X ′ → A′ a q-Q-Gorenstein deformation of X/A. Then, there exists a
Q-Gorenstein deformation (X ′,D′)/A′ of (X ,D)/A.

Proof. Using the following lemma in place of Lemma 3.14 in the proof of Theorem 3.12 in [Hac04],
the same proof holds. �
Lemma 3.8. Let (X, D) be an H-stable pair. Then, H1(X,OX(D)) = 0.

Proof. Recall that D is an ample Q-Cartier Z-divisor. Although this is a standard consequence
of Kawamata–Viehweg vanishing when X is log-terminal, for the general case we apply [Fuj14,
Theorem 1.7] to (X, 0), noting that D and −KX are ample, so D − KX is ample. Note that the
hypotheses in [Fuj14, Theorem 1.7] are satisfied because (X, (q/p)D) is slc and, by definition, D
does not contain any component of the conductor of X (see [Kol13, Definition-Lemma 5.10]). �

We continue Example 3.6 and compute the 4-canonical covering.

Example 3.9. Let X be the cone over the anticanonical embedding of P1 × P1, a section of OW (2)
in W = P(1, 1, 1, 1, 2), so OX(KX) = OW (−4)|X . Therefore, OX(1

2KX) = OX(−2) is Cartier, so
we need to construct a 2 : 1 cover to make 1

4KX a Cartier divisor. Alternatively, we are taking
a cover to make OX(1) a Cartier divisor. Let X ′ ⊂ P4 be the cone over the quadric surface
in P3, so X ′ is the cone over the (1, 1)-embedding of P1 × P1. Because X is the cone over the
(2, 2)-embedding of the same surface, there is a finite morphism X ′ → X which is the desired
cover near the singular point of X.

In [Hac04, § 3], the author computes the deformation and obstruction spaces for these pairs.
We can use this and Examples 3.6 and 3.9 to show that the moduli space M(P3,sm,d,4) is generically
smooth along the locus parameterizing pairs (X, D) where X is the cone over the anticanonical
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embedding of P1 × P1. Later, in Proposition 4.41, we show that this locus is actually a divisor
in M(P3,sm,d,4).

Proposition 3.10. Let X be the cone over the anticanonical embedding of P1 × P1. Then, X
has unobstructed 4-Q-Gorenstein deformations. In particular, the moduli space M(P3,sm,d,4) is
smooth at the generic point of the locus parameterizing surfaces on X.

Proof. By [Hac04, Remark after 3.9], the obstructions to extending 4-Q-Gorenstein deformations
of X are contained in sheaves T 2

QG,X (see [Hac04, Notation 3.6]). Furthermore, there is a spectral
sequence Hp(T q

QG,X) ⇒ T p+q
QG,X . If, locally, π : V → X is the 4-canonical cover where X is the

quotient by a group G, we can compute T q
QG,X = (π∗T q

V )G. Furthermore, T 0
QG,X = T 0

X , T 1
V is

supported on the singular locus of V , and T 2
V is supported where V is not a local complete

intersection. By Example 3.9, if X is the cone over the anticanonical embedding of P1 × P1, then
V is the cone over the quadric surface. Because the singular locus of V is a single point and V is
a hypersurface, we have H1(T 1

V ) = 0 and H0(T 2
V ) = 0. A computation shows that H2(T 0

X) = 0,
hence T 2

QG,X = 0. �
Finally, we aim to describe the moduli functor. In the definition of (Zsm, p, q) H-stable pairs,

we require that (X, D) has a smoothing to (W, DW ), where W is a smooth Fano variety defor-
mation equivalent to Z. Therefore, we are interested only in certain ‘smoothable’ deformations
of (X, D), made precise in the following.

Definition 3.11. Let (X, D)/C be a (Zsm, p, q) H-stable pair. Let (X u,Du)/S0 be a versal
Q-Gorenstein deformation of (X, D), where S0 is finite type over C. Let S1 ⊂ S0 be the open
subscheme where the fibers of X u over S0 are smooth and deformation equivalent to Z and S2

the (scheme-theoretic) closure of S1 in S0. A q-Q-Gorenstein deformation of (X, D) is said to be
smoothable if it can be obtained by pullback from the deformation (X u,Du) ×S0 S2 → 0 ∈ S2.

Remark 3.12. In [Hac04], it is shown that this condition is vacuous for (d, 3)P2-smoothable
H-stable pairs when d is not a multiple of 3, but non-trivial when 3 divides d.

For the definition of family of Q-Gorenstein smoothable pairs, and more technicalities on the
necessary conditions for the divisor D to be well-behaved, we refer the reader to the recent paper
[Kol19] of Kollár. We include the necessary definition here (see [Kol19, Definition 10]). Note that
the idea of K-flatness over a reduced base is equivalent to the usual definition of family of stable
pairs [Kol17].

Definition 3.13. A family of stable pairs is a morphism f : (X, cD) → S, where:

(i) f : X → S is flat and projective;
(ii) D is a K-flat family of divisors on X (see [Kol19, Definition 2]);
(iii) KX + cD is Q Cartier and relatively ample; and
(iv) the fibers (Xs, cDs) are slc.

Definition 3.14. Let Sch be the category of noetherian schemes over C. For a smooth
Fano variety Z and (p, q) ∈ N2, we define a moduli pseudofunctor over a reduced base S as
M(Zsm,p,q) → Sch by

M(Zsm,p,q)(S) =
{

(X ,D)/S (X ,D)/S is a q-Q-Gorenstein smoothable family
of (Zsm, p, q) H-stable pairs

}
.

As stated previously, in [Hac04], it is shown that the Q-Gorenstein deformation condition
is equivalent to requiring the Kollár condition on families. Using the deformation theory in
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[Hac04, § 3], Theorem 2.7, and the finiteness of automorphism groups [Kol13, Corollary 10.69]
we deduce the following theorem.

Theorem 3.15. The moduli space of (Zsm, p, q) H-stable pairs is a proper Deligne–Mumford
stack.

Remark 3.16. As mentioned in § 2, one could remove the condition that H-stable pairs admit a
smoothing to Z and define an analogous moduli functor M(Z,p,q) of pairs, although the class
of arbitrary (Z, p, q) H-stable pairs is not obviously bounded. However, Theorem 4.32 says that
(P3, d, 4) H-stable pairs are bounded for odd degree d, and this moduli space is still proper.
Although the proof of properness was given for pairs that admit a smoothing, the same proof
applies more generally. By Hacking’s work in [Hac04, § 3] and the boundedness theorem, we
obtain the following.

Theorem 3.17. For odd degree d, the moduli space M(P3,d,4) is a proper Deligne–Mumford
stack.

We explore M(P3,sm,d,4) and M(P3,d,4) in §§ 4 and 5. As a final remark, note that one could
define an alternative moduli functor via the work of Abramovich and Hasset [AH11]. We can
consider the substack of the algebraic stack Kω

slc (cf. [AH11, § 5]) satisfying the locally closed
condition dKX + 4D ∼ 0 (see [Kov09, Lemma 5.8]). This condition is algebraic, so we could
define a variant P(P3,sm,d,4) of M(P3,sm,d,4) as this substack. It is not clear if the presence of the
divisor D has an effect on the structure of this stack.

4. Classification

Now, we turn our attention to (P3, d, 4) H-stable pairs. We begin an explicit classification of
the threefolds appearing in this moduli space. We dedicate our attention only to the threefolds
X, not the pair (X, D), since the ample divisor D must be in a linear system determined by
a multiple of KX . As a starting point, we have the following result of de Fernex and Fusi that
implies any log-terminal degenerations are rational.

Theorem 4.1 [dFF13, Theorem 1.3]. Rationality specializes in families of complex Kawamata
log-terminal (klt) varieties of dimension at most three.

A partial classification of rational, log-terminal varieties that admit a smoothing to P3 is
discussed in § 4.5. One necessary criterion is that (−KX)3 = 64 (see the following). We point out
that such a classification is known in dimension two (log-terminal surfaces that smooth to P2)
by [Man91] and is recalled in § 4.5.

Proposition 4.2. Let f : X → C be a flat family of n-dimensional projective varieties over a
pointed curve 0 ∈ C. Assume that KX/C is Q-Cartier, the general fiber Xt is smooth, and the
special fiber X0 is slc. Then, (KX0)

n = (KXt)
n. In particular, if Xt

∼= P3, (KX0)
3 = −64.

Proof. Let l be an integer such that lKX is Cartier. Then, for any t ∈ C,OXt(lKXt) ∼= ω
[l]
Xt

∼=
(ω[l]

X )t. By definition, (lKXt)n is the coefficient of m1m2 . . . mn in χ(Xt,OXt((m1 + m2 + · · · +
mn)lKXt)). Because f is flat, this polynomial is constant, so (lKXt)

n = lnKn
Xt

is constant.
Therefore, Kn

Xt
is constant, as desired. �

Remark 4.3. The assumption that KX is Q-Cartier is essential; see [KM98, Example 7.61].

It is also easy to construct a non-rational (normal) degeneration of P3, as shown by the
following example. Any such example is at least log-canonical, in light of Theorem 4.1.
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Example 4.4. Given a projectively normal variety V ⊂ PN , there is a standard degeneration of V
to a cone over its hyperplane section [KM98, 7.61]. Thus, taking the 4-uple embedding P3 ↪→ P34,
the general hyperplane section of the image corresponds to a K3 surface in P3, which has trivial
canonical divisor. The cone X over such a surface S is log-canonical: let Y be the blow up
of X at the vertex, f : Y → X. Then, f is birational with exceptional divisor isomorphic to
S, so KY ∼ f∗KX + aS. By adjunction, KS ∼ (KY + S)|S , so 0 ∼ KS ∼ (f∗KX + (a + 1)S)|S .
Given any curve C ⊂ S, 0 = KS · C = (a + 1)S|S · C, hence a = −1 and X is log-canonical. A
calculation shows that −KY − S is nef and zero exactly on curves contained in the exceptional
locus S, so −KX is ample. However, for X to occur as a threefold in a pair (X, D) on the
boundary of the moduli space above, we must have −(d/4)KX ≡ D. By the previous discussion,
KX · C ∈ Z for any curve C ⊂ X, and a calculation shows that KX · Γ = −1 for a ruling of the
cone. As the singularity of X is not klt, in order for (X, (4/d + ε)D) to also be log-canonical, D
must miss the singularity of X. Hence, D is contained in the smooth locus of X and is therefore
Cartier, so D · C ∈ Z, which implies d/4 ∈ Z. Therefore, for d not divisible by four, X cannot
occur as a boundary threefold.

From this observation and the comment on boundedness, we first focus on the log-canonical
but non-klt threefolds appearing in the moduli problem. The main result is that, for odd degree
d, there are none.

4.1 Non-klt Fano threefolds
The inspiration for classification of the non-klt threefolds in this moduli problem is the following.

Theorem 4.5 [Ish91]. If X is a normal, Gorenstein variety of dimension n with KX anti-ample
and with finite (non-empty) irrational locus, then X is a cone over a variety S with canonical
singularities and KS ∼ 0.

Following Ishii, we refer to the log-canonical but non-klt locus as the strictly log-canonical
locus. If X is a normal, Gorenstein, log-canonical variety with KX anti-ample, the strictly
log-canonical locus coincides with the irrational locus [KM98, Corollary 5.24]. Therefore, this
theorem implies that if a normal, Gorenstein threefold X has a finite (non-empty) non-klt locus,
it is either a cone over a K3 surface or two-dimensional Abelian variety. Note that the Gorenstein
hypothesis implies that any klt singularity must be canonical, so the klt but non-canonical locus
is empty in this case. We provide the following generalization.

Theorem 4.6. Let X be a log-canonical projective variety with a finite number of strictly
log-canonical singularities {p1, . . . , pn} and −KX ample. If a(E, X) ∈ {−1, R�0} for every excep-
tional divisor E over X with centerX(E) ⊂ {p1, . . . , pn}, then X is a cone over a variety Z with
KZ ≡ 0.

The extra hypotheses in this result arise from removing the Gorenstein hypotheses in
Theorem 4.5. In order to ensure X is a cone, there needs to be a certain extremal ray in the
cone of curves. Before getting to the proof, we provide a few definitions and technical lemmas.
In all cases, we consider dlt pairs (X, D) and study properties of various KX -negative and
KX + D-negative contractions. The motivating idea is to study contractions that happen
‘over’ D: divisorial contractions that are KX + D-negative and D-positive must have a certain
structure.

Definition 4.7. Given a proper variety X, the effective cone NE(X) is the collection of
effective 1-cycles on X modulo numerical equivalence, and its closure is denoted NE(X).
If R is an extremal ray in NE(X), we say that the contraction of R is an elementary
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extremal contraction. In what follows, we refer to the contraction of R as simply an extremal
contraction and always mean the contraction of an extremal ray.

We begin with the negativity of KX in certain KX -negative contractions. Namely, the next
lemma shows that KX cannot be ‘too’ negative on fibers.

Lemma 4.8. Let X be a normal, log-terminal projective variety such that KX is Q-Cartier. If
φ : X → Y is a birational contraction of a KX -negative extremal ray with fibers of dimension
at most one, then each fiber F is a chain of P1 whose configuration is a tree such that −1 �
KX · C < 0 for each irreducible component C of F .

Proof. By assumption, R2φ∗F = 0 for any coherent sheaf F on X. By Grauert–Riemenschneider
vanishing [Kol13, Corollary 10.38], R1φ∗ωX = 0, and by [KMM87, Theorem 1-2-5], because −KX

is φ-ample, R1φ∗OX = 0. Then, consider any sheaf of ideals J such that OX/J is supported on
a fiber F of φ:

0 → J → OX → OX/J → 0.

Pushing forward to Y , we see that R1φ∗(OX/J) = H1(F,OX/J |F ) = 0. Similarly, we see that
H1(F, ωX/JωX |F ) = 0 so H1(F, (ωX/JωX)|F /T ) = 0, where T ⊂ (ωX/JωX)|F denotes torsion.
Taking J to be the ideal of F , we see that F is a chain of P1s whose configuration is a tree.
Then, consider an irreducible component C ⊂ F and the sheaf (ωX ⊗OC)/T , where T is the
torsion in ωX ⊗OC . This is a torsion-free sheaf on P1, so must be a vector bundle of the form
(ωX ⊗OC)/T ∼= ⊕OP1(ai). The vanishing of H1 given previously implies that ai � −1 for each i.
If m is an integer such that ω

[m]
X is Cartier, we must have that ω

[m]
X ⊗OC = OP1(b) is a negative

degree line bundle. However, there is a non-zero morphism from taking the double dual of ωX :

(ωX ⊗OC/T )⊗m → ω
[m]
X ⊗OC

and ai � −1 implies that b � −1. Therefore, −1 � KX · C < 0. �
The previous lemma bounds the negativity of KX . If curves C are contained in the smooth

locus, because KX · C � −1 for contracted curves, if C ∩ D �= ∅, that should force (KX + D) ·
C � 0. Certainly this could be false if X was highly singular and D · C /∈ Z, but with a few
restrictions on the singularities, we can apply the lemma to our advantage.

Lemma 4.9. If (X, D) is dlt, X is Q-factorial, and D is an effective prime Z-divisor that is
Cartier in codimension two, then any KX + D-negative extremal divisorial contraction is an
isomorphism on D if and only if the exceptional divisor does not intersect D.

Proof. Let φ : X → Y be the given contraction. Because φ is KX + D negative and divisorial,
the negativity lemma implies that

φ∗(KY + DY ) = KX + D − aE,

where DY = φ∗D, E is the (irreducible) exceptional divisor, and a > 0. Because D is Cartier
in codimension 2 and normal by [Kol13, Theorem 4.16], KX + D|D = KD. By [KM98,
Corollary 3.44] and [Kol13, Theorem 4.16], DY is also normal, so restricting to D (where, by
abuse of notation, we still denote by φ the induced map D → DY ):

φ∗(KDY
+ DiffDY

(0)) = KD − aE|D,

where DiffDY
(0) is the correction term to the adjunction formula. This correction term is effective

by [Kol13, Proposition 4.5], and aE|D is effective, so φ|D : D → DY is an isomorphism if and
only if E|D = 0. This also shows that DiffDY

(0) = 0. �
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From this observation and Lemma 4.8, we see that given a ‘nice’ contraction that is an
isomorphism on D, the map is forced to be a fibration. However, one should be cautious; this lemma
(and the corollaries) are false without the hypothesis that D is Cartier in codimension two.

