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A novel algorithm is developed to calculate the nonlinear optimal boundary
perturbations in three-dimensional incompressible flow. An optimal step length in
the optimization loop is calculated without any additional calls to the Navier–Stokes
equations. The algorithm is applied to compute the optimal inflow eddies for the
flow around a wind turbine to clarify the mechanisms behind wake meandering, a
phenomenon usually observed in wind farms. The turbine is modelled as an actuator
disc using an immersed boundary method with the loading prescribed as a body force.
At Reynolds number (based on free-stream velocity and turbine radius) Re = 1000,
the most energetic inflow perturbation has a frequency ω= 0.8–2, and is in the form
of an azimuthal wave with wavenumber m = 1 and the same radius as the actuator
disc. The inflow perturbation is amplified by the strong shear downstream of the edge
of the disc and then tilts the rolling-up vortex rings to induce wake meandering. This
mechanism is verified by studying randomly perturbed flow at Re 6 8000. At five
turbine diameters downstream of the disc, the axial velocity oscillates at a magnitude
of more than 60 % of the free-stream velocity when the magnitude of the inflow
perturbation is 6 % of the free-stream wind speed. The dominant Strouhal number
of the wake oscillation is 0.16 at Re = 3000 and keeps approximately constant at
higher Re. This Strouhal number agrees well with previous experimental findings.
Overall the observations indicate that the well-observed stochastic wake meandering
phenomenon appearing far downstream of wind turbines is induced by large-scale
(the same order as the turbine rotor) and low-frequency free-stream eddies.

Key words: nonlinear instability, vortex shedding, wakes

1. Introduction
The wake flow of a wind turbine features a velocity deficit owing to the energy

extraction. As a result, a downstream turbine experiences lower wind speeds and
generates less power. The far-wake flow of a turbine has been extensively reported
to present low-frequency oscillations, usually referred to as wake meandering.
The Strouhal number of the meandering is reported to be 0.15–0.25 (Medici &
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Alfredsson 2008), and its peak is estimated to be 0.28 (Chamorro et al. 2013) or 0.23
(Okulov et al. 2014), both at five diameters downstream of the turbine. The wake
meandering induces large-scale unsteadiness and modifies the interaction of aligned
turbines. Furthermore, the strong turbulence production within the oscillating wake
flow enhances the fatigue loading on downstream turbines (Larsen et al. 2008).
Therefore it is of critical importance to predict the development of the turbine
far-wake flow and the associated meandering motion (España et al. 2012; Larsen
et al. 2013).

Low-frequency oscillation of turbine wake flow can be induced by intrinsic wake
instabilities, originating from, e.g. the instability of helical vortices shed from the
tip of each turbine blade. These vortices interact with the vorticity field due to the
root vortices and the rotor hub, and are subject to long-wave, short-wave and mutual
inductance instabilities before breaking down to coherent and turbulent structures that
can travel up to 30–40 rotor diameters downstream of the turbine (Widnall 1972;
Okulov & Sørensen 2007; Ivanell et al. 2010; Sørensen, Naumov & Okulov 2011;
Sherry et al. 2013; Hattori & Fukumoto 2014; Sarmast et al. 2014; Quaranta, Bolnot
& Leweke 2015). Vortex meandering resulting from mutual induction of helical
vortices followed by downstream large-scale coherent structures has been reported
(Bhaganagar & Debnath 2014). However, as revealed in experiments, the signature of
tip vortices is only significant up to 1–2 rotor diameters downstream of the turbine,
and the frequency of the far-wake meandering motion is independent on the operating
conditions of the turbine (Chamorro & Porté-Agel 2010; Okulov et al. 2014). It is
therefore doubtful if these relatively small-scale near-wake tip vortices may induce
large-scale far-wake oscillations. For the far-wake flow, Schröttle, D”ornbrack &
Schumann (2015) simplified it as the combination of an atmospheric shear and a
Lamb–Oseen vortex, and observed an instability induced flow oscillation. Since the
frequency of far-wake meandering typically is lower than that of the turbine rotation,
Iungo et al. (2013), Viola et al. (2014) have studied the instability of turbine hub
vortices, which also oscillate at low frequencies. However the modes associated with
these instabilities are concentrated around the wake centre.

Another hypothetical mechanism for far-wake meandering is the development of
large-scale free-stream eddies. This hypothesis is based on the observation that the
meandering is intermittent and dominated by a stochastic pattern (Larsen et al. 2007),
nevertheless a periodic signature of the meandering related to vortex shedding has
been observed in wind tunnel studies (Medici & Alfredsson 2006). It is assumed
that small-scale eddies (i.e. smaller than the rotor diameter), which constitute the
high-frequency part of the turbulence spectrum, are responsible for diffusive effects
in the wake only, whereas the low-frequency part, composed of eddies larger than
the rotor diameter, contributes mainly to transport the wake as a whole (España et al.
2012). Larsen et al. (2007, 2008) have established a physically based theory and
subsequently a dynamic wake meandering model to predict the wake meandering
induced by large turbulent eddies. The large-scale perturbations have also been found
to induce meandering of a vortex flow via non-modal perturbation growth (Mao
& Sherwin 2012). In the present work, the most energetic inflow perturbation
is calculated to examine effects of large-scale atmospheric eddies on far-wake
oscillations, in order to verify this potential mechanism of meandering.

