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background material in case the problem is unsolved. Send all
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A FUNCTIONAL EQUATION FOR THE COSINE

PL. Kannappan

It is known [3], [5] that, the complex-valued solutions of
(B) f(x +vy) + f(x-y) =2 f(x)i(y), for x,y real

(apart from the trivial solution f(x) =0) are of the form

-1
(C) f(x) =¢_(x_)+2¢;(x)_ , where
(D) d(x+y) = d(x) dly).

In case f is a measurable solution of (B), then { is continuous
2], [3] and the corresponding ¢ in (C) is also continuous and ¢ is
of the form [1],
(E) o(x) = exp(c x), ¢, a complex constant.

In this paper, the functional equation
(P) f(x+y+2A) + f(x-y+2A) = 2 {(x) {(y)
where f is a complex-valued, measurable function of the real variable
and A # 0 is a real constant, is considered. It is shown that f is
continuous and that (apart from the trivial solutions f=0,1), the
only functions which satisfy (P) are the cosine functions cos ax and
- cos bx, where a and b belong to a denumerable set of real
numbers.

Equation (P) is similar to the equation

(Q) fx-y +A) - f(xty+A) = 2 (x) £ (y)

considered by E.B. Van Vleck [4], where f is assumed real and
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continuous and the general solution is f(x) =sin ¢ x, for a sequence

4541
C=(—"2%‘)lr, G=0,1,...).

THEOREM. Let f be a complex-valued function of the reals
R, satisfying (P) for every x,y in R, where A # 0 is a real
constant. Then the general solution of (P) is given by either
f=0 or f(x)=g(x-2A), where g is an arbitrary solution of (B)
with period 4A.

Proof. First, setting
(1) f(x) = g(x-2A),
where g 1is a solution of (B) with period 4A, we have

f(x+y+2A) + f(x-y+24A) = g(x+vy) + g(x-vy)

glx+y-4A) + g(x-y)

= 2 g(x-2A) g(y-2A)

2 f(x)f(y), whichis (P).

Conversely, every solution of (P) is of the form (1). Indeed,
interchanging x and y in (P) and comparing it with (P), we obtain

(2) f(x-y +2A) = f(y-x+2A), forall x,y in R.
Putting x=A, y=3A in (2) and x=0, y=0 in (P), we get
(3) £(0) = f(4A)  and

2
(4) £(2A) = £(0)°.
From (3), (4) and (P) with x =0, y =2A, we deduce thateither
f(0) = 0 or f(2A)=1. It is easily seen that f(0) =0 implies f(x) =0
(by setting y =0 in (P)). If

(5) f(2A) = 1,

2
we get f(0) =1 from (4) and from (5) and (P) with y =2A, we
see that

(6) f(x+44A) = (%), for all x in R.

That is, f 1is a periodic function with period 4A. We remark here
that f is even (which can be deduced from (2) and (6)).
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Replacing x by x+2A and y by y+2A in (P), we get
f(x+y+6A)+ f(x-y+2A) = 2 f(x+2A)(y+24),
and from (6),
(7) flx+y+2A) + f(x-y +2A) = 2f(x+2A) f (y+24).
If g is defined as in (1) for all x in R, then g satisfies the equation
(B) glx+y)+glx-y) = 2 gx) g (y).

One sees from (1) and (6), that g is periodic with the period 4A,
that is,

(8) glx+4A) = g(x).
This completes the proof of this theorem.

COROLLARY. The only measurable solutions of (P) are

nmx +

fz0,1 and f(x) =cos (ZA - nw) where n=0, T 4,... or equivalently,
km
f(x) =0,1, f(x)=cos ax and f(x)=- cos bx where a :X and
2k+1
= (—T;:—)Tr (k =0,1,...) is the complete set of measurable solutions
of (P).

Proof. From (1) and the introduction we conclude that both f
and g are continuous. Since g is periodic, from {(C), (E) and (8),

it is easy to see that 4cA =2 nwi, (n =0,t 1,...), thus g(x) = 0
or g(x) =cosh n;;X Hence from (1) we obtain, f(x) = 0 or
f(x) = cox (22%)5 - nmw), n :O,t 1,... . This contains, for n =0, f{(x)=1.
. kw
When n =2k, (k=0,1,...), we have f(x)=cosax, with a :TA—’
(k =0,1,...). This corresponds to the case f(0) =1. When n=2 k+1,
Ck+1)m

(k=0,1,...), we have f(x)=- coxb x, with b= , (k=0,1,...).

2A
This corresponds to the case f(0) =-1. Thus the proof is complete.

Finally I express my sincere thanks to Prof. J. Aczel for his
critical remarks during the preparation of this paper and to the referee
for the useful remarks.
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