Example 4.10. Let X = P2 and let π : Y → X be the (n, 1) weighted blow up of the point (0, 0)
in linear coordinates (x/z, y/z) for any n > 1. Let L = (y = 0) be a line in P2 and let LY be
the strict transform. Denote the exceptional divisor of π by E and note that E2 = −1/n. By
construction, LY and E intersect at the unique (1/n)(1, n − 1) singularity of Y and are not
Cartier at that point. We can compute

π∗KX = KY − nE

and

π∗L = LY + E

so that KY · E = −1 and LY · E = 1/n. Then,

π∗(KX + L) = KY + LY − (n − 1)E

so the contraction π : Y → X of E is KY + LY -negative and is an isomorphism on LY , but
LY ∩ E �= ∅.

If D is Cartier in codimension two, however, we avoid the behavior in the previous example.

Corollary 4.11. If (X, D) is dlt and D is an effective, prime divisor that is Cartier in codimen-
sion two, then any KX + D-negative, D-positive extremal contraction that contracts a divisor
but contracts no curves in D is a Fano fiber contraction X → D.

Proof. Let π : X → Y be the contraction. If a divisor is contracted, then the morphism is either
a divisorial contraction or Fano fiber contraction onto a variety with strictly lower dimension.
If no curves in D are contracted, the induced map D → π(D) is finite, but (Y, π∗D) is dlt by
[KM98, Corollary 3.44] and D is a prime divisor, hence π∗D is normal by [Kol13, Theorem 4.16].
Furthermore, because no curves in D are contracted, the fibers have dimension at most one.
Indeed, let F be a fiber of π. Because π contracts no curves in D, F ∩ D must be a collection of
points. However, π is a D-positive contraction, so D|F is ample, hence must be a divisor on F .
Therefore, F has dimension at most one.

However, if π is divisorial, Lemma 4.8 implies KX · C � −1 for any irreducible curve C
contracted by π. Suppose that C is an irreducible component of a general fiber of dimension
one. By assumption, D · C > 0, and because D is Cartier in codimension two, D is Cartier
when restricted to C, so D · C ∈ Z. Therefore, (KX + D) · C � 0, a contradiction. Thus, the
contraction cannot be birational and must be a fibration with general fiber P1. In this case,
for general fiber C, KX · C = −2, so we must have D · C = 1, so π|D : D → π(D) is generically
of degree one. Therefore, by Zariski’s main theorem, and because D is prime, π∗D must be
isomorphic to D and π : X → Y is a Fano fiber contraction and Y ∼= D. �
Corollary 4.12. If X is a variety with terminal singularities and (X, D) is dlt for some effective
prime divisor D where −D|D is nef, then any KX + D-negative D-positive contraction gives a
Fano fibration X → D.

Proof. If X is terminal, the singular set has codimension at least three in X (see [Kol13,
Corollary 2.30]), hence D is Cartier in codimension two. If −D|D is nef, then any D-positive
contraction contracts no curves in D, so by Corollary 4.11, the contraction of such a ray gives a
Fano fibration X → D. �
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We should point out that Lemma 4.8 does not require the contraction be divisorial; it could
be a small contraction and the result would still hold. In particular, the next lemma shows that
KX + D-negative and D-positive small contractions cannot exist with certain assumptions on
the singularities of (X, D).

Lemma 4.13. If X has terminal, Q-factorial singularities and (X, D) is a pair with log-terminal
singularities such that D is an effective prime divisor, then the contraction of a KX + D-negative,
D-positive extremal ray R that contracts no curves in D cannot be a small contraction.

Proof. Assume such a small contraction exists. Because this is a KX -negative contraction, we
consider the flip of φ as in the following diagram, where Z is a log resolution of the rational map
X ��� X+ (so both Z and the strict transform of D are smooth). The flip exists by [BCHM10,
Corollary 1.4.1].

Note that the fiber of the contraction φ : X → Y is not contained in D, by assumption.
Because every π exceptional divisor E has non-negative discrepancy a(E, X, D), if DZ = π−1∗ D,
we have

KZ + DZ = π∗(KX + D) +
∑

aiEi,

where ai > −1 for each i, and ai � 0 for any exceptional divisor Ei such that centerX(Ei) �⊂ D.
Restricting to D, because D is Cartier in codimension two, we obtain

KDZ
= π|∗D(KD) +

∑
aiEi|DZ

.

However, by [KM98, Lemma 3.38], flips can only improve singularities, so

π+∗(KX+ + D+) = π∗(KX + D) −
∑

ciEi,

where ci � 0. Because the flip was KX -negative, by the same lemma, X+ is also terminal, so D+

is Cartier in codimension two. Then, restricting to D and D+ we see that

π+|∗D+(KD+) = π|∗D(KD) −
∑

ciEi|DZ
.

Substituting, we see that

π+|∗D+(KD+) = KDZ
−

∑
aiEi|DZ

−
∑

ciEi|DZ
. (1)

Because no curves in D are contracted, the map D → φ(D) is finite, and because φ is a small
contraction, the map has degree one, so either D ∼= φ(D) or D is its normalization. In either case,
because X+ is dlt, D+ is normal by [Kol13, Theorem 4.16], so there is a morphism f : D+ → D
making the diagram
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commute. Observe that f cannot be an isomorphism: if D+ ∼= D, then f∗(KD) = KD+ , and hence
π|∗D(KD) = π+|∗D+(KD+). However, this implies that ci = 0 for all i. By [KM98, Lemma 3.38],
this implies that, for any exceptional divisor E over X, φ ◦ π = φ+ ◦ π+ is an isomorphism over
the generic point of centerY E. This implies that neither π nor π+ extract any divisors, so by
normality of X, Z, and X+, and Q-factoriality of X and X+, X ∼= X+, a contradiction.

Therefore, there is some exceptional divisor E0 such E0|DZ
is not contracted by π+|DZ

but
is contracted by π|DZ

. In this case, we must have c0 > 0. If we can show that centerX(E0) �⊂ D,
this is a contradiction because it would imply the coefficient of E0|DZ

in (1) is non-zero, but
E0|DZ

is not an exceptional divisor of π+|DZ
.

To conclude the proof, assume for contradiction that centerX(E0) ⊂ D for any such divisor
E0. Then, for any exceptional divisor E0 contracted to a curve in D+, it must be contracted to a
point in D, as the small contraction did not contract any curves in D. By definition of Z, there
must exist a divisor E1 whose image is a one-dimensional component of C, i.e. centerXE1 �⊂ D.
By assumption, for any such divisor E1, π

+(E1) ∩ D+ must be finite. However, let us com-
pute discrepancies. Because π(E1) is a curve not contained in D and X has only isolated
singularities, KZ = π∗(KX) + b1E1 + other terms, where b1 ∈ Z, b1 > 0. In addition, π∗(D) =
DZ + 0 · E1 + other terms. Thus, the discrepancy a1 of E1 in the map π is a1 = b1 ∈ Z > 0. How-
ever, on D+, we then obtain that KDZ

= π+|∗D+(KD+) + (1 + c1)E1 + other terms, where the
other terms by assumption correspond to divisors with positive discrepancy in the same fashion
as E1. All discrepancies in the extraction DZ to D+ are thus at least one. By assumption, DZ was
smooth, so D+ is therefore smooth. As DZ → D+ can be factored as blow ups of smooth points
[Har77, Chapter 5.5], the discrepancy of some Ei (without loss of generality, assume it is E1)
must be 1, and c1 = 0. However, this contradicts the fact that φ : X → Y is not an isomorphism
above the generic point of centerY (E1), as E1 is contracted to a curve via π (see [KM98,
Lemma 3.38]). Therefore, we have reached a contradiction and, thus, there exists an E0 such that
centerX(E0) �⊂ D. �

We can tie the previous lemmas together in the following result, seemingly technical but the
key ingredient in the proof of Theorem 4.6.

Lemma 4.14. Let X be a variety with terminal singularities and (X, D) a pair with canonical
singularities with D an effective prime divisor such that KX |D is nef. If the class of a KX +
D-negative extremal ray R contains a curve C such that C ∩ D is finite and non-empty (hence,
R is D-positive), and the contraction of R has fiber dimension at most one, then it must be a
Fano fibration X → Y such that the general fiber is isomorphic to P1 and Y ∼= D.

Proof. Because varieties with terminal singularities are singular only in codimension � 3, D
is Cartier in codimension two. By hypothesis, any curve C ⊂ D has KX · C � 0, hence the
contraction φ : X → Y of a KX + D-negative D-positive extremal ray cannot contract any curves
in D. By Lemma 4.13, the contraction of R cannot be a small contraction, so must contract a
divisor. Applying Corollary 4.11, we obtain that X → Y is a Fano fibration and Y ∼= D. �

We are now ready to prove Theorem 4.6.

Proof. By a result of Hacon [KK10, Theorem 3.1], there is a minimal Q-factorial dlt model of
Y → X. More precisely, there is a Q-factorial variety Y and a morphism π : Y → X extracting
all divisors Ei with discrepancy a(Ei, X) = −1 such that KY is relatively nef. Let E =

∑
Ei

and observe that KY + E = π∗KX . Because −KX is ample and KY + E is numerically trivial
on E and negative on all curves not contained in E, there must exist a KY + E negative, E
positive extremal ray R in NE(Y ). In fact, because E · R > 0, there must be some component
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E0 ⊂ E such that E0 · R > 0 and (KY + E0) · R < 0. Indeed, if (KY + E0) · R � 0, for any curve
[C] ∈ R, we would have C ⊂ E, so (KY + E) · C = 0, a contradiction.

Let φ : Y → S be the contraction of R. By assumption, the pair (Y, E) is canonical along
the components of E (because a(F, Y, E) = a(F, X) for any exceptional divisor F over X). By
Corollary 4.11 applied to (Y, E0), φ : Y → S is a fiber contraction of relative dimension one
and S ∼= E0. Note that, for a general fiber l of φ, KY · l = −2 and [l] ∈ R, so (KY + E) · l < 0.
Choosing an appropriate fiber l that misses the singular points of Y , one sees that Ei · l ∈ Z for
each i because l is contained in the smooth locus of Y , and Ei cannot be contracted by φ as
curves in Ei are KY + E-trivial. Therefore, because KY · l = −2 and (KY + E) · l < 0, there is
only one exceptional divisor E0 = E. Because (Y, E) is dlt, E is normal and φ contracts no curves
in E, hence S ∼= E, giving φ : Y → S the structure of a P1 bundle. However, as E is contractible
by π : Y → X, we see that X is a cone over E (where ‘cone’ is only defined as the contraction
of a section of a P1-bundle over E to a point). We can further characterize E by observing that
(KY + E)|E = KE , hence KE is numerically trivial. �

As one cannot guarantee that the exceptional divisors over a variety are in the set given in
Theorem 4.6, we first make an easy observation, that follows from the proof of Theorem 4.6.

Proposition 4.15. Let X be a log-canonical projective variety with a finite number of strictly
log-canonical singularities {p1, . . . , pn} and −KX ample. Consider a minimal dlt modification
π : Y → X extracting the −1 divisors of X, so KY + E = π∗(KX). If there exists an extremal
ray R ∈ NE(Y ) such that a curve C �⊂ E, [C] ∈ R, intersects E at a smooth point of Y , then X
is a cone over a numerically Calabi–Yau variety.

To remove the restrictions on the discrepancies in Theorem 4.6, we would like to say there
always exists a ray as in Proposition 4.15. However, it is not obvious why this is true or even
clear that it should be true. Instead, we proceed to use the ideas in Theorem 4.6 to study the
given moduli problem. Note first that many standard examples of log-canonical singularities have
resolutions where an exceptional divisor is not rational or ruled. If that is the case, the following
result characterizes these singularities.

Theorem 4.16. If X is a projective log-canonical threefold with a finite number of strictly log-
canonical singularities and −KX ample such that at least one exceptional divisor E over X with
discrepancy a(E, X) = −1 is not rational or birationally ruled, then there is only one such E
and X is birational to a P1 bundle over E.

Proof. We proceed in a similar fashion as in the previous proof. By [Kol13, Theorem 1.33,
Corollary 1.37], there is a terminal model of X; a Q-factorial variety Y and a morphism π :
Y → X extracting divisors Δi with discrepancy a(Δi, X) � 0 such that Y is terminal and KY

is relatively nef. Let E =
∑

Δj be the sum over divisors Δj with discrepancy −1 and F =∑
−a(Δk, X)Δk be the sum over divisors with discrepancy larger than −1. By construction of

Y (which is terminal, hence has finitely many singular points), these effective divisors are Cartier
in codimension two, π∗(KX) = KY + E + F , and for any curves C ⊂ Supp(E + F ) contracted
by π, KY · C � 0. By assumption on X, the general curve through E has negative KX -degree.

We would like to find an E positive and KY + E negative extremal ray in the cone of curves.
If so, we proceed exactly as in the proof of Theorem 4.6 to conclude that the contraction of such
a ray gives a Fano fibration φ : Y → E (and E consists of only one component, necessarily not
rational nor ruled by assumption). Then, we conclude as in Theorem 4.6 that the log-canonical
locus in X consists of a single point x ∈ X, E is a single component, and X is birational to a P1

bundle over E.
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In more generality, run a KY -minimal model program (MMP) (contracting KY negative
extremal rays) on Y . If at any point in the MMP we reach an intermediate variety Y ′ with a KY ′ +
E′-negative E′-positive extremal ray R in NE(Y ′), the arguments in the previous paragraph
imply that the MMP terminates in a fibration of dimension one over E′. As we show in the
following arguments, the only components that could have been contracted in running the MMP
up to this point are rational or ruled, so we obtain the desired result.

Finally, assume that we do not find such a ray in the course of the MMP. Because X was a
Fano threefold, the MMP must terminate with a Fano fibration f : Y ′ → S such that dimS < 3.
Because Y has terminal singularities and at each stage of the MMP as we are contracting
KY -negative extremal rays, by [KM98, Corollary 3.43(2)], Y ′ also has terminal singularities. We
claim that the only components of E that could be contracted by an MMP are rational or ruled.

In running the KY -MMP, first consider the case that in one of the steps one obtains a
divisorial contraction φ : Y ′ → Y ′′ of a component Δ of E′. Because (Y, E) is at worst log-
canonical (and, hence, (Y ′, E′) is at worst log-canonical), Δ is a log-canonical surface, contracted
by φ to a point or curve. If the divisorial contraction φ : Y ′ → Y ′′ contracted Δ to a curve, the
general fiber is P1, so it is birationally ruled. Thus, in this case, the result follows. If instead Δ is
contracted to a point, Δ is Fano, and a normal log-canonical surface, so only singular at points.
By [Kol92, Theorem 17.4], the locus of strictly log-canonical non-klt singularities is connected
and hence a single point. Therefore, [HM07, Theorem 1.2] implies that Δ is rationally chain
connected. Finally, by [Kol96, Proposition 3.3.4], this implies that Δ must be uniruled, and any
uniruled surface is birationally ruled by [Kol96, Exercise 1.1.6.2], so the result follows.

Now, suppose no component of E′ is contracted until the termination of the MMP f ′ : Y ′ →
S. If Y ′ is a terminal Fano variety of Picard rank one, because KY + E = π∗(KX) was negative
on the generic curve in Y , we must have KY ′ + E′ negative. Hence, for any component Δ of
E′, KY ′ + Δ is negative and Δ is a log-canonical Fano surface, hence rationally connected, hence
rational or birationally ruled by the previous argument.

If Y ′ has Picard rank two and S is a curve, if Δ is a fiber of f ′, because Y ′ is terminal,
Δ must be log-terminal and Fano, and hence rational. If instead f ′|Δ : Δ → S is surjective,
Δ is birationally ruled. Finally, if dimS = 2, dim f ′(Δ) = 0 implies Δ is Fano and therefore
rational or birationally ruled by the previous arguments. If dim f ′(Δ) = 1, Δ is again birationally
ruled.