Most of the perturbation studies, e.g. linear stability and non-normality, have been
related to the initial form of perturbations, computed by solving the linearized Navier–
Stokes (NS) equations and their adjoint (Schmid & Henningson 2001). There are a
limited number of nonlinear exceptions, mainly related to nonlinear optimal initial

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

27
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.275


192 X. Mao and J. N. Sørensen

conditions in pipe or boundary layer flow (Cherubini et al. 2010; Pringle & Kerswell
2010; Monokrousos et al. 2011; Rabin, Caulfield & Kerswell 2012; Kerswell, Pringle
& Willis 2014). For boundary perturbations, the linear most energetic solution has
been calculated in vortex flow and channel flow (Mao, Blackburn & Sherwin 2013),
and a two-dimensional (2-D) nonlinear optimal solution to suppress vortex shedding
in the cylinder wake flow has been reported (Mao, Blackburn & Sherwin 2015).

In this work, a three-dimensional (3-D) nonlinear solver to calculate the optimal
inflow perturbation is developed based on a well established linear counterpart (Mao
et al. 2013). The numerical challenge of such a nonlinear calculation is that the
developing history of the flow, which easily exceeds 104 gigabytes, has to be saved
for the integration of the adjoint equation. The benefit of this nonlinear calculation
is that the dynamics of large-magnitude free-stream perturbations can be studied
and nonlinear phenomena during perturbation developments, e.g. vortex shedding,
transition to turbulence, can be taken into account, which is not possible using linear
perturbation analyses. Besides revealing the mechanisms of wake meandering, the
upper limit of the magnitude of meandering induced by free-stream eddies can be
estimated in this nonlinear optimization study.

2. Algorithm
2.1. Governing equations

A cylindrical coordinate system, with x, r and θ representing the streamwise, radial
and azimuthal coordinates, respectively, is adopted to study the flow around a
wind turbine. The governing equations are the non-dimensional incompressible NS
equations with a volume force term representing the wind turbine:

∂tu+ u · ∇u+∇p− Re−1
∇

2u= f with ∇ · u= 0, (2.1)

where u, p and f are velocity, pressure and volume force, respectively. Re is the
Reynolds number based on the free-stream velocity and the radius of the turbine
rotating disc.

The variables in (2.1) can be decomposed as the sum of a steady base term and a
perturbation term,

(u, p, f )= (U, P,F)+ (u′, p′, f ′). (2.2)

The base terms can be obtained by implementing a uniform free-stream inflow
condition and integrating (2.1) until reaching a steady solution. Substituting (2.2) into
(2.1) and removing the base components, the governing equations for perturbations
are obtained,

∂tu′ +U · ∇u′ + u′ · ∇U+ u′ · ∇u′ +∇p′ − Re−1
∇

2u′ = f ′ with ∇ · u′ = 0. (2.3)

For clarity, these equations are denoted more compactly as

∂tu′ − L(U)u′ − u′ · ∇u′ − f ′ = 0, (2.4)

where L(U) is a linearized operator, which depends on the base flow and acts on the
perturbations. This operator has been well investigated in stability analyses to calculate
the linear unstable eigenmodes or optimal perturbations. The inflow perturbation
and initial perturbation can be modelled as the inflow boundary condition and
initial condition of (2.4), respectively. Since the present work focuses on the inflow
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perturbations, the initial condition of u′ in (2.4) is set to zero so as to isolate effects
of the inflow perturbations.

The computational domain around the turbine disc, in which the governing
equations are solved, is denoted as Ω , the boundary of the domain is represented as
∂Ω and the inflow boundary is denoted as B. To simplify notation in the following
derivations, introduce scalar products

(a, b)=
∫
Ω

a · b dΩ, 〈a, b〉 = T−1
∫ T

0

∫
Ω

a · b dΩ dt,

[a, b] =
∫

B
a · b dB, {a, b} = T−1

∫ T

0

∫
∂Ω

a · b d∂ Ω dt,

 (2.5)

where T is a final time and a, b ∈Ω × [0, T].

2.2. Actuator-disc model
An actuator-disc model with radius R and streamwise thickness 1x is adopted to
represent the wind turbine. Note that since the disc radius is used to define the
Reynolds number, it has a unit value after non-dimensionalization. The aerodynamic
force acting on the flow by the disc is

Faero =−
1
2πCTu2

dR2, (2.6)

where CT is the modified thrust coefficient and ud is the spatially averaged wind speed
inside the disc. When the turbine operates at the Betz limit, the thrust coefficient based
on free-stream velocity takes the maximum value 8/9. However in (2.6), the modified
thrust coefficient CT is defined based on the local averaged velocity on the rotor disc
and therefore has a maximum value CT = 2 (Calaf, Meneveau & Meyers 2010). In
this actuator-disc model, the atmospheric shear and the rotation of the turbine are not
taken into account.

