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EXISTENCE OF SOLUTIONS OF OSEEN TYPE INTEGRAL EQUATIONS

J.A. BELWARD

Integral equations of Oseen type are first kind Fredholm

equations whose kernels have a logarithmic singularity.

They arise in exterior boundary value problems in fluid

flow and heat transfer. Subject to the assumption of

uniqueness of solutions of the parent exterior boundary

value problem, solutions of the Oseen type integral

equations are shown to exist.

1. Introduction

Integral equation methods are being used with increasing

frequency to solve problems in applied mathematics. Given some initial/

boundary value problem, an integral equation is set up whose solution

can be used to generate the solution of the parent problem. Unfortunately

there are examples (Ursell [9], Jaswon and Symm [5]) where an integral

equation may fail to have a solution even though there is no difficulty

with the underlying boundary value problem. It is therefore desirable

to have available an existence theorem, particularly when an exact

solution cannot be determined so that asymptotic or numerical techniques

are needed.

In this note a class of problems is considered which can be

reduced to Fredholm integral equations of the first kind. The kernels

of the integral equations are weakly singular with a logarithmic

singularity; the integral equations arise in exterior boundary value

problems in which Oseen1s approximation (described in Section 2) is

Received 18 August 1983

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84

$A2.00 + 0.00

57

https://doi.org/10.1017/S0004972700021274 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021274


58 J.A. Belward

used. It is shown that provided the boundary value problem has no more

than one solution, the corresponding integral equation always has a

solution (within some suitable Hilbert space, for a class of prescribed

functions which includes the physically reasonable cases; existence of

solutions of the boundary value problem then follows).

The results are proved by expressing the integral operator as

the sum of a singular part plus the regular part. An explicit

representation of the inverse operator for the singular part is used

to obtain an equivalent Fredholm equation of the second kind. The new

integral operator is shown to be compact and the Fredholm alternative

theorem, combined with the uniqueness theorem for the boundary value

problem are used to deduce the existence of solutions of the original

integral equation.

2. Oseen type integral equations and
some related boundary value problems

There are many problems in viscous flow, heat transfer, chemical

reaction theory and so on which can be classified as steady diffusion-

convection problems. A field quantity such as heat or vorticity is

produced at internal surfaces and is distributed around the region

exterior to the boundaries by the processes of diffusion and forced

convection. Certain conservation principles may be used to construct

a system of partial differential equations satisfied by the field

quantities. Often the field quantity of primary interest affects the

externally driven flow causing a coupling of the partial differential

equations; the coupling may occur non-linearly rendering the equations

intractable in many important situations (non-linearities can also arise

through the influence of field quantities on the diffusion coefficients,

but these are not considered here). An important linearisation known in

viscous flow as Oseen1s approximation [8], can be applied to problems

in which the forced flow field is unidirectional with constant velocity.

In this approximation the perturbation to the external flow field is

ignored in certain of the convection terms; in two-dimensional heat

problems one obtains (see [7])

(2.1) divC-KW + qT) = 0 a q = Ui
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which imply that the temperature T satisfies

(2.2) -V2T + — -jj— = 0 ,

while in two-dimensional viscous flow the vorticity u> and stream

function ty satisfy

(2.3) div(-vVai + qu) = 0 , -(v2i(0& = <•* , f7 = curl {tyk)

so with q = f/i in (2.3a) the stream function satisfies

(2-4) 7«Cy«t _ 2 a } . o -

(K,V and U are respectively, thermal diffusivity, viscosity, and free

stream velocity.)

Problems which involve a flat plate set tangential to a uniform

stream are particularly appropriate to this approximation. Green's

functions which take account of the far field boundary conditions may

be determined for these problems enabling the temperature field and

velocity fields corresponding to equations (2.2) and (2.4) to be

represented as follows,

(2.5) Tix.y) = |

and

(2.6) u - iv =

-l

where rcos6 = x-t, and rsin6 = y .

[The coordinates have been scaled so that the flat plate, of length 2t

in the unsealed system, is placed at y = 0, -1 S x S X . The constant

X is a non-dimensional quantity given by

Ul Ul
x = T ' or ~

which is commonly called the Peclet number in heat transfer or Reynold's

number in viscous flow; it characterises the ratio of the convective

flux to diffusive flux, of heat, or circulation.]