Therefore, if there exists a non-rational or birationally ruled component Δ of E′, it cannot
be contracted in any way described previously, and thus we must be in the final remaining case:
f ′ : Y ′ → S is a Fano fibration and dim f ′(Δ) = 2. Because f ′ is the contraction of a KY ′-negative
ray (and necessarily KY ′ + E′-negative, by consideration of the general fiber l, whose transform
in Y must be KY + E-negative), we have KY ′ · l = −2 and, hence, must have E′ · l = Δ · l = 1,
so Δ is birational to S. In particular, we are in the case of the Fano fibration over a surface
birational to Δ. By the computation E′ · l = Δ · l = 1, we see that Δ is the only such component
that can map birationally to S, which implies the result. �

To relate this to the moduli problem, exactly as in Example 4.4, we can show that varieties
satisfying the hypotheses of Theorem 4.6, Proposition 4.15 or Theorem 4.16 do not appear as
(P3, d, 4) stable pairs.

Corollary 4.17. If X is a threefold satisfying the hypotheses of Theorem 4.6, Proposition 4.15,
or Theorem 4.16, and D is a Q-Cartier Z divisor on X that does not contain the locus of strictly
log-canonical singularities such that dKX + 4D ∼ 0, then d is even.
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Proof. By Theorem 4.6, Proposition 4.15, or Theorem 4.16, there is a birational model Y → X
such that π∗KX = KY + E + F and the minimal model program on Y terminates in a Fano
fibration Y ′ → S, where S is a surface birational to E0, a component of E.

If X is as in Theorem 4.6 or Proposition 4.15, from their proofs, we have Y ′ = Y . Consider
a general fiber l ⊂ Y : we have KY · l = −2, and E · l = 1, so π∗(KX) · l = (KY + E) · l = −1.
Hence, if l̄ is the image of l on X, KX · l̄ = −1. However, D does not contain the strictly log-
canonical locus of X, so choosing l sufficiently generally implies that D · l̄ = n ∈ Z, hence the
relationship dKX + 4D ∼ 0 implies d(−1) + 4n = 0, so d is even.

In the next case, suppose X is as in Theorem 4.16. Following the notation and proof, we
obtain that the MMP results in a Fano fibration f ′ : Y ′ → S, where S is birational to the unique
non-rational or ruled component of E′ (and this component is generically a section of f ′). Now,
consider F ′, the image of the divisors F in Y with discrepancy > −1. By [HM07, Theorem 1.2],
these divisors are all rational or ruled. Hence, they cannot be birational to S, so for each com-
ponent ΔF ⊂ SuppF ′, we have dim f ′(ΔF ) < 2. Therefore, choosing a sufficiently general fiber
l of f ′, l does not intersect any component of SuppF ′ and (KY ′ + E′) · l = −1. Therefore, if l′

is the pre-image of l in Y , π∗KX · l′ = (KY + E + F ) · l′ = −1, and if l̄ is the image of l′ on X,
KX · l̄ = −1. However, D does not contain the strictly log-canonical locus of X, so choosing l
sufficiently generally implies that D · l̄ = n ∈ Z, hence the relationship dKX + 4D ∼ 0 implies
d(−1) + 4n = 0, so d is even. �

With great care and analysis of the MMP, we can obtain the same result for strictly
log-canonical (non-klt) Fano threefolds in more generality.

Theorem 4.18. If X is a strictly log-canonical Cohen–Macaulay threefold such that −KX is
ample, dKX + 4D ∼ 0 for some Q-Cartier Z-divisor D, and D does not contain the locus of
strictly log-canonical singularities, then d is even.

Proof. By [Kol13, Theorem 1.33], there is a Q-factorial variety Y and a morphism π : Y → X
extracting divisors Δj with discrepancy a(Δi, X) � 0 such that Y is terminal and KY is relatively
nef. Let E =

∑
Δj be the sum over divisors Δj with discrepancy −1 and F =

∑
−a(Δk, X)Δk

be the sum over divisors with discrepancy larger than −1. By construction of Y (which is termi-
nal, hence has finitely many singular points), these effective divisors are Cartier in codimension
two, π∗(KX) = KY + E + F , and for any curves C ⊂ Supp(E + F ) contracted by π,
KY · C � 0.

We run a KY -MMP to obtain the result. The proof is somewhat technical, so we first provide
a sketch, pointing out the necessary technicalities. If there is a component of E0 that is not
contracted by the MMP, the MMP terminates in a fibration Y ′ → S and one can show that S
is birational to E0. Now, to conclude that d is even, we wish to perform a similar intersection
theoretic computation to that above, finding a sufficiently generic fiber l of Y ′ → S such that
its preimage l′ in Y satisfies (KY + E0) · l′ = −1. However, to conclude that π∗(KX) · l′ = −1,
we must show that either there do not exist other components of SuppE or SuppF that map
finitely to S or we can use the other components to conclude that d is even.

If instead all components of E are contracted by the MMP, we prove the necessary existence
of certain components of SuppF intersecting E so that the curves in E (which, initially may be
KY -positive) become KY -negative and thus contractible. Then, we make the following observa-
tion: because dKX + 4D ∼ 0 and the strictly log-canonical (non-klt) locus of X is not contained
in D, for any component Δ of SuppF that maps into the non-klt locus of X, the discrepancy
of Δ must be of the form a/d for some a ∈ Z. Furthermore, on curves contained in components
of Δ of E contracted by π, we have (KY + E + F )|Δ = 0, so if CE = (E − Δ)|Δ and CF = F |Δ,
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we know KΔ + CE + CF = 0. If Δ is sufficiently nice, we use this relationship to show that
either d must be even or the discrepancies of the components of F must be in a finite collection
of exceptional possibilities, and we rule out these possibilities by hand.

We begin in the simpler case, when there exists a component E0 ⊂ E that is not contracted
by the MMP.

Lemma 4.19. If there is a component E0 ⊂ E that is not contracted by the MMP (including
the final step as a Fano fibration), then d is even.

Proof. In this case, the MMP must terminate with a morphism Y ��� Y ′ → S, and dimS = 2.
Exactly as in the proof of Theorem 4.6, we obtain that S is birational to E′

0, where E′
0 is the

image of E0 in Y ′, and by negativity of KY + E = π∗KX , the general fiber l of Y ′ → S cannot
intersect other components of E. We are done by the same argument as in Corollary 4.17 if l
intersects no components of SuppF . However, a priori, l could intersect components of SuppF :
suppose Δ′

0 → S is generically finite, where Δ′
0 is the image of some Δ0 ⊂ SuppF . Because Δ0 is

contracted by π, let C ⊂ S be the image of a general fiber of π|Δ0 , noting that C must be rational
as Δ0 contracts to a log-terminal singularity [HM07, Theorem 1.2]. Because Y ′ is terminal, it
has isolated singularities, so choosing C sufficiently generally, we may assume that the pre-image
of C is a smooth ruled surface P → C with multi-section Δ′

0|P . As E′
0 is a section of P , and

all fibers of P are numerically equivalent with respect to E′
0, we see that there cannot be any

singular fibers (using that P is smooth). However, because Δ′
0|P is a contractible multi-section

in the smooth ruled surface P , it must, in fact, be a section. As there is only one contractible
section in P , we see that E′

0|P cannot be contractible. Similar analysis implies, for any other
component Δ1 of SuppF mapping finitely to S, Δ′

1|P cannot be contractible.
However, for any such Δ′

1, reversing roles of Δ′
1 and Δ′

0, we find a surface P ′ with contractible
section Δ′

1|P ′ and non-contractible sections Δ′
0|P ′ and E′

0|P ′ . Computation shows that this would
imply that E0 is, in fact, not contractible in Y , a contradiction. Therefore, there can be at most
one component Δ0 of Supp(F ) that maps birationally onto S.

Thus, in the smooth ruled surface P , we may assume that E′
0|P is a positive section, (E′

0|P )2 =
n. Choosing another section γ such that γ ∩ Δ′

0|P = ∅, γ2 = E′
0 · γ = n, and KP · γ = KY ′ · γ =

−2 − n, so that KX · γ′ = (KY ′ + E′
0) · γ = −2, where γ′ is the image of γ on X. Provided that

C and γ are chosen generically, D · γ′ = n ∈ Z, hence the relationship dKX + 4D ∼ 0 implies
that d(−2) + 4n = 0 and d is even. �

Now, assume that all components of E are contracted by the MMP. Let E0 be the first
component of E contracted, and assume for contradiction that d is odd.

Consider the dlt model of the pair (KY , E + F ) over X, (Xdlt, Edlt) → X. By [Kol13,
Corollary 1.36], this contracts all components of SuppF .

Lemma 4.20. Suppose that F1 is a component of F whose image in Xdlt is a curve C con-
tained in E. Then, the generic point of C in E is a cyclic quotient singularity of index n, and
the discrepancy −a(F1, X) = a1/n. If Fi ∩ E �= ∅, then the discrepancy is −a(F1, X) = 1 − 1/n.
Furthermore, if E0 is the component of E containing C, the collection of exceptional divisors E0

and those {Fi} mapping to C form a chain (i.e. above the generic point of C, the divisors can
be written E0 ∪ F1 ∪ F2 ∪ · · · ∪ Fk where each divisor only meets the adjacent divisors in the list
and each intersection is only one point).

Proof. Because F is contracted to a curve and the discrepancy of the divisor F is greater than
−1, at the generic point of C, we reduce to studying log-terminal surface singularities. Because
this curve is contained in E0, these are cyclic quotient singularities [KM98, Theorem 4.15].
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Let n be the index (and note that, by the previous discussion, n | d, so n is odd). Then, the
Cartier index of the divisor KXdlt + Edlt is a divisor of n, so all discrepancies take the form ai/n.

Consider the map g : E ��� Edlt. At the generic point of C, this is an isomorphism, so a
local computation of the discrepancy of Fi can be done using adjunction. Near the generic
point of C, we have KY + E +

∑
aiFi = g∗(KXdlt + Edlt), and restricting to E, we obtain KE +∑

aiFi|E = KE + Diff, where Diff is supported on the codimension one part of singular locus of
Xdlt contained in E, which is C. By [Kol13, 4.4], the coefficients of the different are precisely
1 − 1/n. Thus, for F1 such that F1 ∩ E �= ∅, the discrepancy is as claimed.

Finally, the description of the divisors as a chain is [KM98, Theorem 4.15(3)]. �
We divide the divisors Fi in SuppF into two groups: those whose image in Xdlt is a curve

in E, which we continue to denote by Fi, and those whose image is not, which we denote by Gj ,
and write F =

∑
−a(X, Fi)Fi, respectively G =

∑
−a(X, Gj)Gj , so we have the relationship

KY + E + F + G = π∗(KX). The exceptional divisors Fi play an important role in what follows.
Label the steps of the MMP Y ��� Y1 ��� · · · ��� Ym+1 ���, where Ym → Ym+1 is the contraction
of the image of E0, and dimYm+1 � 3. We denote the image of a divisor H ⊂ Y in Yk by Hk.

Lemma 4.21. Let Yl ��� Yl+1 be the first contraction of a curve C in El
0 (so E0

∼= El
0). Then, the

only steps of the minimal model program up to this point were contractions that did not intersect
E0 or contractions of components of the exceptional locus of π. If El

0 → El+1
0 is birational, then

C is not contained in any component of the exceptional locus of π other than E0 and C is a fiber
of π|E0 : E0 → π(E0).

Proof. Because E0
∼= El

0, we write E0 in what follows. Assume that C is the first curve in E0

contracted by the MMP. Near E0, prior to the contraction of C, we could only have contracted
divisors Δ onto E0 (i.e. the image of any contraction that intersects E0 is a curve in E0) or
flipped curves into E0 because C was the first curve contracted. However, if this was a divisor
that intersected E or a flip not contained in the exceptional locus, the curves contracted would
indeed be K + E-negative, so the induced contraction could not be birational because it contracts
no curves in E0 (Lemma 4.13, Corollary 4.11). Therefore, the only contractions near E0 before
this curve C were be divisorial and contracted divisors in the exceptional locus of π. Furthermore,
they must all be contracted to curves in E0 by assumption that C is the first curve contracted.
If E0 is contracted to a curve π(E0) by π, and the first curve C contracted is a (multi-)section
of π|E0 : E0 → π(E0), we divide into cases based on if the contraction of C is birational on E0.
If it is not birational, then we find that E0 must be P1 × C ′ by considering the projections from
the contraction of C and contraction π|E0 . (There cannot be any singular fibers: they would
have been flipped into E0, but we then find a contradiction to K-negativity of the contraction
of C.) If the contraction of C is birational, we can obtain a contradiction to contractibility of
Em

0 by considering a general curve Γ ⊂ En
0 that is contracted when Em

0 is contracted. By a
intersection-theoretic computation, Γ cannot be a fiber of π|E0 , so its (reduced) image in X is
the same as that of C. Considering the intersection of these two curves with π∗(KX) (which
should be multiples of each other) gives a contradiction.

Thus, we may assume that the first curve C in E0 contracted is a fiber of π|E0 . In the MMP,
we are only contracting KY -negative, (KY + E)-non-positive curves. In order to contract such
a curve C in E0 in a step of the MMP, we must have first performed contractions over E0

to change the positivity of C. By the previous paragraph, these contractions must be those of
divisors contained in the exceptional locus of π. Suppose Δ is such a divisor contracted to E0. If
it is contracted to a curve in E0, the contraction would not change the sign of (KY + E) · C. If it
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is contracted to a point in E0, there must have been a prior contraction changing the positivity
of the curve Δ ∩ E0, contradicting that this is the first curve contracted.

If C was an intersection curve Gj ∩ E0, where Gj is a component of the exceptional locus that
is contracted to a point in E in the dlt model, either it is contracted to a canonical point of Xdlt,
in which case the curves in Gj are KY -non-positive, but KY + E-positive, because Edlt is not
canonical at the point. Otherwise, if it is contracted to a non-canonical point (or non-terminal
curve not contained in E), the curves in Gj are KY -positive (non-negative) and KY + E positive.
In order for C to be contracted, the positivity with respect to K + E must change, but for any
divisor contracted to a curve in E0, the contraction would not change the sign of (KY + E) · C.
Therefore, C cannot be the intersection of a component Gj ∩ E0. �

Next, we emphasize the importance of the relative nef-ness of KY and the coefficients of Fi.

Lemma 4.22. In the map π : Y → X, let C be a fiber of π|E0 . If the contraction of Em
0 contracts

a generic fiber C, before the contraction of E0, there must have been a contraction of some Fi

such that Fi ∩ E0 �= ∅. In particular, the coefficient of such an Fi in π∗(KX) is 1 − 1/n.

Proof. By construction of Y, KY is relatively nef, so for any fiber C ⊂ E0, KY · C � 0. Therefore,
in order for C to be contracted in the course of the MMP Y ��� Ym → Ym+1 as a KYm-negative
extremal ray, we must have performed a contraction Yl → Yl+1 of a divisor that intersected E0

to change the positivity of KY on C. If the contraction was not a component of SuppF , a
generic contracted curve would necessarily be KYl

+ El
0 negative (because its transform in Y

satisfies the same negativity), so Corollary 4.11 and Lemma 4.13 imply that it would have been
a contraction onto a lower-dimensional variety, giving Yl the structure of a Fano fibration, which
is a contradiction, or the contraction of a component Gj

i onto a curve in Ej
0 for some j < l

followed by more contractions or flips. However, because each Gi is contracted to a point in
the dlt model, by Q-factoriality, we must have performed a flip into Gi before the contraction
(otherwise, Gi would already admit a contraction to a curve followed by a small contraction to
Xdlt). However, using the relative nef-ness of the canonical divisor on Gi, a computation using
the formulas for discrepancies as in Lemma 4.13 shows that, after a flip, Gj

i could not admit
a fibration over a curve because we could not have KYj · l = −1 and Gj

i · l = −1 for a generic
fiber l of the contraction. Therefore, we must have performed a contraction of such an Fi that
intersects E0 in a curve. �

Now, we separate into two cases based on the non-klt locus of X.