Since the volume of the disc is πR21x, the aerodynamic force per unit volume,
denoted as f in (2.1), is

f =
Faero

πR21x
s, (2.7)

where s is a vector in the streamwise direction with unit value inside the disc and
decaying to zero outside the disc as will be shown in figure 3(a).

The term u2
d can be evaluated as

u2
d =

(s · u, s · u)
(s, s)

. (2.8)

Combining (2.6), (2.7) and (2.8), the volume force is

f = k(s · u, s · u)s with k=−
1

πR21x2
(2.9)

if the turbine works at the Betz limit. In the derivation, (s, s)=πR21x is used. Clearly
f is non-zero only for its streamwise component inside the disc. Removing the base
component, the perturbation force term is obtained,

f ′ = ks[2(s ·U, s · u′)+ (s · u′, s · u′)]. (2.10)

Note that this term is not linear with respect to the perturbation velocity.
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FIGURE 1. The temporal variation function defined in (2.12) at τ = 20 and ω= 1. Dashed
lines represent the envelope of the function.

2.3. Optimal inflow perturbation
As stated above, the atmospheric eddies upstream of the disc can be modelled as
the inflow boundary condition of (2.4). Since the perturbation varies spatially and
temporally, it can be decomposed as

u′(B, t)=G(t)uB(B), (2.11)

in order to reduce the dimension of its discretized form. uB(B) is the spatial
dependence of the inflow perturbation, while G(t) is a prescribed temporal-dependence
function defined as

G(t)= (1− e−σ t2)(1− e−σ(T−t)2)eiωt, (2.12)

where σ is a relaxation factor and σ = 100 is adopted throughout this work. This
time-dependence function is illustrated in figure 1. It has been tested that a further
increase of σ does not change the form of the computed optimal inflow perturbation.
The first two terms on the right ensures that u′(B, 0) = 0 and u′(B, T) = 0, so as
to eliminate discontinuity when integrating the governing equations (Mao et al. 2013).
The last term implies a temporal Fourier decomposition and specifies the frequency of
the inflow perturbation as ω, provided that the final time T is large enough. This term
enables the study of low-frequency wake meandering by isolating a low-frequency
inflow perturbation from high-frequency ones.

To evaluate the magnitude of the inflow perturbation, a boundary norm is defined
upon the spatial-dependence function as

‖uB‖b = [uB, uB]
1/2. (2.13)

This norm will be denoted as b-norm in the following.
As have been well used in previous perturbation analyses, the ‘optimal’ perturbation

in this work is referred to as the most energetic one. Therefore the optimal inflow
perturbation is the one that induces maximum perturbation energy at the final time T

E(T)= (u′T,Wu′T), (2.14)

where W is a weight function defined in the domain Ω , ranging from 0 to 1.
This function is used to isolate the region of interest, e.g. the downstream region
of a turbine, and filter out the perturbation energy in other regions. If the whole
computational domain is taken into account, W has unit value across the domain.
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2.4. Lagrangian functional
To calculate the optimal inflow perturbation, define a Lagrangian functional

L= E(T)− 〈u∗, ∂tu′ − L(U)u′ − u′ · ∇u′ − f ′〉 − (λ, ‖uB‖
2
b − b2

norm), (2.15)

where the first term is the final energy to be maximized; the secondary term is a
constraint that the perturbation satisfies (2.4) and u∗ is an adjoint velocity vector; the
last term constrains the b-norm of the inflow perturbation as a prescribed value bnorm
and λ is a Lagrangian multiplier.

Through integration by parts, the second term can be reformulated as

−〈u∗, ∂tu′ − L(U)u′ − u′ · ∇u′ − f ′〉 =−T−1(u∗T, u′T)+ 〈u
′, ∂tu∗ + L∗(U)u∗〉

+〈u′, u′ · ∇u∗〉 + 〈u′, s(2s ·U+ s · u′)(u∗, ks)〉
+ {n,−u(u′ · u∗)+ u′p∗ − u∗p+ Re−1(∇u′ · u∗ −∇u∗ · u′)}, (2.16)

where p∗ is the adjoint pressure, uT (or u∗T) is the velocity (or adjoint velocity) at time
T , n is the unit outward norm on the boundary ∂Ω and L∗ is the adjoint operator
of L, depending on the base flow and acting on the adjoint variables. This adjoint
operator has been extensively investigated in non-normality, receptivity, sensitivity and
flow control studies.