Applying the boundary conditions on [-1,1] , (prescribed

temperature or velocity) we obtain the following well known integral

equations.
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(2.7) [ f(t)eX(x t)K0(\\x-t\)dt = g(x)

and

'(\\x-t\)) - ——r\dt = g(x)(2.8) f fajV^^CK^xlx-tl)

Further problems in which the Oseen approximation has been used

have been discussed recently ([4] and [7]) with a derivation of the

concomitant integral equations given in each case. Both integral

equations are Fredholm first kind with difference kernels which have a

logarithmic singularity and decay to zero for large values of their

arguments. For convenience these will be referred to as 'Oseen type1

integral equations.

Fredholm equations of the first kind on a finite interval are

difficult to solve and it appears unlikely that closed form solutions of

equations (2.7) or (2.8) can be found. Recourse must be made to numerical

and asymptotic techniques therefore (see [6]). Before embarking on such

procedures an existence theory is desirable. There are circumstances in

which integral equations derived from exterior boundary value problems

fail to have solutions, although the boundary value problems do have

solutions. This is true of the first kind equation on (-2,2) having

log|x-t| as its kernel (see [5]). Similarly integral equations which

arise from exterior problems in acoustics (see [9]) also fail to have

solutions. In the following sections it is shown that integral equations

of Oseen type do not suffer from this deficiency.

3. Existence of solutions of Oseen
type integral equations

It will now be shown that integral equations of Oseen type always

have a unique solution provided the corresponding exterior boundary value

problem has no more than one solution.

The essence of the proof is to express the kernel as the sum of a

logarithmic part plus a remainder whose derivative is square integrable.
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The inverse operator for the logarithmic part is applied to obtain an

equivalent second kind equation. Once the operator in the second kind

equation has been shown to be compact the conclusions of the Fredholm

alternative theorem together with the uniqueness properties of the

exterior boundary value problem ensure the existence of a unique solution

of the original equation.

These steps can be carried through only in the correct function space

setting. In addition a suitable representation of the inverse operator

for the logarithmic part of the kernel is needed. The definitions and

representation given here can be found in Wolfe [70] in the context of an

integral equation arising from solutions of the reduced wave equation.

Define

(3.1) L2(p) = {/: [ \f(t)\2(l-t2r*dt exists},•= f \f(t)\'

and

(3.2)

= {/:/ is absolutely continuous and | \f (t)^(1-t6) sdt exists}.
-1
j \f' \2(lt2)

Under the norms

2
L2(p)

fl
= I \f(t)\

and

O.4) = f \f(t)\2d-t2)ht + f if

these are (complete)Hilbert spaces. On ^o(v) tiie i n n e r Product is defined

by

(3.5) (t>^
J2(p)

https://doi.org/10.1017/S0004972700021274 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021274


62 J.A. Belward

Integral equations of Oseen type have difference kernels k(x-t)

which are expressible as

(3.6)

k(u) = clog|u| + I a un + log|u| I b un = kju) + kju) ,n-° n=1

with kju) = cloglul ,

where the sums are analytic for all |u| S 0. The integral operators

Kj K- and K are defined by
o tx

(3.7) (1 ,1

k(x-t)dtt K \oq\x-t\dt andKn = K - Kc.n o

-1

The operator Kg maps £„, . onto "o( ) ' t h e l a t t e r s P a c e being

characterised by the fact that (Wolfe, [JO]) g belongs to V., . if and

only if

oo

(3-8) I n2\(g,TJ | < » .
n=0 n L2(p)

T is the Chebyshev polynomial of degree n ; Chebyshev polynomials are

orthogonal on L., . . In view of the identities

(3•9) -\ T log (\x-t\)dt =•

-log 2, n = 0 ,

Tn(x)

it follows from (3.8) that K~ maps "%(„) o n t oK~ "%(„) ' *fc ^ S d e f i n e d

explicitly by

(3.10)

[There are closed form expressions for K~ , see Carrier et al [2] , for

example, but they are too cumbersome to permit the analysis given here.]
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Let g belong to W\. . and denote an integral equation of Oseen

type such as (2.7) or (2.8) by

(3.11) Kf = g .