Case 1: E0 is contracted to a point in X
By the previous lemma, before contracting Em

0 , we must have contracted a component of SuppF
onto E0. Let F1 be this component, with discrepancy a(X, F1) = 1 − 1/n, and suppose it is
contracted at the step of the MMP Yl → Yl+1. Because n | d, we may assume n � 3 (if n = 2, d
would be even, as desired). Note that F1 is contractible in Y to a curve (via the map to Xdlt),
so must have the structure of a (possibly singular) ruled surface. Consider a generic fiber f of
this contraction, which is also a generic fiber of F l

1. Because KY was relatively nef to begin
with, we must have contracted some collection of divisors Δ onto F1 before contracting F l

1 to
change the positivity of KY on F1. In particular, KYl

· f l = −1 and F l
1 · f l = −1. Furthermore, by

Lemma 4.20, E0 · f = El
0 · f l = 1, and f can meet only one other component F2 of the exceptional

locus of π. Furthermore, if F2 exists, the intersection curves E0 ∩ F1 and F1 ∩ F2 must be disjoint
(if they were not disjoint, the intersection curve E0 ∩ F2 would necessarily be KY -negative, but
we are assuming KY is relatively nef).
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Note that a component Δ contracted onto F1 cannot intersect E0 because its contraction
would necessarily contract a KY � 0 curve in E0, and similarly, if F2 exists and was not contracted
before Δ, Δ cannot intersect F2. If it did, because Δ was contracted by a K-negative extremal
MMP contraction, all the fibers are numerically equivalent, however F2 is contractible in Δ (to
X, so the curve Δ ∩ F2 must be a component of some fiber. However, the other component of
the fiber would then be F2-positive, but the generic fiber of Δ is F2-trivial; a contradiction.
Therefore, if F2 exists, Δ ∩ F1 is disjoint from both E0 ∩ F1 and F1 ∩ F2. In addition, in this
setting where Δ is contracted before F2, in the contraction of F1, there cannot be any reducible
fibers: the fibers must be numerically equivalent, but F1 ∩ F2 and E0 ∩ F1 are disjoint sections
of the ruled surface F1, so any component of a singular fiber must pass through both sections.
Because they are disjoint, a reducible fiber would have genus larger than zero, a contradiction.
Therefore, if Δ is contracted before F2, Δ ∩ F1 is a multi-section of the ruled surface F1 (with
no singular fibers, so Picard rank two) that is disjoint from the other two disjoint sections of
F1: E0 ∩ F1 and F1 ∩ F2. This implies that, in fact, F1 is P1 × C, where C is a smooth genus
g curve and Δ ∩ F1 is a section. Taking a generic horizontal section pt × C, near C, we have
the relationship 0 = π∗(KX) · C = (KY + F1 − (1/n)F1) · C, so n(2g − 2) = F1 · C and, hence,
KY · C = −(n − 1)(2g − 2). By relative nef-ness of the canonical divisor, this implies g = 0 or
g = 1. Finally, note that this analysis applies for any Δ contracted onto any Fi in the chain of
divisors above the curve E0 ∩ F1. The following lemma shows that this behavior is impossible
when d is odd.

Lemma 4.23. If Fi is P1 × C and Δ a non-exceptional divisor of π contracted onto Fi, then
i = 1.

Proof. Because Δ is contracted onto Fi in an extremal contraction of the minimal model pro-
gram, it is a ruled surface, and Fi is smooth, so there cannot be any singularities along Fi ∩ Δ.
Therefore, there cannot be any singular fibers of the ruled surface Δ, and cannot be any singu-
larities on Δ because curves through the singular points would have −(K + Δ) · C less than that
of the generic fiber, but Fi · C equal to that of a generic fiber, impossible by relative numerical
equivalence. Thus, Δ is a smooth ruled surface. Because Fi is contractible to a point, the section
Fi ∩ Δ is the negative section σ0, and let σ∞ be generic positive section that does not intersect
σ0, and let f be a generic fiber.

If g = 1, by the previous computation, we see that KY · σ0 = Fi · σ0 = Δ · σ0 = 0, and as
Fi · σ0 = σ2

0, this implies that Δ is in fact P1 × C1, where C1
∼= σ0 is genus 1, so choosing a generic

section C1, we see that (KY + Δ) · C1 = 0. Because Δ is contractible, when Δ is contracted
Ym → Ym+1 in the minimal model program, near the generic section C1, the pullback of KYm

to Y is KY − Δ −
∑

Γi, where Γi are the other divisors contracted in the course of the MMP.
However, the image of each Γi must be a point in Ym: if it was a curve, either it is an entire
fiber (and, hence, would have intersected Fi; contracting a curve in Fi, which is impossible), or a
(multi-)section of Δ (which would have forced the fibers of Δ to be KY -non-negative, impossible
as they are not contained in the exceptional locus of π). None of these Γi intersect σ0 and none
intersect the generic C1, and σ0 and C1 have the same image in Ym+1, so

0 = (KY − Δ) · σ0 = (KY − Δ) · C1.

Thus, (2KY ) · C1 = 0, so KY · C1 � 0. This is impossible as C1 is not contained in the exceptional
locus of π. Therefore, g �= 1.

If g = 0, we perform a similar computation: we find that Δ is a smooth ruled surface over
a rational curve σ0 and no Γi as described previously intersect σ0 or the generic section, and

1350

https://doi.org/10.1112/S0010437X22007552 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007552


Moduli of surfaces in P3

the computations before the proof of this lemma say KY · σ0 = 2(n − 1), F · σ0 = −2n, and Δ ·
σ0 = 0. Therefore, for a generic section σ∞ of Δ, (KY + Δ) · σ0 = −2(n + 1), and as previously,
because σ0 and σ∞ have the same image when Δ is contracted,

2(n − 1) = (KY − Δ) · σ0 = (KY − Δ) · σ∞

so 2KY · σ∞ = −4 and KY · σ∞ = −2. Therefore, if σ∞ intersects no other exceptional divisors
of π, as it is contained in the smooth locus of Y , and dKX + 4D ∼ 0 implies that d is even.

Finally, suppose that σ∞ intersects some other exceptional divisor Gj ∈ SuppG whose dis-
crepancy −a(Gj , X, (4/d)D) = a/d. Because Gj and D do not intersect σ0, their restrictions to
Δ are GΔ ≡ pσ∞ and DΔ = qσ∞. For the generic fiber f of Δ, f intersects a single Fi and the
discrepancy of Fi is (n − r)/n for some integer r. Thus, the relationship dKX + 4D ∼ 0 pulled
back to Y implies that

KY |Δ +
n − r

n
σ0 +

a

d
GΔ +

4
d
DΔ ≡ 0.

Intersecting with a generic fiber f and the generic section σ0, we find that r = 1 and such a Δ
can only occur on F1. �

Now, in the set-up described previously, the proof is complete by the following lemma.

Lemma 4.24. If Δ is contracted by an extremal contraction onto a curve contained in F1,
followed by an extremal contraction of F1, and Δ is not an exceptional divisor of π, then d
is even.

Proof. Suppose the generic fiber of Δ does not intersect any other exceptional divisor
of π. Because the contraction of Δ is a K-negative extremal contraction, for general fiber
fg, KYl

· fg = −1, and the same is true for the strict transform in Y , so KY · fg = −1. Then,
π∗(KX) · fg = KY · fg + (1 − 1/n)F1 · fl = −1 + 1 − 1/n = −1/n because fg intersects no other
exceptional components. Let f be the image of fg in X. This curve meets D in the smooth
locus of X, so 0 = (dKX + 4D) · f = −d/n + 4k for some k ∈ Z. Therefore, d = 4nk so d
is even.

Now suppose fg ⊂ Δ intersects some other exceptional divisor of π. Call this divisor Gj

as previously. Because Gj must be contracted to its image GΔ in X, Gj is a fibration over
the curve GΔ. Consider a generic fiber fg of Gj , and suppose Gj · fg = −k (so KY · fg = k − 2).
Intersecting with π∗(KX), we see that k − 2 + (a/d)(−k) + s = 0, where s � 0 is the intersection
of fg with other divisors in the formula π∗(KX). Because a/d < 1/n and n � 3, this implies that
k = 2.

Now, because our MMP contracts Δ and then F1, we can study what happens to Gj in
these contractions. After these contractions in the threefold Yl+1, the images of the curves
f in Gl+1

j are KYl+1
-negative, El+1-positive, and KYl+1

+ El+1-negative. In addition, they are
Gl

j-trivial. From the description of the exceptional divisors of Y → X, this implies that there
must be an extremal ray R in the cone of curves of Yl+1 that is KYl+1

-negative, El+1-positive,
and KYl+1

+ El+1-negative, and Gl+1
j -trivial, and its contraction cannot contract any curves in

El+1 (the only curves in El+1 that are Gl+1
j trivial are those that do not intersect Gl+1

j , but
then their positivity is the same as that in Y , so they are KYl+1

-positive). Therefore, choosing an
alternate path in the MMP and contracting R, the MMP terminates at this contraction with a
fibration over El+1, which implies that d is even by Lemma 4.19. �

Now, we consider the case that Δ contracted onto the chain of divisors is such that no Fi

is P1 × C, but Δ is disjoint from Fi−1 and Fi+1, so the previous arguments imply that Δ is
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only connected to Fk, the last divisor in the chain (cf. Lemma 4.20). Therefore, to reach the
extremal contraction of the (image of) F1 in the MMP, we contract Δ onto Fk, then Fk onto
Fk−1, . . . , Fi onto Fi−1, . . ., and ultimately, F1 onto E. If any other surface Gj is contracted
onto Fi for any i, it must be some component of SuppG (because some curve in it must begin
KY -non-negative). A brief computation with the discrepancies as in Lemma 4.37 and using that
Δ, Fi are ruled surfaces (albeit possibly singular) and that the curves C in Fi must satisfy the
relationship π∗(KX) · C = 0, one can show that there are no flips into and out of Fi. At this
point, we work backwards from the contraction of F1. We have reduced to the case that we
performed several divisorial contractions of divisors in SuppF , possibly with some divisors in
SuppG, after beginning with a divisorial contraction of a component Δ not contained in the
exceptional locus onto a curve C in Fk (the last divisor in the chain). It is not hard to show
that, if the generic fiber of Δ intersects some exceptional divisor Gj other than Fk, then Gj ∩ Δ
is not contractible in Δ; i.e. Gj contracts onto the curve Gj ∩ Δ in the morphism π : Y → X.
We begin with a specific case, n = 3.

Lemma 4.25. Suppose n = 3. Then, d is even.

Proof. If n = 3, the chain Fi is either one component F1 with discrepancy −2
3 or two com-

ponents F1, F2 with discrepancies −2
3 and −1

3 . Suppose we are in the first case; then the
generic fiber fg of Δ contracted by the first step of the MMP intersects F1 so π∗(KX) · fg =
(KY + 2

3F1 +
∑

(ai/d)Gi) · fg = −1
3 +

∑
(ai/d)mi for some mi. If there are no components Gi

intersecting fg, KX · π(fg) = −1
3 , and the relationship dKX + 4D then implies d is even. If there

do exist Gi, the equation implies each coefficient ai/d < 1
3 . For a component Gj intersecting fg,

this implies the general fiber lg of the ruled surface Gj satisfies Gj · lg = −2, so by the same
argument in Lemma 4.24, after contracting Δ and F1, there exists a K + E-negative E-positive
extremal ray in the cone of curves, and we can choose the MMP to terminate with a fibration
over E.

In the second case, we contract Δ onto F2 and then F2 onto F1, followed by F1 onto E0.
Again considering a generic fiber fg of Δ, if fg intersects no components Gi, we find that KX ·
π(fg) = −2

3 and the relationship dKX + 4D implies d is even. Suppose there are components Gi

intersecting fg. Let Gj be such a component and let lg be a general fiber of the ruled surface
Gj . If Gj · lg = −3 or −2, after contracting some of the components Δ, F2, and F1, we find a
π∗(KX)-negative but E0 + F -positive extremal ray. The contraction of such a ray terminates in
a fibration over E0 or one component Fi. Note that E0 cannot be contracted (as the curves in
E0 are not K-negative) so by Lemma 4.19, d is even.

Suppose then all components G meeting fg have G · lg � −4. Using that π∗(KX) · fg =
(KY + 2

3F1 +
∑

(ai/d)Gi) · fg < 0, we know that the coefficient of any such G is less than 2
3 .

Given this bound on the discrepancy and that G · lg � −4, we can compute all possible config-
urations of divisors Gj . By taking a generic hyperplane section H meeting the image of G in X
and noting that this is log-terminal at the generic point of π(G), we reduce to studying configura-
tions C of curves on HY = π−1∗ H that contract to a log-terminal singularity with at least one −n
curve, n � 4, with coefficient of that curve less than 2

3 . We find only the following possibilities: C
is one −5 curve, with coefficient 3

5 , C is a −4 curve meeting a −3 curve, with coefficient 7
11 on the

−4 curve, or C is a −4 curve meeting a chain of k − 1 − 2 curves, with coefficient 2k/(3k + 1) on
the −4 curve. From this description, we see that π∗(KX) · fg = (KY + 2

3F1 +
∑

(ai/d)Gi) · fg < 0
implies that there is only one G meeting fg, and plugging in the given discrepancies in each of the
three cases, we see that KX · π(fg) = −1 + 1

3 + a/d, which is either − 1
15 ,− 1

33 , or −2/3(3k + 1).
With the relationship dKX + 4D ∼ 0, each case implies that d is even. �
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Now, suppose n > 3, so n � 5 because n is odd. We perform contractions of Δ and Fi

ultimately contracting F1 onto E. In our final contraction F1 contracting onto E, say Yl → Yl+1,
along the image of F1 in El+1, the threefold Yl+1 has only index one singularities. Indeed, as
these are all divisorial contractions, all of the fibers are numerically equivalent, i.e. all multiple of
the general fiber fg which satisfies KYl

· fg = −1, F l
1 · fg = −1, and El

0 · fg = 1, and the pullbacks
of both the general fiber f0 and fg must satisfy 0 = π∗(KX) · f . Because π∗(KX) = KY + E0 +
(1 − 1/n)F1 + · · · , for a special fiber f0, we can use the wealth of information on divisorial
extremal neighborhoods [Mor88, KM92, MP11, Tzi05] and formulas for intersection with −KYl

(and its numerical equivalence with F l
i and El

0) along with adjunction on the ruled surface F1

to compute that −KYl
· f0 must be −1/r, where r is the index of the threefold singularity on

the fiber f0. Then, [Tzi05, Theorem 5.5] implies that Yl+1 has only index one singularities and
Yl+1 is factorial. Therefore, KYl+1

and El+1 are both Cartier, so, by adjunction, El+1
0 has only

Du Val singularities along the image of F1. Let CF be the curve that is the image of F1. By
[Tzi05, Lemma 5.1], CF is a smooth curve and cannot intersect any exceptional divisors of π
other than El+1

0 (if it did, the very first contraction of Δ would necessarily have contracted a
K-non-negative curve in one of these divisors, a contradiction). By comparing CF to π∗(KX)|E0 ,
we find that CF satisfies (KE0 + ((n − 1)/n)CF ) · CF = 0, i.e. (KE0 + CF ) · CF = (1/n)C2

F . In
particular, CF is contractible in E0 if and only if it is rational with at most three singularities.
However, if C2

F < 0, then it is not hard to show it is extremal in the cone of curves of Yl+1, so we
may contract (and possibly flip) CF before continuing the MMP. This is certainly a KYl+1

+ El+1
0 -

positive contraction, but the flip exists because the divisor Dl+1 (the image of π−1∗ D) satisfies
(Yl+1, E

l+1 + (4/d − ε)Dl+1) is log-terminal but the log-canonical divisor is negative on CF for
ε sufficiently small. Because this ray is KYl+1

+ El+1
0 -positive, the contraction/flip may create

worse singularities on the threefold Yl+2, but El+2
0 is still Cartier in codimension two, so our

earlier results (cf. Lemmas 4.9 and 4.37) still apply. In this case, after the contraction of CF , the
curves in El+2

0 are still KYl+2
-non-negative, so if El+2

0 is contracted by the MMP, following the
logic in Lemmas 4.21 and 4.22, there must exist another chain of contractions of components
of SuppF changing the positivity of these curves. Therefore, by repeating this process, we may
assume that the curve CF has non-negative self-intersection. If C2

F = 0, then there exists a
morphism E0 → C fibering E0 over a curve with CF as one of its fibers. However, as CF does
not intersect any other exceptional divisors, the same is true for the generic fiber, so the generic
fiber fg of this map would satisfy KE0 · fg = −2 so 0 = π∗(KX) · fg = (KX + E0 + · · · ) · fg = −2
(where · · · indicate the other exceptional divisors which by assumption do not intersect fg), a
contradiction.