Setting the first variation of the Lagrangian with respect to u′ to zero, an adjoint
equation is obtained,

∂tu∗ + u · ∇u∗ −∇u · u∗ −∇p∗ + Re−1
∇

2u∗ + 2ks · u(s, u∗)s= 0 with ∇ · u∗ = 0.
(2.17)

The adjoint variables, which are used to calculate the optimal perturbations as detailed
in the next section, can be obtained by integrating this equation, which requires the
full developing history of u. Since u=U+u′ and U is steady, the perturbation velocity
has to be saved at every step when integrating (2.4). Therefore large memory or space
(∼104 GB in the present case) is required when solving the adjoint. Note that this
constraint on memory can be mitigated by implementing a checkpointing scheme at
the cost of extra calls of equations (2.4) (Schanen et al. 2016). Considering the sign
of the viscous term and the time derivative term of this adjoint equation, it should be
integrated backwards from t= T to t= 0. The initial condition of the adjoint equation,
u∗T = 2TWu′T , can be obtained by setting the first variation of the Lagrangian to u′T to
zero.

On both the inflow and far-field boundaries, zero Dirichlet and computed Neumann
conditions are used for adjoint velocity and pressure, respectively; on the outflow, a
mixed velocity boundary condition Re−1∂nu∗+n ·uu∗=0 and a zero Dirichlet pressure
condition are implemented (Mao et al. 2013); on the inflow boundary, Dirichlet and
computed Neumann conditions are used for adjoint velocity and pressure terms,
respectively. The choice of boundary conditions ensures that the boundary term, i.e.
the last one in (2.16), is zero on all the boundaries except on the inflow boundary.

2.5. Gradient of the Lagrangian
The variation of L with respect to the inflow perturbation term uB is

δL(δuB)= [g− 2λuB, δuB], where g= T−1
∫ T

0
(p∗n− Re−1

∇nu∗)G dt. (2.18)
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FIGURE 2. Spectral elements in the x–r plane for (a) the full domain and (b) a subdomain
surrounding the disc and the inflow boundary.

Then the gradient of the Lagrangian with respect to uB can be expressed as

∇uBL= g− 2λuB. (2.19)

Since the second term on the right-hand side of the equality does not change the
form of uB, it will be omitted in the following derivations. The first term can be
decomposed into two parts, one parallel with uB and the other normal to uB, by
projecting g onto uB,

g= cuB + dg̃, (2.20)

where g̃ satisfies [g̃, uB] = 0; both uB and g̃ are normalized to have norm bnorm; c and
d are scale coefficients.

When optimizing the boundary perturbation iteratively from step n to n+ 1, uB is
updated following the direction g̃,

un+1
B = bnorm

un
B + αg̃

‖un
B + αg̃‖b

=
un

B + αg̃
√

1+ α2
, (2.21)

where α is a step length. When the update of the perturbation un+1
B − un

B is small
enough compared with un

B, there is an optimal value of α, which is the ratio of d and
c, as proved in the appendix A.

3. Convergence and discretization
A spectral element method is used to discretize the governing equations, e.g. the NS

equations and the adjoint equation (Karniadakis & Sherwin 2005). A decomposition of
the domain into 4730 spectral elements is shown in figure 2(a), while the subdomain
around the actuator disc is illustrated in figure 2(b).

The computational domain spans from x = −3 to x = 60 and r = 0 to r = 35
in streamwise and radial directions, respectively. The 2-D domain is used in the
calculation of the base flow, while in 3-D computations, a Fourier decomposition is
adopted to discretize the azimuthal direction. For all results and computations shown
in the following, 64 Fourier modes are employed.

The actuator disc is located at x= 0, with a streamwise thickness 1x= 0.02 and a
unit radius. The streamwise vector s used to define the disc model in (2.7) has unit
value inside the disc and decays to zero outside the disc, as shown in figure 3(a). The
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FIGURE 3. (Colour online) Contours of the streamwise component of s (see (2.7)) and
the base flow velocity U at Re= 1000 in (a) and (b), respectively.

dt P E

1.5× 10−3 3 3.85× 10−3

1.5× 10−3 4 4.07× 10−3

1.5× 10−3 5 4.10× 10−3

1.5× 10−3 6 4.12× 10−3

1.0× 10−3 4 4.07× 10−3

TABLE 1. Convergence of the perturbation energy E with respect to the polynomial order
P in the spectral element method and time step dt at b-norm 10−3.5, frequency ω= 2, final
time T = 20 and Reynolds number Re= 1000.

2-D base flow used in calculating the optimal inflow noise is presented in figure 3(b).
Here the Reynolds number is set to Re= 1000, which will be used in the following
unless otherwise specified. The deficit of streamwise velocity in the wake can be
clearly observed. In a separate global stability study (Mao & Blackburn 2014), it
was verified that this base flow is asymptotically stable and does not support absolute
instabilities.

The weight function W (see (2.14)) is defined as

W(x)=

{
1 for x< 15,
exp(−(x− 15)2) for x > 15,

(3.1)

which filters out the perturbations far downstream of the disc in order to isolate a
‘region of interest’ where the resolution is concentrated. A final time T = 20, which is
enough for the inflow noise to reach the boundary of the region of interest, is adopted
throughout this work unless otherwise stated.