Express the equation as

(3.12) (Ks+KR)f=g

and apply K to obtain
b

(3.13) f + K^KfJ = K^g .

Now kj,(u) has a logarithmic singularity at u = 0 and is otherwise

analytic. This is enough to ensure that KR maps ^o(v) ^nt-° 2( ) '

thus for any g in ift, . , equation (3.13) is an equation from £„, .

to £„, . and is equivalent to (3.11) .

Now it will be shown that K^ K-, is a compact operator from L_, .

to itself. Note that

(3.14) Ks
2 = lim l£ . K^ S (-.l^f

1 (• , T Q)T Q

where a pointwise limit is meant in (3.14). It will be shown that

(3.15) -J-/

in the Ln, . norm, from which the compactness of Ka Kn follows, since

each K J(- is of finite rank, and therefore compact.

Denote by a the expression
rnn

V -
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Suppressing the I , , , suffix, we have

(3-17) , 2
m | | J j ^

rrH-1 rrH-1

The properties of the Chebyshev polynomials enable %-jpi t o b e integrated

by parts so that

(3.18) j

-1

Thus applying this to (3.17) and applying the Cauchy-Schwarz inequality

we have

(3.19) ir2a £
mn

Now if the K' operator is written out explicitly, in view of (3.6) it

*
is easily observed that K can be similarly expressed; that is,

(3.20) ** ' =OlKs+KT

and Kq i s the same operator as defined a t (3.7) . Thus

/ *3 01 \ /' V t \ rp _ „ i/ m i 1/ rn
^ J t ^ 1 / | A _ / i i - C--A rI i T* i\.fTrL •

and so applying the relations (3.9) to the first term and the equation

(3.18) to the second term on the right hand side of (3.21) the estimates

C2TT3

II « | \\V I T I I 2 < J. ^ II f v * I i l l 2

are obtained. These ensure that for any preassigned e, and m and n

large enough,

(3-23) o^ < ||/||2E ,

and the validity of (3.15) in the £„, . norm is demonstrated.
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Now the Fredholm alternative may be applied to (3.13). In the event

of (3.13) having a solution for zero right hand side, then (3.11) would

have the same solution. This would generate a non-trivial solution to

the exterior boundary value problem for prescribed data equal to zero.

Hence, provided the boundary value problem has suitable uniqueness

properties which can be deduced independently of the arguments presented

here, equation (3.13) could not have a non-trivial solution for zero data,

and thus for any K~ g in ^ofv)' """e' a n y & *~n 2(a)' a un:*-que

solution of (3.13), and therefore (3.11) also, exists.

4. Concluding remarks

The existence of solutions of equations (2.7) and (2.8), for any g

in W~. . , follows from the results of Section 3, since the corresponding

heat transfer and viscous flow problems can be shown to have at the most

one solution. In the temperature problem a maximum principle can be

proved for the operator (V1 - \z) which is obtained after removal of the

first derivative term by expressing the solutions in terms of e T(x,y).

In both problems energy arguments can also be given (see Finn [3] for the

viscous problem). In the viscosity problem the uniqueness results strictly

apply to the perturbation in the velocity field from the free stream since

any solution for ij) is only determined up to an additive constant.

The proof of existence of solutions of equation (2.7) could be

simplified somewhat by combining the exponential terms in the kernel with

f and g . In this new form the kernel has an expansion with the term

ulog|w| (indeed all terms u \oq\u\) absent; this allows two integration

by parts, whereas only one was used to obtain (3.19), and thereby shortens

the argument leading to (3.23).

A key factor in proving these results is the decay rate at infinity

of the field variables. Note that the corresponding potential problems do

not have these properties; this perhaps explains the non-existence for the

logarithmic kernel on 1-2,2],

As far as the examples from [4] and [7] are concerned, it is

conjectured that uniqueness theorems for the exterior boundary value

problems can be proved but this has yet to be attempted.
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