Therefore, we may assume that C2
F > 0 which implies that CF is a big divisor on the surface

E0. Because −KE0 = ((n − 1)/n)CF ,−KE0 is also big. Because CF is a smooth curve through
at worst Du Val singularities that does not intersect any other exceptional divisors of π, the
pair (E0, CF +

∑
−a(Δi, X)Δi|E0) is dlt, where the Δi are the other exceptional divisors of π,

so we may consider the KE0 + CF +
∑

−a(Δi, X)Δi|E0 MMP on E0. Here, the divisor KE0 +
((n − 1)/n)CF +

∑
−a(Δi, X)Δi|E0 = 0 and the components Δi do not intersect CF , so this

contracts all components Δi along with any additional curves that do not intersect CF . Denote
the image of this surface by S. This is an isomorphism on CF , so we continue to denote CF in
the same way. By construction, CF is ample on S and −KS = ((n − 1)/n)CF , so S is Fano. If S
has any strictly log-canonical (non-klt) singularities, then S has index of −KS equal to 1, 2, 3,
4, or 6 (see Lemma 4.28), and the index divides d � 5, so we must have index 1 or 3. It the index
is 1, KS is Gorenstein near the non-klt singularity. Because −KS is ample, by Theorem 4.6,
S is an elliptic cone, in which case it is impossible for −KS = ((n − 1)/n)CF unless n = 2,
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which implies that d is even. If the index is 3, then S is rational [Hac04, Theorem 8.5], so we
assume that S is a rational Fano surface.

Now, we proceed by comparing the minimal resolution of S and its minimal model. Let
φ : M → S be the minimal resolution, and let M → Z be the minimal model of M (with respect
to KM ). By [Nak07, Corollary 3.4] any curve C ⊂ M with C2 < 0 is either contained in the
exceptional locus of M → S or is a −1 curve. By the ampleness of CF , any −1 curve in M must
intersect the pullback of CF .

Following the ideas in [Nak07, Fuj16], we can classify such surfaces. Although their work is
in the case when CF is Cartier and S is klt, the Du Val singularities do not provide a significant
complication. For example, suppose that S is singular at a point p ∈ CF . By assumption, this
is a Du Val singularity. Let P be the chain of −2 curves above p in the minimal resolution M .
If C ⊂ M is a −1 curve that intersects the chain P , we can contract C and then contract the
curves in P until we find either a degree-zero curve (in which case, the MMP can terminate with
a fibration) or produce a −1 curve connected to only smooth points of CF and then follow the
ideas of [Fuj16]. For brevity, we only sketch the idea here. We first reduce to S only having A1

singularities along CF : if there were larger An singularities, there must be a −1 curve connected
somewhere to the chain, and contracting the −1 curve and connected −2 curves yields a fibration
where φ∗(KS + ((n − 1)/n)CF ) is not trivial. Then, we note that any −2 curve must meet a −1
curve (it cannot be a section in Z as a general fiber of the fibration would also not satisfy φ∗(KS +
((n − 1)/n)CF ) trivial), and such a −1 curve cannot meet CF in any other point (because if it
did, and because n � 5, that −1 curve would not satisfy φ∗(KS + ((n − 1)/n)CF ) triviality).
Therefore, we find −1 curves meeting a −2 curve and any other negative curves attached to the
−1 curves have discrepancy at most (n − 1)/2n. Ultimately, this is impossible to satisfy while
simultaneously maintaining φ∗(KS + ((n − 1)/n)CF ) = 0. Therefore, we conclude that there are
no singularities along CF . Then, we show that S must be klt: if S has a log-canonical singularity
of Cartier index 3, we show that the unique fork of the dual graph in the minimal resolution must
be the negative section of the minimal model, but then CF must also be a section and hence
rational. However, from the formula KS + F = (1/n)CF , this is only possible if C2

F = −2n < 0,
which is a contradiction. Therefore, we find that S is a klt Fano surface with CF Cartier, and
we can apply Fujita’s results directly.

Thus, we assume S is a log-terminal Fano surface, and CF is a Cartier divisor on S satisfying
KS + ((n − 1)/n)CF = 0 for some n � 5, and we use the classification in [Fuj16]) to bound its
fractional index and prove that there is only one possibility for S.

Definition 4.26. For a Q-Fano log-terminal variety Z, define the fractional index as

r(Z) = sup{r ∈ Q>0 | −KZ ≡ rL for an ample Cartier divisor L}.
Lemma 4.27. In the setting described previously, the index must in fact be ((n − 1)/n).

Proof. Indeed, if it were less than this, computations show that we would find a smaller ample
divisor L and kL = CF , k � 2, but this would imply that the fractional index is at least one,
but then by [Fuj16] S is either P(1, 1, q) or has at worst Du Val singularities. If S is P(1, 1, q),
using the relationship KS + ((n − 1)/n)CF = 0, the fact that CF misses the singular point of S,
a short computation shows that n � 4, contradicting our assumption that n � 5. If instead S
has Du Val singularities, then we can find a curve l such that KS · l = −1, −2, or −3, and then
use the relationship KS + ((n − 1)/n)CF = 0 to get a contradiction if n � 5. �

Thus, given that the fractional index is (n − 1)/n, n � 5, we can apply the results in [Fuj16].
From the classification in that paper, we see that the only possible fractional index of this
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form is 4
5 . By Fujita’s classification, S must have a singularity of type 1

5(1, 2) away from CF .
Here S is constructed as a birational model of F3: blow up two points on a fiber l away from
the negative section of F3, and let M → F3 be the resulting surface. Then, contract the strict
transform of l and the strict transform of the negative section to obtain M → S, with an iso-
lated 1

5(1, 2) singularity on S. The curve CF is obtained as the image of the strict transform
of the degree-two multi-section of F3 that passes through the two points blown up. Let l1 and
l2 be the images of the two −1 curves in S. Then, by construction, either E0 = S, E0 = M ,
or E0 is obtained from M by blowing down either the −2 or the −3 curve (but not both).
Note that this implies that E = E0 (there are no divisors with discrepancy one) and there are
no other components of SuppF that intersect E (no divisors have discrepancy of the form
(n − 1)/n).

At this point, the problem becomes purely computational, studying the positivity and neg-
ativity of KYl+1

and El+1. Suppose we are in the first case, E = S (the other cases are similar,
with extra divisors Gi attached along the exceptional curves in E). Because CF is contained in
the smooth locus of E, the contraction of each component of the exceptional chain F1 ∪ · · · ∪ Fk

is the contraction of a smooth ruled surface. Because n = 5, there are only three possibilities
for the chain itself (as the generic point contracts to a cyclic quotient singularity of index five):
either there is one surface F1 with coefficient 4

5 in π∗(KX); two surfaces F1 ∪ F2 with coef-
ficient either 4

5 and 2
5 or 4

5 and 3
5 ; or four surfaces F1 ∪ F2 ∪ F3 ∪ F4 with coefficient (of Fi)

1 − 1/n. Therefore, thus far the MMP has been the contraction of a smooth ruled surface Δ
onto Fk (the last divisor in the chain) followed by the contractions of each Fi. By computa-
tion, (KYl+1

+ El+1) · CF = −8 and C2
F = 10 (as a curve in El+1). Denote by El+1 · CF = −d

and KYl+1
· CF = d − 8. Let φ : Y → Yl be the composition of the contractions thus far. We

can compute φ∗KYl+1
and φ∗El+1 and, together with the hypotheses that curves in SuppF

are K-non-negative but the generic curves in Δ are K-negative and that all components of
SuppF and Δ are smooth ruled surfaces, computation implies that d > 8 and there can be
no extra exceptional components Gi ∈ SuppG of π attached to Δ. (In fact, this already rules
out the first two possibilities for the chains Fi: the generic fiber fg of Δ would then have
image in X satisfying KX · π(fg) = i/5, i = 1, 2, or 3, so we use dKX + 4D ∼ 0 to conclude d
is even.)

Now, from the computation that d > 8, we see that El+1 · CF < 0 and KYl+1
· CF > 0.

There must exist a K-negative extremal ray somewhere in Yl+1, and the only contractible
curves in El+1 are l1 and l2. If at this point of the MMP we find another K-negative, El+1-
positive extremal ray that does not contain l1 or l2, because there were no extra exceptional
components G of π attached to Δ, this ray is necessarily K + El+1-negative, and the MMP
terminates in a fibration, so we are done by previous arguments. If there are K-negative rays
away from El+1 (i.e. are E-trivial and do not contain l1 or l2), we contract and continue the
MMP.

The only other possibility is that we find only K-negative rays that contain l1 or l2, and we
show that this is not possible. These cannot both be K-negative: it is straightforward to show
CF in the face spanned by these curves, and KYl+1

· CF > 0. Suppose the only K-negative ray
contains l1. Let φl+1 : Yl+1 ��� Yl+2 be the associated step of the MMP. At this stage, El+2 ∼=
P(1, 1, 2), so at the next stage of the MMP, l2 and CF must be numerically equivalent. However, on
El+1, φl+1 is a morphism, so we can compute the pullback of KYl+2

to El+1. Using the numerical
equivalence of l2 and CF after the contraction, we find that KYl+1

· l2 < 0, contradicting that
both curves were not K-negative. This concludes the proof in the case that E0 is contracted to
a point in X.
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Case 2: E0 is contracted to a curve in X
This case uses that the generic point of the image of E0 is a log-canonical surface singularity,
so we have a classification. The following result is well-known by classification of log-canonical
surface singularities (for example, [KM98, Theorem 4.7] or [Kol92, Chapter 3]).

Lemma 4.28. If X is a threefold with a one-dimensional locus of log-canonical singularities C,
over the generic point p of a component of C, the pre-image of p in the terminalization is:

(i) a smooth elliptic or nodal curve, or a cycle of smooth rational curves;
(ii) a tree with exactly one fork, which has three branches with lengths n1 − 1, n2 − 1, and

n3 − 1; the possible values for (n1, n2, n3) are (2, 3, 6), (2, 4, 4), or (3, 3, 3);
(iii) a tree with exactly two forks as pictured in [KM98, Theorem 4.7(3)].

In each case, the index of the canonical divisor near p is 1, 2, 3, 4, or 6.

Because the index of KX divides d, we immediately obtain the following.

Corollary 4.29. If X is log-canonical along a curve and d is odd, the index at the generic
point must be 1 or 3.

The only cases that have index 1 or 3 are case (i) or the (3, 3, 3) case of case (ii). Suppose
C in E0 is the first curve contracted. By Lemma 4.21 and its proof, if C is not a fiber of π|E0 ,
then E0 = P1 × C ′. If C intersects no other exceptional components of π, then KX · π(C) = −2,
so the relationship dKX + 4D implies that D is even. If C does intersect other exceptional
components, they must be components of SuppF with discrepancy ((n − 1)/n). In this case,
if any component of SuppF is not supported on fibers of π|E0 , then we must be in case (ii),
(3, 3, 3), which implies C ′ = P1 so E0 = P1 × P1 and n = 3. In this case, the configuration of
divisors above the log-canonical singularity consists of one fork and three branches, each with
length two, and the branches contract to cyclic quotient singularities of type 1

3(1, 2) along the
generic point. The discrepancies of the Fi meeting E are therefore 2

3 , and because C ∼= P1, we
find that KX · π(C) = −2 + 2

3k, where k is the number of components Fi that C intersects. This
implies d is even provided k �= 1. If k = 1, then C intersects F1 but not F2 or F3, so F1|E0 is a
section of O(1, 1) and F2 and F3 restrict to fibers proportional to C. However, considering the
fiber of π over the intersection point of F1 and F2, these surfaces intersect along some curve
f that is contracted to X. However, computing 0 = π∗(KX) · f , we find a contradiction that
KY · f � 0. Therefore, C only intersects components of SuppF supported on the fibers of π|E0 ,
and it is easy to see that there must exist another K-negative E-positive extremal ray (other
than C) and it cannot be contained in the exceptional locus of π, so must be K + E-negative,
so its contraction results in a fibration and we see that d is even.

Otherwise, the first curve in E0 contracted must be a fiber of π|E0 . The only contractions
thus far did not contract curves in E0, and this is the first curve contracted, so there must have
been a contraction of some component of SuppF onto E0 (Lemma 4.22). The existence of such a
component Fi implies that we are in the (3, 3, 3) case in case (ii), and the contraction of divisors
Fi means we can apply the arguments in the contracted to a point case about contractions of
chains of divisors in SuppF . However, in order for the singularity to be log-canonical with the
appropriate configuration, not only is the index 3, but this discrepancy of the divisor F must be
2
3 , so we must have n = 3. This is impossible by Lemma 4.25. This concludes the proof in the
case that E0 is contracted to a curve. �

Lastly, we can immediately generalize this result to the case of non-normal slc varieties
with anti-ample canonical sheaf and whose normalizations have non-log-terminal singularities.
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By normalizing the variety and considering each component (Xν , Δ) (where Xν is a component
of the normalization and Δ is the double locus), this is equivalent to studying the case of a pair
(Xν , Δ) where −(KXν + Δ) is ample and the 1-dimensional locus of log-canonical singularities
intersects Δ. Because the locus of log-canonical singularities must intersect Δ (see [Kol92]) but
cannot be contained in Δ, Xν must, in fact, have a log-canonical singularity along a curve.
Then, a terminal modification X ′ of Xν and minimal model program on X ′ gives the same
conclusion, where Δ is not considered as a component of E (but we instead use the relationship
d(KXν + Δ) + 4D ∼ 0).

4.2 Applications to M(P3,sm,d,4) and M(P3,d,4)

We can use Theorem 4.18 to obtain boundedness of (P3, d, 4) H-stable pairs without the smootha-
bility assumption and other interesting corollaries. First, we slightly rephrase Theorem 4.18 and
combine this with the discussion in the previous paragraph.

Theorem 4.30. If (X, D) is a (P3, d, 4) H-stable pair and d is odd, then any component of the
normalization of (X, (4/d)D) is dlt.

For quintic surfaces, we can be even more precise (see Theorem 5.3).
In what follows, we make a careful distinction in each statement between smoothable and

non-smoothable pairs. First, we give a corollary of Theorem 4.1.

Corollary 4.31. For d odd, the normal varieties X occurring in a (P3,sm, d, 4) H-stable pair
are rational.

Finally, using Theorem 4.30, we are also able to obtain boundedness for (P3, d, 4) H-stable
pairs when d is odd, not just smoothable ones. The following theorem is a special case of
[HMX14a, Corollary 1.7] for threefolds.

Theorem 4.32. For fixed odd degree d, the set of (P3, d, 4) H-stable pairs form a bounded
family.

Proof. Restricting to the normal case, by Theorem 3.1, (X, (4/d)D) is klt, and because of the
assumption that dKX + 4D ∼ 0, the pairs (X, (4/d)D) are ε-log-terminal because dKX + 4D ∼ 0
is linear equivalence (not just numerical). Then, −KX is ample and KX + (4/d)D is numerically
trivial by assumption, hence by [HMX14a, Corollary 1.7], form a bounded family. We can restrict
to the normal case because the non-normal pairs are in bijection with normal pairs and a certain
involution as in [Kol13, Theorem 5.13] and, by Theorem 4.30, the normalization is ε-log-terminal.

�
Next, we study log-terminal Fano degenerations of P3 to determine the boundary of the

moduli space of (P3,sm, d, 4) H-stable pairs, generalizing from P3 to Pn when possible. We first
focus on threefolds with canonical singularities appearing in the moduli problem.

4.3 Canonical Fano threefolds
A standard reference for canonical threefolds is [Rei87]. In the Fano case, particularly when X
is Gorenstein, such threefolds can be classified by invariants like K3

X and the Fano index. If X
has at worst canonical singularities, the Fletcher–Reid plurigenus formula [Rei87, Theorem 10.2]
gives the plurigenera of X in terms of K3

X , χ(OX), and coefficients cP determined by a basket of
singularities {Qi} for X. In [Fle89, Theorem 1.1], Fletcher shows the plurigenus formula is exact,
meaning that any two canonical threefolds with the same plurigenera have the same K3

X , χ(OX),
and basket of singularities are the same. The contribution from the singularities is non-zero
precisely when there are points Qi such that KX′ is not Cartier at Qi. In the case at hand,
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X is a flat degeneration of P3, the plurigenera of X and P3 are the same, so this inversion of the
plurigenus formula implies that X ′ must be a terminal Gorenstein variety. Because X ′ → X is
any crepant partial resolution such that X ′ has only terminal singularities, K3

X′ = −64 and we
can take X ′ to be Q-factorial. Thus, we obtain the following.