In each element, a spectral method is used to further decompose the element to
a (P + 1) × (P + 1) grid, where P represents a polynomial order and can be used
to refine the resolution in the convergence test (Karniadakis & Sherwin 2005). The
dependence of the maximum energy growth E with respect to P is illustrated in
table 1. It is seen that E has converged to within a tolerance of 1 % at P = 5. In
the following studies P = 5 will be applied.

4. Results and discussion
4.1. Optimal perturbation energy

The optimal perturbation energy is illustrated in figure 4. When the inflow perturbation
is small (small values of bnorm), the contour lines of log(E) are evenly distributed with
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FIGURE 4. Contours of the logarithm of the perturbation energy log(E). The points
marked as ‘a’, ‘b’, ‘c’ and ‘d’ are studied in detail in the following. The final time and
Reynolds number are set to T = 20 and Re= 1000, which will be used in the following
unless otherwise specified.
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FIGURE 5. Logarithm of the perturbation energy log(E) at bnorm = 10−2. The dotted
lines mark the inflow perturbation frequency ω at which E reaches maximum.

respect to log(bnorm), indicating that the gain
√

E/bnorm is independent of bnorm and
that the perturbation dynamics is linear. As the inflow perturbation becomes larger, the
contour lines become sparser, indicating that

√
E/bnorm reduces owing to the nonlinear

interaction of the perturbation with itself.
At the smallest inflow perturbation magnitude considered, bnorm = 10−4, the final

energy maximizes at ω = 2. This optimal frequency gradually reduces to ω = 0.8
as the inflow magnitude increases to bnorm = 10−1.5. It is worth noting that ω = 0.8
corresponds to a Strouhal number (based on the turbine diameter and free-stream
velocity) St=ω/π= 0.25. This Strouhal number will be discussed further in § 4.5.

Then the final time is varied from the default value T = 20 with the inflow
perturbation magnitude fixed at bnorm = 10−2. As shown in figure 5, for increasing
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FIGURE 6. (Colour online) (a–d) Streamwise components of the optimal inflow
perturbation at (bnorm,ω)= (10−4,2), (10−3,1.5), (10−2,1) and (10−1.5,0.8), respectively, as
marked in figure 4. (e, f ) Radial and azimuthal components of the optimal inflow velocity
at (bnorm, ω)= (10−1.5, 0.8).

T , the frequency ω at which the perturbation energy maximizes reduces. Since the
inflow perturbation can be convected further downstream at higher T , this observation
indicates that the lower-frequency inflow perturbation can generate larger impacts to
the far wake.

4.2. Optimal inflow perturbation
The distribution of the optimal inflow perturbations is presented in figure 6. Here
Cartesian coordinates (x, y, z) are adopted and y = r cos(θ) and z = r sin(θ)
denote the vertical and lateral coordinates, respectively. Clearly at small enough
perturbation magnitudes, the optimal solution consists of a single azimuthal wave with
wavenumber m = 1. This is because the base flow is homogenous in the azimuthal
direction, and in the linear limit, waves with different azimuthal wavenumbers are
orthogonal and therefore the linearly optimal perturbation takes the form of the most
energetic azimuthal mode. As the magnitude increases, the distribution becomes more
complicated and can be interpreted as a superposition of multiple azimuthal waves,
even though the mode m= 1 is still dominant. The optimal perturbation is mainly in
the streamwise and radial directions while the component in the azimuthal direction is
smaller but more localized (see figure 6d–f ). All the optimal inflow perturbations are
located within an annular region with a unit radius. Such structures can be convected
by the base flow to the tip region of the turbine. In this region the shear maximizes
(see figure 3b) and acts as an amplifier to upstream noise, as will be discussed later.
It is worth noting that the azimuthal orientation of the optimal perturbation shown
in figure 6 is random and rotating the inflow perturbation in the azimuthal direction
does not change the results.
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FIGURE 7. (Colour online) Iso-surfaces of streamwise velocity 0.3, 0.5 and 0.8 at
(bnorm, ω) = (10−4, 2), (10−3, 1.5), (10−2, 1) and (10−1.5, 0.8) for (a), (b), (c) and (d),
respectively (see the points marked in figure 4).
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FIGURE 8. (a) Fluctuation of the streamwise velocity and (b) power spectrum of the
spanwise velocity along the axis of the disc at ω= 0.8 and bnorm = 10−1.5.

4.3. Wake meandering

The corresponding perturbed velocities are illustrated in figure 7. At bnorm = 10−4,
the wake flow is almost columnar and unperturbed. As the perturbation magnitude
increases, a significant wake meandering motion appears in the wake and spreads
upstream. This observation suggests that the wake meandering observed in wind farm
fields is related to large-scale (the same size as the turbine rotor) and low-frequency
(Strouhal number below 0.25) atmospheric eddies, which can be considered as a
component of atmospheric turbulence. This meandering affects the performance of
downstream turbines in terms of both energy output and fatigue loadings. Different
from the oscillations induced by tip and root vortices, which are concentrated in the
near wake and wake centre, respectively, the present wake oscillation occurs mainly
in the far field and expands radially along the streamwise direction.