Theorem 4.33. If X is a terminal variety that admits a smoothing to P3, then X ∼= P3.

Proof. The Fletcher–Reid plurigenus formula shows that if X is not Gorenstein, it does not
admit a smoothing to P3, so it suffices to consider Gorenstein threefolds X. In this case, [CJR08,
Theorem 2.1] implies that the Fano index of X, the maximal integer r such that KX ∼ −rH for
O(H) ∈ Pic(X), is equal to that of P3. Therefore, the Fano index of X is four. Then, [CJR08,
Theorem 3.1] says that, because the Fano index is maximal, X ∼= P3. �

There do exist non-trivial canonical degenerations of P3.

Example 4.34. Observe that the standard embedding of the quadric surface P1 × P1 ⊂ P3 is an
element of the linear system OP3(2). Let Z be the image of the degree-two embedding of P3 ↪→ P9.
There is a standard degeneration from Z to the cone over a hyperplane section of Z by taking
the cone over Z (see, for example, [KM98, Example 7.61]). In this case, the hyperplane section
of Z corresponds to an element of OP3(2), and is the O(2, 2) embedding of the quadric surface
in P8. A computation shows that the cone over this is indeed Gorenstein as it is the cone over
the anticanonical embedding of P1 × P1. A check shows that this has canonical singularities; for
details, see [Kol13, Lemma 3.1]. Therefore, this gives an example of a flat degeneration of P3 to
a Gorenstein canonical variety.

A priori there may be many canonical degenerations of P3, but the following theorem shows
that if d is odd, they must be closely related to the previous example. In fact, they must be P3

or cones over the anticanonical embeddings of elements of the linear system |OP3(2)|, which have
a simple description.

Theorem 4.35. For odd degree d, if X is a canonical threefold appearing in a (P3,sm, d, 4)
H-stable pair (X, D), then X is either P3, the cone over the anticanonical embedding of P1 × P1,
or the cone over the anticanonical embedding of the quadric cone, P(1, 1, 2, 4).

If X has only terminal singularities, Theorem 4.33 implies the result. If X has canoni-
cal singularities, consider a crepant partial resolution X ′ → X such that X ′ is terminal and
Q-factorial. Before giving the proof, we give a sketch of the argument.

By [Fle89], if KX′ is not Cartier, there is a non-zero contribution to a basket of singularities
on X, so X is not isomorphic to P3. It then suffices to consider the case where X ′ is a terminal,
Q-factorial Gorenstein variety with −KX′ nef. Running a minimal model program on X ′, if
it terminates in a morphism X ′ ��� Y → Spec k, then Y must be a terminal Fano threefold
with ρ(Y ) = 1. Studying the pseudo-index of Y as in [CJR08] and combining this with the fact
that K3

X′ = −64 would imply that X ′ itself must have been P3, so X ∼= P3. If a run of the
minimal model program on X ′ terminates in a morphism X ′ ��� Y → C, where C is a curve,
the generic fiber of Y → C must be a smooth del Pezzo surface, so there are sufficiently general
curves L ⊂ X ′ such that KX′ · L = −3 or −2, and if the termination is in a surface W , there
are sufficiently general curves L ⊂ X ′ such that KX′ · L = −2. If any of these curves miss the
exceptional divisors of the partial resolution π : X ′ → X, then D · π(L) ∈ Z, and we can argue
as in the previous example to show that d must be even. Similarly, we can reach the same
conclusion if D does not pass through the strictly canonical singularities of X. The remaining
case is when D contains the strictly canonical singularities of X and the general fiber L intersects
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the exceptional divisors of π : X ′ → X, because it is not obvious that D · π(L) ∈ Z. However, we
can explicitly understand the fibration when this occurs.

First, let us recall results of Cutkosky on contractions of extremal rays on terminal,
Q-factorial Gorenstein threefolds.

Lemma 4.36 [Cut88, Lemma 2]. Suppose that X is a terminal, Q-factorial Gorenstein threefold.
Then, X is factorial.

Lemma 4.37 [Cut88, Lemma 3]. Suppose that X is a terminal, Q-factorial Gorenstein threefold
and φ : X → Y is the contraction of a KX -negative extremal ray with at most one-dimensional
fibers. Then, Y is factorial. In particular, Y is a terminal, Q-factorial Gorenstein threefold, and
φ cannot be a small contraction.

Theorem 4.38 [Cut88, Theorem 4]. Suppose that X is a terminal, Q-factorial Gorenstein
threefold and φ : X → Y is a birational contraction of a surface W ⊂ X to a curve C ⊂ Y .
Then, Y is smooth near C.

Theorem 4.39 [Cut88, Theorem 5]. Suppose that X is a terminal, Q-factorial Gorenstein
threefold and φ : X → Y is a birational contraction of a surface W ⊂ X to a point p ⊂ Y . Then,
one of the following four cases occurs:

(i) Y is non-singular near p, W ∼= P2, and OW (W ) ∼= OP2(−1);
(ii) W ∼= P1 × P1 and OW (W ) ∼= OP1×P1(−1,−1);
(iii) W is isomorphic to a reduced, irreducible singular quadric surface D in P3 and OW (W ) ∼=

OP3(−1) ⊗OD;
(iv) Y is singular at p, W ∼= P2, and OW (W ) ∼= OP2(−2).

Now we can prove Theorem 4.35.

Proof. Let us begin with the simplest case: no component of the locus of canonical singularities
is contained in D. Then, the contraction of a KX′ negative extremal ray must be birational
X ′ → Y or a Fano fibration X ′ → S or X ′ → C, where dim S = 2 or dimC = 1. Because −KX′

is nef and non-trivial, the contraction cannot be X ′ → Spec k. Also, by Lemma 4.37, X ′ → Y
is necessarily a divisorial contraction. Therefore, in every case, the generic curve contracted has
KX′ · C = −1,−2, or −3, so the image of C on X has KX · π(C) = −1,−2, or −3. Because D does
not contain the locus of canonical singularities, for a sufficiently generic curve C, D · π(C) ∈ Z.
Therefore, the relationship dKX + 4D ∼ 0 implies d is even. If a component Δ of the locus of
canonical singularities is contained in D, we can separate into two cases: either Δ is one- or
zero-dimensional.

Case 1: dim Δ = 1
If Δ is one-dimensional, consider the partial resolution π : X ′ → X. Because X has only canonical
singularities, the fibers of π must be chains of rational curves. We can study the pullback π∗D:
in particular, π∗D = D̃ +

∑
aiFi, where D̃ is the strict transform of D and F =

⋃
Fi is the

fiber over Δ. Let F0 be a component of F such that dimπ(F0) = 1. For a generic curve C ⊂ F0

contracted by π, KX′ · C = 0 and F · C < 0. However, −2 = KF0 · C = (KX′ + F0) · C, so there
can be at most one component Fi meeting C with Fi · C = 1. Therefore, either there is no such
Fi and

0 = π∗D · C = D̃ · C +
∑

aiFi · C = n + a0(−2),
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for some n ∈ Z so a0 ∈ 1
2Z or there is some Fi that meets C and a contracted curve C ′ ⊂ Fi

meeting F0 so

0 = π∗D · C = D̃ · C +
∑

aiFi · C = n + a0(−2) + ai(1),

0 = π∗D · C ′ = D̃ · C ′ +
∑

aiFi · C ′ = m + a0(1) + ai(−2),

so a0, ai ∈ 1
3Z. This shows that, for generic curves in X meeting D, the intersection with D is in

1
6Z. With this in mind, now contract a KX′ negative extremal ray on X ′. As previously, we have
the following options: (A) X ′ → Y is divisorial; (B) X ′ → S is a Fano fibration over a surface;
or (C) X ′ → C is a Fano fibration over a curve.

Case 1A. Assume first that X ′ → Y is divisorial. If X ′ → Y is divisorial and with at most one-
dimensional fibers, the generic fiber C has KX′ · C = −1, so the image in X has KX · π(C) = −1.
For sufficiently generic C, D · π(C) ∈ 1

6Z. Therefore, the relationship dKX + 4D ∼ 0 implies d
must be even. If X ′ → Y is divisorial but contracts a surface to a point, if any case other than
case (i) as in Theorem 4.39 occurs, we still find a generic curve C in the fiber with KX′ · C = −1.

If case (i) occurs, the threefold Y is still terminal, Q-factorial, and Gorenstein, so we can
contract a new KY negative extremal ray and repeat. If at any point our contraction one
of the cases (ii), (iii), or (iv), by the same argument, we are done. If we perform a diviso-
rial contraction with at most one-dimensional fibers, again the output is terminal, Q-factorial
and Gorenstein, so we can continue. Therefore, it suffices to analyze the possible fibrations
that arise as minimal models of a terminal, Q-factorial, Gorenstein variety X ′ where, at each
step of the minimal model program, the resulting variety is also terminal, Q-factorial, and
Gorenstein.

However, after some number of divisorial contractions, we reach the point of a fibration, then
the divisorial contractions were blow ups of some point(s) on the fibration. Therefore, either the
general fiber of the fibration does not intersect F , or after blowing up, a fiber of the divisorial
contraction does not intersect F . Therefore, its image on X has D · C ∈ Z. Arguing as before
implies d is even. Therefore, the only two cases that remain to be studied are if the only possible
KX′ negative contraction yields a fibration.

Case 1B. If φ : X ′ → S is a fibration with general fiber ∼= P1, either there are F -trivial fibers
C or F is relatively ample. In the first case, KX · π(C) = −2 and D · π(C) ∈ Z, so d be even.
Assume then that F is relatively ample. By [Cut88, Theorem 7], S must be smooth and X ′ must
be a conic bundle over S. If X ′ → S has any singular fibers, then there exist curves C such that
KX′ · C = −1, and we argue as before to show d must be even. Therefore, we may assume every
fiber is smooth and X ′ → S is a smooth P1-bundle over a smooth surface S. Furthermore, by
[CJR08, Lemma 2.5], −KS is big and nef. Because F is relatively ample, for some component
F0 of F , the induced morphism F0 → S must be finite. However, F0 is contractible on X ′, so we
have the following diagram.

Consider a smooth curve C ⊂ S such that Z = φ−1(C) contains a contracted curve in F0. Because
every fiber of φ is P1, Z is a ruled surface over C and because F0 → S is finite, F0|Z is a multi-
section of φ|Z : Z → C. However, this multi-section is contractible in Z to a surface Z̄ ⊂ X. For
generic Z, Z is not contracted by π, so intersection theory on ruled surfaces implies that F0|Z is
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actually a section. This is true for any such Z, so the degree of φ|F0 : F0 → S must be 1, hence
S ∼= F0 and F0 is a section of φ.

Assume first that F0 is contracted to a curve via π : X ′ → X. Then, S ∼= F0 must be a ruled
surface over C with −KS big and nef, so S must be P1 × P1, F1, or F2. Because each of these
surfaces have ρ(S) = 2, it follows that ρ(X ′) = 3 and there are at most two components of F . If
there is only one component of F , there is exactly one contraction X ′ → X that is KX′ trivial,
but ρ(X ′) � 3 implies that there are at least two KX′-negative contractions. One corresponds to
the map φ : X ′ → S ∼= F and the other must correspond to another case, so we use the argument
in the other cases to find a contradiction or show X ∼= P(1, 1, 2, 4).

If there are two components of F , so F = F0 ∪ F1, then F1 must also be relatively ample
as it is covered by KX′-trivial curves so cannot be contracted by φ. Therefore, S ∼= F0

∼= F1.
However, this is only possible if both F0 and F1 are contracted to a curve via π; otherwise,
say F1 is contracted to a point, then there exist F1 trivial curves intersecting F0, so F1 is not
relatively ample. Now, as before, consider a smooth curve C ⊂ S such that Z = φ−1(C) contains
a contracted curve in F0. Because every fiber of φ is P1, by the previous argument, Z is a ruled
surface over C with a contractible section. However, Z must also contain a contracted curve
in F1, hence Z has two contractible sections. However, this is a contraction, as it would imply
π|Z : Z → π(Z) contracts Z to a curve.

Therefore, we can assume that F0 is contracted to a point via π : X ′ → X. If each φ-ample
divisor Fi does not intersect D̃, we find curves C such that D · C ∈ Z and KX · C = −2 so
d is even. Therefore, it suffices to consider only Fi that intersect D̃. Because D contains Δ,
there is some F1 that is contacted to a curve via π such that F1 ∩ D �= ∅ and F1 ∩ F0 �= ∅. The
intersection F1 ∩ F0 must be a fiber of the ruled surface F1, hence F0 contains a curve C such
that KX′ · C = 0, F1 · C = −2, and F0 · C = 0. Therefore, KF0 · C = 0 so F0

∼= F2.
This implies that ρ(X ′) = 3 because φ : X ′ → S ∼= F2 is a P1 bundle, hence there is only one

exceptional divisor F1 with dimπ(F1) = 1. If F1 were also φ-ample, we must have F1
∼= F2 also

be a section. However, the intersection curve C = F0 ∩ F1 is a section of F0 but a fiber of F1, a
contradiction. Therefore, F1 is not φ-ample, so we must have F1

∼= P1 × P1. Contracting F0 and
F1 to X shows ρ(X) = 1 and X has a 1

4(1, 1, 2) singularity, hence we must have X ∼= P(1, 1, 2, 4).

Case 1C. If φ : X ′ → C is a fibration with general fiber a smooth del Pezzo surface and C ∼= P1,
we can first note that if the general fiber is a surface other than P2 or P1 × P1, there exist curves
C with KX′ · C = −1, so we argue as before to conclude d is even. Similarly, if the fiber is P2,
there exist curves C with KX′ · C = −3, and again we can conclude d is even. Therefore, it
suffices to analyze the case when the general fiber is P1 × P1. Because ρ(C) = 1 and φ was an
extremal contraction, ρ(X ′) = 2. There is then only one component of F . We would like to show
that there are divisors D1 and D2 whose restriction to each fiber are the different rulings. Those
are not linearly equivalent nor are they linearly equivalent to the general fiber F , hence it would
imply ρ(X ′) � 3, a contradiction.

Suppose for contradiction X ′ does exist. If F was contained in a fiber of φ, then there exist
many F -trivial curves with KX′ · C = −2, and on X, D · π(C) ∈ Z. As usual, we consider the
relation dKX + 4D ∼ 0, so find that d must be even. Now consider the case that F is φ-ample,
so φ|F : F → C gives F the structure of a ruled surface over C and contracts only KX′-negative
curves. Because π|F also contracts F to a curve but contracts only KX′-trivial curves, F must
have the structure of a product, so F ∼= P1 × P1.

Let Γ ∼= P1 × P1 be a fiber of φ. We claim that F , Γ, and KX′ in N1(X) are independent so
we must have ρ(X ′) � 3, a contradiction. To see the claim, note that Γ|F must be a ruling of F ,

1361

https://doi.org/10.1112/S0010437X22007552 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007552


K. DeVleming

so Γ|F ∈ |OF (1, 0)|. Next, observe that KX′ |F is negative on the fibers contracted by φ and trivial
on the fibers contracted by π. However, these are the two rulings of F , so KX′ |F ∈ |OF (−2, 0)|.
Furthermore, KX′ and Γ are certainly not linearly equivalent. Finally, consider F |F . On the fibers
of F contracted by π, by the negativity lemma, this must be negative, so F |F ∈ |OF (a,−b)| for
b > 0. Therefore, F cannot be linearly equivalent to any linear combination of Γ and KX′ , so
ρ(X ′) � 3, so X ′ cannot exist.

Case 2: dim Δ = 0
Finally, suppose the locus of log-canonical singularities is a point contained in D. We can study
the same contractions: (A) X ′ → Y is divisorial; (B) X ′ → S is a Fano fibration over a surface; or
(C) X ′ → C is a Fano fibration over a curve. In this case, if F is the exceptional locus of the map
π : X ′ → X, the curves in F are all KX′-trivial, so none can be contracted by a KX′-negative
contraction. Therefore, the third arrow (case (C)) X ′ → C is not possible.

Case 2A. Because the curves in F are all KX′ -trivial, the only possible K-negative divisorial
contraction over F is X ′ → Y that has at most one-dimensional fibers. However, then Y would
be terminal, Gorenstein, and Q-factorial, so we can continue the minimal model program on Y .
Much of this argument is the same as case 1A. If divisorial contractions happen first, there exist
curves with KX′ · C equal to −1,−2, or −3 that do not intersect F , and (invoking factoriality
of X ′), D · π(C) ∈ Z, and we can conclude d is even.

Case 2B. The remaining case is if the only KX′ negative contraction is a fibration X ′ → S, and
as in case 1B, we can assume every fiber is smooth and isomorphic to P1. Therefore, we find
ourselves in the situation where φ : X ′ → S is a smooth P1-bundle over a smooth surface S and
by [CJR08, Lemma 2.5], −KS is big and nef. Exactly as before, we can conclude S ∼= F0 for some
component F0 of F and F0 is a section of φ. Furthermore, for any component Fi of F , because
π(Fi) is a point, KX′ · Ci = 0 for any Ci ⊂ Fi, so Ci cannot be contracted by φ. Therefore, every
component Fi of F is φ-ample and S ∼= Fi for all i.

Briefly turning our attention to the map π : X ′ → X, because components of F are contracted
to points by π, every curve in F is KX′-trivial and F -negative. By adjunction, for C ∈ Fi,
(KX′ + Fi) · C = KFi · C, so Fi · C = KFi · C. Therefore, not only is −KS = −KFi big and nef,
but it is ample, so S ∼= Fi is a Fano surface. If there are any −1 curves on F , taking the intersection
product with π∗D = D̃ + aF implies a ∈ Z, so for any curve C on X, D · C ∈ Z. Therefore, for
a fiber of φ with KX′ · C = −2, we find that d must be even. Similarly, if Fi

∼= P2, we find lines
with F · C = −3, so D · C ∈ 1

3Z and the same conclusion holds.
Therefore, the only remaining case is if Fi

∼= P1 × P1 for all i:

and π : X ′ → X contracts F . Consider Z = φ−1(C) for a generic ruling C on P1 × P1. By con-
struction, each Fi|Z is a contractible section of the smooth ruled surface Z. Because Z is not
contracted by π, this implies that there is only one Fi and F = F0. Then, X is locally isomorphic
to the cone over the anticanonically embedded P1 × P1, Example 4.34. However, ρ(X) = 1, so X
must actually be isomorphic to that cone. �

Ultimately, the odd-degree pairs are behaving in a very special way: oddness of the degree is
forcing constraints on the threefolds X that can appear. Summarizing the previous two sections,
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no log-canonical threefolds X can appear and there are only three possibilities if the threefold
X has canonical singularities.

4.4 A divisor in the moduli space
By a simple dimension count, we obtain the following.

Proposition 4.40. Let X be the cone over the anticanonical embedding of P1 × P1, consid-
ered as a hypersurface in W = P(1, 1, 1, 1, 2) (c.f. 4.65), so O(KX) = OW (−4)|X . If the pair
(X, (4/d)D) is log-terminal for the general member D in the linear system |OX(d)|, then there
is a divisor DQ in the moduli space M(P3,sm,d,4) parameterizing surfaces on X.

To show that surfaces on X appear as a divisor in the moduli space for any degree d, we show
that the general member D ∈ |OX(d)| is such that (X, (4/d)D) has log-terminal singularities.
In fact, because the log-canonical threshold is upper semicontinuous, it suffices to show this
for a particular member D ∈ |OX(d)|. For even degree d, we can find a smooth member D ∈
|OX(d)| missing the unique singular point of X, and because X has canonical singularities,
certainly (X, (4/d)D) is log-terminal. For odd degree d, consider D0 = D1 ∪ D(d−1)/2, where
D1 ∈ |OX(1)| and D(d−1)/2 ∈ |OX((d − 1)/2)| are general members meeting transversally. D1

has a unique 1
4(1, 1) singularity at the vertex of X and D2 is smooth, missing the vertex of X,

and a computation shows (X, (4/d)D0) is log-terminal. Therefore, we have proven the following.

Proposition 4.41. Let X be the cone over the anticanonical embedding of P1 × P1. For any
degree d > 4, there is a divisor DQ in the moduli space M(P3,sm,d,4) parameterizing surfaces
on X. Furthermore, by Proposition 3.10, M(P3,sm,d,4) is smooth generically along DQ.

In higher dimensions, the same proof gives the existence of a divisor in the moduli space of
(d, n + 1)Pn-smoothable H-stable pairs.

Theorem 4.42. Let Xn ⊂ P(1n+1, 2) be the cone over the degree 2 embedding of a smooth
quadric Q ∈ |OPn(2)|. For any degree d > n + 1, there is a divisor DQ in the moduli space
MPn-sm,(d,n+1) parameterizing hypersurfaces on Xn.

In fact, we can describe the singularities of the generic degree d hypersurface on Xn.

Proposition 4.43. For a generic point (Xn, D) on the divisor DQ, where Xn ⊂ P(1n+1, 2) is
the cone over the degree-two embedding of a smooth quadric Q ⊂ Pn, we can describe D as
follows.

(i) If d is even, D is smooth.
(ii) If d is odd, D passes through the vertex of the cone Xn and is locally isomorphic to the

vertex of the cone Xn−1.

Remark 4.44. For (d, 3)P2-smoothable H-stable pairs, there is a divisor parameterizing curves
on X2 = P(1, 1, 4), the cone over the degree-two embedding of a conic in P2. If d is even, the
curves are smooth and miss the singular point, and if d is odd, the curves are nodal at the
singular point. The node can be interpreted as the singularity of a cone over two points, X1.
For three-dimensional pairs, there is a divisor parameterizing surfaces on X3, the cone over the
anticanonical embedding of P1 × P1. If d is even, again the generic surface misses the singular
point of X3, but if d is odd, the generic surface has a singularity of type 1

4(1, 1) at the vertex of
X3, matching the singularity type of X2. Proposition 4.43 shows that this behavior persists in
all dimensions.
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4.5 Log-terminal degenerations of Pn

To completely classify normal varieties appears as (P3,sm, d, 4) H-stable pairs when d is odd, it
remains to understand log-terminal threefolds X that are degenerations of P3. We approach this
in general (not only in the d odd case) and state results for Pn whenever possible. There are
natural log-terminal varieties to consider: weighted projective spaces. We summarize the case in
dimension two, due to Hacking and Prokhorov.

Theorem 4.45 [HP10]. If X is a normal, log-terminal degeneration of P2 such that the total
space is Q-Gorenstein, then X ∼= P(p2, q2, r2) or a smoothing of such a space, where

3pqr = p2 + q2 + r2.

Furthermore, all such varieties admit a Q-Gorenstein smoothing to P2.

In addition to the theorem, we can describe all solutions with an infinite graph.

Theorem 4.46. All solutions to

3pqr = p2 + q2 + r2

can be obtained by starting with the obvious solution (1, 1, 1) and performing a sequence of
mutations: if (p, q, r) is a solution, then (p, q, 3pq − r) is a solution.

One could hope for an analogue of the description of degenerations in the three-dimensional
case, although that seems far out of reach. However, there are partial results, using properties
of weighted projective spaces. Recall that a weighted projective space P(a0, . . . , an) is called
well-formed if every subset of n of the ai has no common factors. We call the set of integers
(a0, . . . , an) well-formed if the associated weighted projective space is.

Proposition 4.47. If P(a, b, c, d) is well-formed and admits a Q-Gorenstein smoothing to P3,
then

64abcd = (a + b + c + d)3.

Proof. In order for X = P(a, b, c, d) to have a Q-Gorenstein smoothing, necessarily K3
X = K3

P3 =
−64 by Proposition 4.2. However, O(KX) = O(−a − b − c − d), and

K3
X =

(−a − b − c − d)3

abcd
.

Therefore, we must have 64abcd = (a + b + c + d)3. �
One could make the immediate generalization to n-dimensional weighted projective spaces

as follows.

Proposition 4.48. If P(a0, a1, . . . , an) is well-formed and admits a Q-Gorenstein smoothing to
Pn, then

(n + 1)nΠai =
( ∑

ai

)n
.

Remark 4.49. Although this formula appears different from the formula in Theorem 4.46, the
equation 9abc = (a + b + c)2 simplifies to 3pqr = p2 + q2 + r2 (where a = p2, b = q2, c = r2) when
(a, b, c) is well formed.

Given the equation, one must ask how to find solutions. There is certainly an infinite
family of solutions, which makes sense geometrically. If we have a degeneration of P2 to such
a weighted projective space, it should induce a degeneration of P3 to an appropriate cone over
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that weighted projective space. This is the content of the following proposition, stated first in
the three-dimensional case and then in general, whose proof is simple arithmetic.

Proposition 4.50. If P(a, b, c) admits a smoothing to P2, then d =
√

abc = (a + b + c)/3 ∈ Z

and P (a, b, c, d) satisfies the condition

64abcd = (a + b + c + d)3.

Example 4.51. The first non-trivial example of a solution is P(1, 1, 2, 4). Because this can be
embedded as a degree-two section of P(1, 1, 1, 1, 2), it clearly admits a smoothing to P3.

We have the following immediate generalization to Pn.

Proposition 4.52. If P(a0, a1, . . . , an) satisfies

(n + 1)nΠai =
( ∑

ai

)n
,

then b = (Πai)1/n =
∑

ai/(n + 1) ∈ Z and P(a0, a1, . . . , an, b) satisfies

(n + 2)n+1bΠai =
(
b +

∑
ai

)n+1
.

Let us further investigate the three-dimensional case. Using a computer, one can list the
integer solutions to the equation 64abcd = (a + b + c + d)3 such that the associated weighted
projective space is well-formed, and finds the following weighted projective spaces as the first
few solutions:

P(1, 1, 1, 1) P(1, 1, 2, 4) P(1, 2, 9, 12)
P(1, 4, 10, 25) P(1, 4, 16, 27) P(1, 6, 9, 32)
P(1, 7, 27, 49) P(1, 9, 50, 60) P(1, 22, 32, 121)

We can immediately determine that some of these threefolds do not admit smoothings to P3,
using the following theorem of Schlessinger [Sch71, Theorem 3].

Theorem 4.53 [Sch71]. Assume Y is smooth of dimension � 3, G is a finite group, and X =
Y/G. Let p : Y → X be the quotient map. If y ∈ Y is the only fixed point of G, then X is rigid.

In the list of weighted projective spaces, it implies that neither P(1, 4, 16, 27) nor P(1, 7, 27, 49)
are smoothable, so we see that, in dimension � 3, satisfying the equation is not a sufficient
condition to admit a smoothing (contrasting with the case for dimension two). For the remaining
candidates, in light of Proposition 4.50, there are some solutions P(a, b, c, d) arising from the
degenerations P(a, b, c) of P2 where d = (a + b + c)/3 is the average of a, b, and c. The only
three that appear in this truncated list are P(1, 1, 1, 1), P(1, 1, 2, 4), and P(1, 4, 10, 25). These
solutions are well understood and, following work of Hacking, Prokhorov, and Manetti, we have
the following result. This is simply a restatement of Theorem 4.46, adding in the fourth variable d.

Proposition 4.54. There is an infinite family of well-formed solutions to the equation 64abcd =
(a + b + c + d)3 given by (a, b, c, d) = (α2, β2, γ2, αβγ) = (α2, β2, γ2, (α2 + β2 + γ2)/3). All such
α, β, and γ lie on an infinite tree and are obtained by a mutation of the form (α, β, γ) →
(α, β, 3αβ − γ) starting from (1, 1, 1).

Definition 4.55. We call a solution of this form P2-type because it arises from a degeneration
of P2.

The deformation theory of these weighted projective spaces is in general quite complicated,
but we can show that all solutions of P2-type admit a smoothing to P3.
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Proposition 4.56 [Hac12]. The weighted projective spaces appearing as solutions of P2-type
can be connected as a family of threefolds over a two-parameter base, and are each Q-Gorenstein
deformations of a common smoothing.

Proof. This is proved in [Hac12, Example 7.7]. We relate the weighted projective spaces one step
apart on the infinite tree over a two-parameter base. Let P(a, b, c, d) and P(a, b, c′, d′) be two
solutions to 64abcd = (a + b + c + d)3 of P2-type related by one mutation so that

P(a, b, c, d) = P(α2, β2, γ2, αβγ)

and

P(a, b, c′, d′) = P(α2, β2, γ′2, αβγ′) = P(α2, β2, (3αβ − γ)2, αβ(3αβ − γ)).

Using the fact that 3αβγ = α2 + β2 + γ2 (and similarly for γ′), we can form the two-parameter
family

X : x0x1 = sxγ′
2 + txγ

3 ⊂ P(α2, β2, γ, γ′, αβ) × A2
s,t

of weighted degree α2 + β2 = γγ′ threefolds in P(α2, β2, γ, γ′, αβ).
When s = t = 0, we obtain a non-normal threefold P(α2, γ, γ′, αβ) ∪ P(β2, γ, γ′, αβ).
When s = 0 but t �= 0, we obtain P(α2, β2, γ2, αβγ) via the degree γ embedding

P(α2, β2, γ2, αβγ) → (x0x1 = txγ
3) ⊂ P(α2, β2, γ, γ′, αβ)

given by

(u, v, w, t) �→ (x0, x1, x2, x3, x4) = (uγ , vγ , w, uv, t).

When s �= 0 but t = 0, we obtain P(α2, β2, γ′2, αβγ′) via the degree γ′ embedding

P(α2, β2, γ′2, αβγ′) → (x0x1 = sxγ′
2 ) ⊂ P(α2, β2, γ, γ′, αβ)

given by

(u, v, w, t) �→ (x0, x1, x2, x3, x4) = (uγ′
, vγ′

, uv, w, t).

Finally, for s �= 0 and t �= 0, we obtain a smoothing of the singularities of index c and c′, respec-
tively. Because this is taking place as a complete intersection in weighted projective space, which
is Q-factorial, the total space of these smoothings is Q-Gorenstein. �
Remark 4.57. Because P3 is the ‘linear cone’ over the anticanonically embedded P2, it makes
sense that ‘cones’ (the weighted projective spaces P(α2, β2, γ2, d)) over degenerations of P2 are
appearing as degenerations of P3. Analogously, the equation 4αβγ = α2 + β2 + 2γ2 parameterizes
weighted projective spaces P(α2, β2, 2γ2) that appear as degenerations of P1 × P1 (see [HP10,
Theorem 1.2]). Because P3 is a smoothing of the cone over the anticanonical embedding of P1 ×
P1, it makes sense that ‘cones’ (weighted projective spaces P(α2, β2, 2γ2, d)) over degenerations
of P1 × P1 should be appearing as degenerations of P3. This allows us to find a second infinite
tree of solutions to the equation.

Proposition 4.58. There is an infinite family of well-formed solutions to the equation 64abcd =
(a + b + c + d)3 given by (a, b, c, d) = (a, b, c, a + b + c). All such (a, b, c, d) lie on an infinite tree
and are obtained by a mutation of the form (a, b, c, d) → (a, b, 8ab − a − b − d, 8ab − d) starting
from (1, 1, 2, 4).

Proof. If a + b + c = d, the equation 64abcd = (a + b + c + d)3 simplifies to 8abc = (a + b + c)2.
If desired, one can simplify this further by showing a = α2, b = β2, and c = 2γ2 so the equation
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becomes 4αβγ = α2 + β2 + 2γ2. These parametrize weighted projective degenerations of P1 × P1,
and we use the mutation process in [HP10, Theorem 1.2] to obtain the result. �

In the list of weighted projective spaces, one sees that P(1, 1, 2, 4), P(1, 2, 9, 12), and
P(1, 9, 50, 60) are all of this form.

Definition 4.59. We call a solution of this form Q-type because it arises from a degeneration
of the quadric.

One can prove a simple lemma showing that (1, 1, 2, 4) is the only overlap between the types.

Lemma 4.60. The only solution to the equation 64abcd = (a + b + c + d)3 that is both of P2-type
and Q-type is (1, 1, 2, 4).

As in the case of solutions of P2-type, we can relate two weighted projective spaces of Q-type
that are one mutation apart.

Proposition 4.61. Given two weighted projective spaces that are solutions of Q-type one
mutation apart, there is a two-parameter Q-Gorenstein family connecting them and each are
Q-Gorenstein deformations of a common smoothing.