The oscillation of the streamwise velocity along the turbine axis is presented in
figure 8(a). At more downstream locations, where the perturbations are sufficiently
amplified, the oscillation becomes more complex and the magnitude increases rapidly.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

27
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.275


Far-wake meandering induced by atmospheric eddies 201

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 5 10 15

2

 0

4

r

0.05 0.10 0.15 0.20

(a)

0 5 10 15

2

 0

4

x

r

(b)

FIGURE 9. (Colour online) (a) The mean streamwise velocity ū =
∫ T

0

∫ 2π

0 u dt dθ/(2πT).
(b) Standard deviation of the streamwise velocity ∆= (

∫ T
0

∫ 2π

0 (u− ū)2 dt dθ/(2πT))1/2.

At x = 10 (five diameters downstream of the turbine), the oscillation magnitude
reaches a value of more than 60 % of the free-stream wind speed. Considering that
the inflow perturbation has a maximum velocity of approximately 6 % of free-stream
wind speed (see figure 6d), it is amplified by approximately one order of magnitude in
the wake.

To better illustrate the oscillation frequency of the wake, the power spectrum
of the spanwise velocity at t > 30 (after the transient period shown in figure 8a)
is plotted in figure 8(b). In this optimally perturbed flow, over the streamwise
locations considered, the dominant frequency of the oscillation is the same as the
inflow frequency, while harmonics of this dominant frequency are activated further
downstream. This observation indicates that the frequency of wake meandering can
be constant (determined by the frequency of the most energetic perturbation in
the free-stream turbulence), as observed in experiments by Okulov et al. (2014).
These authors focused on various operating conditions of the turbine instead of
the free-stream turbulence conditions, but suggested that the effect of free-stream
turbulence on the frequency of the wake oscillation deserves further investigations.

The wind power generation of downstream located wind turbines depends on
the streamwise mean wind, which can be calculated as ū =

∫ T
0

∫ 2π

0 u dt dθ/(2πT).
This mean velocity is plotted in figure 9(a). It is noticed that in the present case
the velocity deficit maximizes at around x = 5, and then the velocity starts to
recover in downstream. The velocity fluctuation, which is critical to the fatiguing
loading on the turbine, can be evaluated using the velocity standard deviation
∆= (

∫ T
0

∫ 2π

0 (u− ū)2 dt dθ/(2πT))1/2, as plotted in figure 9(b). The oscillation upstream
of the actuator expresses the oscillating inflow noise. The maximum oscillation is
located close to the region downstream of the turbine tip, even at the absence of tip
vortices. Further downstream, the oscillation spreads radially, similar to the behaviour
of the mean wind.
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FIGURE 10. (Colour online) Iso-surfaces of λ2=−0.3 at (bnorm,ω)= (10−4,2), (10−3,1.5),
(10−2, 1) and (10−1.5, 0.8) from (a) to (d) as marked in figure 4. Grey lines denote vortex
lines in the wake.
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FIGURE 11. (Colour online) Iso-surfaces of λ2 =−0.3 in the flow perturbed by random
inflow disturbance at turbulent intensity 0.04. The grey lines denote vortex lines.

4.4. Mechanism of the wake meandering
To illustrate the mechanism of meandering, vortex structures in the wake flow
identified by the iso-surface of λ2 =−0.3 are shown in figure 10 (Jeong & Hussain
1995). The grey lines represent typical vortex lines. Note that owing to the choice
of final time in the optimization, i.e. T = 20, perturbations introduced from the
inflow boundary only reach approximately x ≈ 15. Due to convective instabilities,
axisymmetric vortex rings roll up from the shear in the near wake, where the inflow
perturbation is amplified but has a trivial impact on the wake. Further downstream, the
amplified inflow perturbations tilt and deform the vortex rings. This effect becomes
stronger when the magnitude of the inflow perturbation increases. Here the vortex
ring can be interpreted as large vortex structures in the turbine wake flow. If adopting
other turbine models, e.g. the actuator line model, these structures can be segments of
helical vortices. Therefore the wake meandering can be decomposed into two steps;
the large-scale inflow perturbations are amplified by the shear in the wake, and then
tilt the large coherent vortex structures in the wake to induce meandering.

To verify the role of inflow perturbations on wake meandering observed in the
optimally perturbed flow, a random inflow perturbation with turbulent intensity
0.04 is then tested. In this randomly perturbed flow, the wake oscillation is also
associated with the tilted vortex ring structures (see figure 11), as has been observed
in the optimally perturbed flow in figure 10. The agreement of the randomly and
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FIGURE 12. Power spectrum of the streamwise velocity along the axis of the disc at
x= 10. The inflow perturbation is random with azimuthal wavenumber m= 1 and turbulent
intensity 0.04.

optimally perturbed flow approves the mechanism of meandering reported above.
This observation can be interpreted as that the optimal inflow perturbation is the
most amplified component of a random disturbance and it has the most significant
impact on the wake.