Proof. Let (a, b, c, d) be the first solution and (a, b, c′, d′) = (a, b, 8ab − a − b − d, 8ab − d) be the
second. Without loss of generality, assume d < d′. First, because d = a + b + c, we have 8abc =
(a + b + c)2 = d2. Then, observe that d(a + b) = d(d − c) = d2 − dc = 8abc − dc = c(8ab − d) =
cd′, hence a + b = cd′/d, and similarly, a + b = c′d/d′. Using this relationship repeatedly, we can
form the desired family.

Then, we can consider the family

X : x0x1 = txa+b
2 + sxc

3 ⊂ P(ac, bc, c, a + b, d) × A2
s,t.

When s = 0 and t = 0, this is a non-normal threefold P(ac, c, a + b, d) ∪ P(bc, c, a + b, d).
For t = 0 but s �= 0, this is the image of the degree c embedding of

P(a, b, c, d) → P(a, b, c, a + b, d)

given by
(x, y, z, w) �→ (x0, x1, x2, x3, x4) = (xc, yc, z, xy, w).

When s = 0 but t �= 0, this is the image of the degree a + b embedding of

P(a, b, c′, d′) → P(a, b, c, a + b, d)

given by
(x, y, z, w) �→ (x0, x1, x2, x3, x4) = (xa+b, ya+b, xy, z, w).

Finally, for s �= 0 and t �= 0, this gives a partial smoothing of the singularities of index c and d
and c′ and d′. Because the total space is a complete intersection in weighted projective space, it
is Q-Gorenstein. �
Remark 4.62. Although one could write the smoothings in Propositions 4.56 and 4.61 over a one-
parameter base, the family over the two-dimensional base shows how to degenerate each pair of
normal threefolds to a non-normal threefold, which can also appear in the moduli problem.

Remark 4.63. The fact that there are two essentially distinct families of solutions to the equation
64abcd = (a + b + c + d)3 indicates the increase in complexity when studying degenerations of
P3 versus those of P2. Although we do not know smoothability for all solutions, Propositions 4.56
and 4.61 show that weighted projective spaces of P2 or Q type are smoothable to P3.
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Furthermore, based on preliminary computation we make the following conjecture.

Conjecture 4.64. The only weighted projective spaces P(a, b, c, d) that admit Q-Gorenstein
smoothings to P3 are solutions of P2 type or Q type.

4.6 Examples of log-terminal degenerations and their smoothings
Example 4.65. Let X be the cone over the anticanonically embedded P1 × P1. In other words,
X is the cone over the anticanonical embedding of the quadric surface in P3. By construction,
X is a hyperplane section of P(1, 1, 1, 1, 2), the cone over the anticanonical embedding of P3.
However, we could apply the same construction to the cone over the anticanonical embedding
of the singular quadric (xy − z2 = 0) ⊂ P3 to realize the cone P(1, 1, 2, 4) as another hyperplane
section of P(1, 1, 1, 1, 2). Taking an appropriate pencil of these hyperplanes, we realize X as a
Q-Gorenstein smoothing of P(1, 1, 2, 4).

Example 4.66. The weighted projective space P(1, 4, 10, 25) admits at least seven different par-
tial smoothings that all admit smoothings to P3. For the construction of the smoothings and
a discussion of the applications to the study of moduli of quintic surfaces, see § 5. Here, we
draw a rough sketch of some smoothings. First, we observe that P(1, 4, 10, 25) has singular locus
P1 ∪ P1. At the general point of the first component P1, it is isomorphic to 1

2(1, 1) × A1. At the
general point of the second component P1, it is isomorphic to 1

5(1, 4) × A1. This has canonical
singularities at all points except the unique 1

25(1, 4, 10) singularity. There is a partial smoothing
Y26 that smooths the 1

4(1, 1, 2) singularity to a singularity of type v, isomorphic to the ver-
tex of the cone over the anticanonical embedding of P1 × P1 (as in Example 4.65). There is a
different partial smoothing W26 of P(1, 4, 10, 25) that partially smooths the 1

25(1, 4, 10) singu-
larity to a non-isolated singularity q isomorphic to the quotient of ab − c3d = 0 ⊂ A4 by the μ5

action (a, b, c, d) ∼ (ζ5a, ζ4
5b, ζ5c, ζ

2
5d). We can further smooth W26 to a threefold Z26 that has an

isolated singularity p in place of q. This singularity p is the quotient of the isolated singularity
ab − c(d2 − c4) = 0 ⊂ A4, a perturbation of a cone over a D6 singularity, by the same μ5 action.

Furthermore, the isolated singularities p and v are themselves smoothable. Because the local
to global deformation theory is unobstructed, we can combine the partial smoothings of each
component of the singular locus of P(1, 4, 10, 25) in every possible way to obtain seven different
partial smoothings.

Let X26 be the partial smoothing of P(1, 4, 10, 25) with only one singular point, a unique
singularity of type p. By a careful dimension count, we obtain the following analogue of
Proposition 4.41.

Proposition 4.67. Let X26 be the partial smoothing of P(1, 4, 10, 25) with a unique singularity
of type p. If the pair (X26, (4/d)D) is log-terminal for the general member D in the Q-linear

1368

https://doi.org/10.1112/S0010437X22007552 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007552


Moduli of surfaces in P3

system |−(d/4)KX26 |, then there is a divisor in the moduli space of H-stable pairs of degree d
parameterizing surfaces on X26.

Remark 4.68. Propositions 4.41 and 4.67 are the higher-dimensional versions of calculations in
[Hac04]: curves on the surfaces P(1, 1, 4) and X26, the smoothing of the 1

4(1, 1) singularity on
P(1, 4, 25), form divisors in the moduli space of degree d plane curves, provided the curves have
appropriate singularities.

5. Quintic surfaces

Because P(H0(P3,O(5)) ∼= P55 and dim Aut P3 = 15, we have a 40-dimensional space of quintic
surfaces in P3. However, just fixing numerical invariants, we obtain a moduli space of smooth
quintic surfaces with an additional component [Hor73]. Smooth quintic surfaces have numerical
invariants K5

S = 5, pg = 4, and q = 0 and the moduli space parameterizing these surfaces has two
40-dimensional components. The first component, consisting of type I surfaces, parameterizes
traditional quintic surfaces S such that KS is very ample and defines an embedding S ⊂ P3.
The second component parameterizes type IIa surfaces such that |KS | has a base-point and
S admits a generically two-to-one morphism to P1 × P1. The two components meet along a
divisor of dimension 39 parameterizing type IIb surfaces such that |KS | has a base-point and
S admits a generically two-to-one morphism to F2. For an image of the moduli space and the
construction of type II surfaces, see [Ran17]. One might naturally ask how the moduli space of
pairs defined in this paper encompasses surfaces of type II. To describe the type II surfaces, we
recall how to embed surfaces them into weighted projective spaces, worked out in [Gri85]. There
is a typographical error in the main theorem in [Gri85] in the first relation r1, but it is stated
correctly as follows.

Theorem 5.1 (Griffin). Let S be a numerical quintic surface of type II. Then,

S = P(1, 1, 1, 1, 2, 3, 3)/I,

where P(1, 1, 1, 1, 2, 3, 3) has coordinates (x0, x1, x2, x3, y, z1, z2) and I is generated by the
relations

r1 : x1x3 − x2
2 = −βx2

0

r2 : x1y − (x2 + βx0)(x2
3 + γx0x3 + δx2

0) = 0
r3 : (x2 − βx0)y − x3(x2

3 + γx0x3 + δx2
0) = 0

r4 : x1z2 − (x2 + βx0)z1 = 0
r5 : (x2 − βx0)z2 − x3z1 = 0
r6 : z1y − z2(x2

3 + γx0x3 + δx2
0) = 0

r7 : z2
1 − λyx4

3 − x1Q(xi, y) − x0e1 = 0
r8 : z1z2 − λy2x2

3 − x2Q(xi, y) − x0e2 = 0
r9 : z2

2 − λy3 − x3Q(xi, y) − x0e3 = 0

where Q and ei are weight-five polynomials satisfying certain conditions. The surface S is of type
IIb if β = 0 and type IIa if β �= 0.

The simplest example is β = γ = δ = λ = ei = 0. In this case, we show that S is a
hypersurface of degree 50 on X = P(1, 4, 10, 25), so it satisfies 5KX + 4S ∼ 0.

Example 5.2. Let X = P(1, 4, 10, 25) with coordinates a0, a1, a2, a3. First, consider the
embedding

X → P(1, 2, 5, 13, 25)
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given by

(a0, a1, a2, a3) �→ (a2
0, a1, a2, a0a3, a

2
3)

so that, if P(1, 2, 5, 13, 25) has coordinates b0, b1, b2, b3, b4, then

X : (b0b3 − b2
4 = 0) ⊂ P(1, 2, 5, 13, 25).

Then, consider the embedding

P(1, 2, 5, 13, 25) → P(1, 1, 1, 1, 2, 3, 3, 5)

given by

(b0, b1, b2, b3, b4) �→ (b2, b
5
0, b

3
0b1, b0b

2
1, b

5
1, b

2
0b3, b1b3, b4).

If P(1, 1, 1, 1, 2, 3, 3, 5) has coordinates x0, x1, x2, x3, y, z1, z2, and t, in the composition

X → P(1, 1, 1, 1, 2, 3, 3, 5)

we find that X is defined almost exactly by the equations in Theorem 5.1, with β = γ = δ = λ =
ei = 0, the only difference is that t = Q(xi, y). To obtain the surface S, let S be t = Q(xi, y) in
P(1, 1, 1, 1, 2, 3, 3, 5)|X . As desired, S has degree 50 on X.

By using various partial smoothings of P(1, 4, 10, 25), we can obtain all surfaces of type IIb
as a hypersurface on one smoothing of P(1, 4, 10, 25), with the generic one on X26.

Returning to MP3-sm,(5,4), the previous result shows that pairs (X26, S) form a divisor
D1 in the moduli space: it parameterizes the surfaces of type IIb. By Proposition 4.41, we
know there is a second divisor D2 in MP3-sm,(5,4) parameterizing surfaces on X, the cone
over the anticanonical embedding of the quadric surface. Because X is a section of OW (2) for
the weighted projective space W = P(1, 1, 1, 1, 2), we compute that OX(KX) = OW (−4)|X and
generic D satisfying 5KX + 4D ∼ 0 is a section of OX(D) = OW (5)|X . For general D ∈ OW (5)|X ,
because D is a complete intersection in P(1, 1, 1, 1, 2), we can compute the singularities as in
[I-F00, § 1.7]. The computation shows that D has a unique 1

4(1, 1) singularity at the vertex of X
(cf. Proposition 4.43). Furthermore, by Proposition 3.10, we know MP3-sm,(5,4) is smooth at the
generic point of D2. In [Ran17, Theorem 1.5], it is shown that there is a divisor D′ in the moduli
space of stable quintic surfaces parameterizing surfaces whose unique non-Du Val singularity is
of type 1

4(1, 1). The component D2 in MP3-sm,(5,4) found here parameterizes the surfaces Rana
calls ‘type 1’ (appearing as a divisor on the component parameterizing surfaces of type I). In
other words, for general S such that [S] ∈ D′ in Rana’s work, S appears as a divisor on the
threefold X where [(X, S)] ∈ D2 in this interpretation.

We can describe components of higher codimension using the work in § 4.5. From
Example 4.65, we know that P(1, 1, 2, 4) admits a smoothing to X, so should correspond to
a higher-codimension piece of MP3-sm,(5,4). Indeed, a toric computation shows that the projec-
tive dimension of the automorphism group of P(1, 1, 2, 4) is 17, and surfaces on Z = P(1, 1, 2, 4)
satisfying 5KZ + 4D ∼ 0 are elements of the linear system |OZ(10)|. This linear system has
projective dimension 55, so the space parameterizing surfaces on P(1, 1, 2, 4) has dimension
38. This is a codimension-two component of MP3-sm,(5,4) that is codimension one inside D2.
Furthermore, a computation as in [I-F00, § 1.7] shows that the surfaces appearing on P(1, 1, 2, 4)
have two singularities: 1

4(1, 1) and 1
2(1, 1). We could continue further: there is a 37-dimensional

(or codimension-3) component parameterizing surfaces on P(1, 2, 9, 12). This admits a smoothing
to P(1, 1, 2, 4) (see § 4.5) and the surfaces appearing on P(1, 2, 9, 12) have an additional 1

9(1, 2)
singularity.
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We can also describe some non-normal threefolds appearing using Propositions 4.56 and 4.61.
For instance, considering the mutations going from (1, 1, 1, 1) to (1, 1, 2, 4), from (1, 1, 2, 4) to
(1, 4, 10, 25), and from (1, 1, 2, 4) to (1, 2, 9, 12), we obtain the non-normal threefolds P(1, 1, 1, 2) ∪
P(1, 1, 1, 2), P(1, 1, 2, 5) ∪ P(1, 4, 2, 5), and P(1, 1, 3, 4) ∪ P(1, 2, 3, 4).

In fact, we can strengthen the result on non-normal threefolds as follows. Theorem 4.30
implies that any threefold X appearing in one of these pairs is semi-dlt. In the case of quintic
surfaces, it is, in fact, semi-plt (purely log-terminal).

Theorem 5.3. The varieties X occurring in a (P3, 5, 4) H-stable pair have at most two
components, so each component (Xν , Δ) of the normalization is plt.

Proof. If X is not normal and the double locus Δ on Xν has more than one component, Δ must
be connected by [Kol92, Theorem 17.4]. In particular, if (Xν , Δ) is not plt, two components
Δi and Δj meet along a curve [Kol13, Theorem 4.16(2)]. Call this curve C. By hypothesis,
−(KXν + Δ) is ample, and writing Δ′ = Δ \ (Δ1 + Δ2), we compute −(KXν + Δ1 + Δ2 + Δ′) ·
C = −2 +

∑
(1 − 1/mi) + Δ′ · C < 0, where mi is the index of any singularities along C. If Δ′ is

not empty, then there is at most one such singularity and −(KXν + Δ) · C = −1/m or −1, and
D · C ∈ (1/m)Z, so the relationship dKX + 4D ∼ 0 implies that d is even. Assume then Δ′ is
empty. If there are no singular points of index mi > 1 along C, we also get that d is even. However,
there may be one or two singularities along C, in which case −(KXν + Δ1 + Δ2) · C = −1 − 1/m
or −1/m1 − 1/m2. Note that these do not necessarily violate the condition that dKX + 4D ∼ 0
(for example, if there is only singular point of index three). Assume that dKX + 4D ∼ 0 and
d is odd. Then, we must have m = 3 mod 4 in the case of one singular point, or m1 + m2 = 0
mod 4.

Consider the first case (one singular point of index m) and now assume d = 5. The second is
similar. If D misses the singular point, then m divides d because dKX is Cartier in a neighborhood
of the point, but m = 3 mod 4, so this is impossible. If D passes through the singular point, the
pair (X, 4

5D) is slc, so (Xν , Δ + Dν) is log-canonical and resolving the point π : Y → Xν , we find
that this is possible only if the curve D|Δi passes through the singular point with multiplicity
one. Restricting to Δi, suppose the singular point is of type (1/m)(1, a), and m = 3 mod 4.
Using local coordinates D|Δi = xiyj + · · · and the relationship 4D|Δi = −5(KΔi + C), we find
that 5 = 1 mod m, but m = 3 mod 4, and this is impossible. �
Remark 5.4. For larger degree d, even when d is odd, the threefolds need not be semi-plt: there is
a degeneration of P3 that is a union of six components, isomorphic to P(1, 1, 2, 3), glued in a cycle
such that the double locus in each component is Δ1 + Δ2, Δ1

∼= P(1, 1, 3) and Δ2
∼= P(1, 2, 3).

On each component, D ∈ |O(d)| (and this can occur for odd degree d; even, for instance, d = 7).

For general degree, to explicitly describe all threefolds appearing in M(P3,sm,d,4), we must
complete the classification begun in § 4.5. Furthermore, if we denote by MGIT

d the GIT moduli
space of degree d surfaces, one expects a rational map

M(P3,sm,d,4) ��� MGIT
d

although understanding this map would require a better understanding of both M(P3,sm,d,4) and
MGIT

d . This will be explored in future work.
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