4.5. Reynolds number effect

All the results reported above are obtained at Re = 1000. In this section, higher
Reynolds numbers up to 8000 are tested to reveal the Reynolds number effect on
wake meandering. Random inflow perturbations with azimuthal wavenumber m = 1
and turbulence intensity 0.04 are imposed as the inflow disturbance. Perturbations
with other azimuthal wavenumbers will be energized due to the nonlinear perturbation
dynamics.

The power spectrum of the spanwise velocity at x= 10 (five diameters downstream
of the turbine) at various Reynolds numbers is shown in figure 12. At Re = 1000,
the dominant frequency in the wake is ω= 1. This agrees well with the perturbation
growth reported in figures 4 and 5. At Re = 3000, this dominant frequency reduces
to around ω= 0.5, and remains almost constant for higher Re. Such an independence
of the governing frequency on Re suggests that in the real condition where the Re is
much higher, the wake meandering would also occur at ω= 0.5. It is further noticed
that this frequency corresponds to a Strouhal number St = 0.16, falling in the range
0.15–0.25 observed in experiments of wake meandering (Medici & Alfredsson 2008).

From figure 12, the high-frequency oscillations become stronger at higher Re,
which suggests a development of turbulence in the wake. The wake structures at
Re = 3000, 5000 and 8000 are then illustrated using iso-surfaces of λ2 in figure 13.
In the near wake, the quasi-axisymmetric vortex rings can be observed in all the
three cases. These large vortex structures are then tilted by the amplified inflow
disturbance before breaking up to vortex filaments. Even though the wake flow
becomes increasing turbulent as Re increases, the dominant oscillation frequency is
almost constant at ω = 0.5, as shown in figure 12. These observations verify that
the optimal inflow perturbation study at relatively low Re reveals the mechanism and
shed light on the understanding of wake meandering at high Re.
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FIGURE 13. (Colour online) Iso-surfaces of λ2 =−5,−40,−80 at Re= 3000, 5000 and
8000 from (a) to (c). The inflow perturbation is random with azimuthal wavenumber m=1
and turbulent intensity 0.04.

5. Conclusion
For the first time in perturbation analyses, a 3-D nonlinear optimal perturbation in

the free stream (inflow boundary) is calculated. The numerical algorithm involves
solving the decomposed NS equations and the adjoint. Similarly with existing
algorithms to calculate optimal initial perturbations, the full perturbation history
has to be saved to solve the adjoint. An optimal step length in the linear sense
is obtained without any additional calls of the governing equations and therefore
significantly reduces the computational cost, as compared to line search methods.

The algorithm is applied to flow past a wind turbine modelled as a circular disc
at Re= 1000, to investigate the wake meandering induced by inflow turbulent eddies.
Over the parameters considered, the most energetic inflow perturbation is dominated
by an azimuthal Fourier mode with wavenumber m = 1. During the development of
the optimal inflow perturbation, its main structures are convected by the base flow to
the region around the turbine tip, where the shear maximizes and acts as an amplifier
to upstream perturbations. In the region further downstream, the perturbation induces
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significant oscillations of the wake flow. At five turbine diameters downstream of
the disc, the centre velocity oscillates at a magnitude approximately 60 % of the
free-stream velocity, when the optimal inflow perturbation is 6 % of the free-stream
wind speed. The calculation therefore contributes to evaluate the upper limit of the
magnitude of meandering. For this optimally perturbed flow, the maximum velocity
deficit occurs on the axis five radii downstream of the disc, while the maximum
oscillation appears in the region downstream of the tip of the disc, even in the
absence of tip vortices.

When the perturbation magnitude is small enough, the inflow perturbation with
frequency ω = 2 is the most amplified one. As the magnitude of the inflow
perturbations increases, this dominant frequency reduces to ω= 0.8. The frequency of
the wake meandering matches that of the optimal inflow perturbation, confirming that
the turbine wake flow acts as an amplifier to upstream noise. Then at higher Reynolds
number, the meandering frequency further reduces to ω= 0.5 and presents a Reynolds
number independence over the range of parameters tested. This frequency corresponds
to a Strouhal number St= 0.16, agreeing well with experimental observations (Medici
& Alfredsson 2008).

Owing to the optimality of the inflow condition, the development of large-scale
atmospheric eddies and the induced wake meandering are clearly revealed. It is
illustrated that the wake meandering consists of two stages; firstly the inflow
perturbations are amplified by the strong shear in the wake, and then the large
coherent structures, which are in the form of vortex rings in this work due to the
axisymmetric actuator-disc model adopted, are tilted and distorted by the amplified
perturbations. As the optimal inflow perturbation can be considered as the most
energetic component of a random inflow disturbance, the meandering observed in
the optimally perturbed flow can be expected to appear in a real condition. This is
verified by studying randomly perturbed inflow perturbations at Re= 1000–8000.

We notice that the Re considered in this work is small compared with any real wind
turbine flow, while at practical Re, the optimal inflow disturbance would consist of
structures with a range of spatial and temporal scales. However, as in many direct
numerical simulation and perturbation analysis works, it is assumed that the result of
low Reynolds number flows to a large degree illustrates the basic fluid physics and
shed light on the understanding of large Reynolds number flow. This is supported
by the observation that the frequency of meandering becomes independent on the
Reynolds number for Re > 3000.

In contrast to the wake flow oscillations with associated tip and hub vortices, which
are concentrated in the near wake and in the wake centre, respectively, the present
wake oscillation is induced by free-stream eddies and expands to the full wake. These
observations reveal that the well reported meandering of far-wake flows of a wind
turbine is associated with large-scale low-frequency atmospheric eddies. This is also
in agreement with previous statements that the meandering occurring in the far wake
has a stochastic pattern and its frequency is independent on the instability of tip
vortices (Larsen et al. 2008; Okulov et al. 2014). Since an actuator-disc model is
adopted in this work, the turbine rotation is not taken into account and subsequently
the tip and root vortices are not modelled. An actuator-line model can be explored to
consider both free-stream eddies and tip and root vortices (Sørensen et al. 2015). It is
also worth noting that the present work focuses on the large-scale free-stream eddies,
and to obtain a more complete picture of wake meandering, other non-trivial factors,
e.g. the thermal stability of the atmosphere, which impacts the length scale of wake
turbulence and wake recovery, the meandering in prescribed directions (lateral or
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vertical) and the superposition of wakes of aligned turbines in large wind farms and
its impacts on the development of large-scale structures and the dominant frequency
of optimal inflow disturbances should be further studied (Keck et al. 2014; Abkar &
Porté-Agel 2015).
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Appendix A. Calculation of the step length in (2.21)
Since g̃ and uB in (2.21) are normal to each other and have the same norm bnorm,

equation (2.21) can be reformulated as

un+1
B =

un
B + αg̃
√

1+ α2
= un

B + aun
B + bg̃ with a=

1
√

1+ α2
− 1, b=

α
√

1+ α2
. (A 1)

Define a linear operator M, which projects a small enough update of the boundary
perturbation to a final perturbation at time T . The updated inflow perturbation in (A 1)
can be projected to a final perturbation

u′T
n+1
≈ u′T

n
+ aMun

B + bMg̃, (A 2)

where u′T
n+1 and u′T

n denote the final perturbations at optimization step n + 1 and
n, respectively. Since the update of inflow perturbation is assumed to be small, the
interaction of the perturbation induced by aun

B + bg̃ with itself is a second-order
function of small variables and is neglected.

The step length α is selected to maximize the perturbation energy

En+1
= (u′T

n+1
,Wu′T

n+1
). (A 3)

Substitute (A 1) into (A 3) to obtain

En+1
− En

≈ 2a(u′T
n
,WMun

B)+ 2b(u′T
n
,WMg̃)

+ (M(aun
B + bg̃),WM(aun

B + bg̃)). (A 4)

where En is the perturbation energy at step n and can be considered as a fixed value.
Therefore the step length should be selected to maximize the right-hand side of (A 4).
Since α is assumed to be small, so is M(aun

B+ bg̃). Therefore the last term in (A 4)
is a second-order function of a small term and can be neglected.

Since both a and b are functions of α, the optimal value of α can be obtained by
differentiating the right-hand side of (A 4) with respect to α. Through standard algebra,
the optimal value of α is

αopt = |(u′T
n
,WMg̃)/(u′T

n
,WMun

B)|. (A 5)

In the linear regime, if varying un
B by aun

B, the change of final perturbation energy
is

δE= [g, aun
B] = acb2

norm. (A 6)
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From the definition of E, there is

δE= (u′nT + aMun
B,Wu′nT + aWMun

B)− (u
′n
T ,Wu′nT )≈ 2a(u′nT ,WMun

B). (A 7)

Combining (A 6) and (A 7), there is

(u′nT ,WMun
B)= cb2

norm/2. (A 8)

Similarly
(u′T

n
,WMg̃)= db2

norm/2. (A 9)

Substitute (A 8) and (A 9) into (A 5) to reach the optimal step length,

αopt = |d/c|, (A 10)

where c and d are calculated from (2.20).
In each optimization loop, αopt is calculated to update the inflow perturbation. If the

updated final energy En+1 does not increase, which indicates that the linear assumption
used in deriving the optimal step length is not satisfied, then the step length is reduced
until En+1 > En. At the equilibrium point of the Lagrangian functional, the gradient g
is parallel with un

b. Then from (2.20), there is d = 0, corresponding to step length
αopt = 0, which indicates that the boundary perturbation has converged.
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