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THE PIERCE-BIRKHOFF CONJECTURE FOR CURVES 

MURRAY MARSHALL 

ABSTRACT. The results obtained extend Madden's result for Dedekind domains to 
more general types of 1-dimensional Noetherian rings. In particular, these results apply 
to piecewise polynomial functions t:C —> R where R is a real closed field and C Ç Rn 

is a closed 1 -dimensional semi-algebraic set, and also to the associated "relative" case 
where t, C are defined over some subfield K C R. 

The Pierce-Birkhoff Conjecture [2, 5] asserts that ifR is a real closed field (for exam­
ple, R — 1R), then any (continuous) piecewise-polynomial function t: Rn —> R is express­
ible as t — sup^inf)///) where {/iy} Ç R[x] — R[x\,. ..,*„] is a finite set of polynomial 
functions. 

In [10], Mahé proves the conjecture for n < 2 and, as well, proves that a weaker 
version of the conjecture holds for any n. In [4], Delzell looks at a certain "relative" 
version of the conjecture: If t\Rn —> R as above is defined over some subfield K Ç R (in 
some suitable sense), is it true that t = sup înfy/jy) with/// G K[x]l Delzell proves this 
if n < 2. Of course, Delzell's result generalizes the corresponding result of Mahé. 

In [8], Madden introduces an abstract ring PW(A), defined for any ring A which is 
commutative with 1, and asks under what conditions a given t G PW(A) is expressible 
as t = sup^infy/j/) with/iy G A. If A = R[x], then PW(A) is just the ring of all piecewise 
polynomial functions t: Rn —• R. Madden's work exploits the theory of the real spectrum 
of a ring introduced by Coste and Roy (e.g., see [1, 3, 7]). Working from an earlier result 
of Keimel [6], Madden gives local conditions on pairs of orderings which are equivalent 
to the condition that a given t G PW(A) is sup-inf definable. Using this, he proves that if 
A is a field or Dedekind domain, then any t G PW(A) is sup-inf definable. 

In the present paper, we examine more closely Madden's local conditions. The new 
results we obtain allow extension of Madden's result on Dedekind domains to more gen­
eral types of 1-dimensional Noetherian rings. In particular, these new results apply to 
piecewise polynomial functions t.C —> R in case C Ç Rn is a curve (more generally, 
any closed 1-dimensional semi-algebraic set) as well as to the associated "relative" case 
where C Ç Rn and V. C —+ R are defined over some subfield K Ç R. Of course, the case 
where C Ç Rn is a smooth curve is already covered by the result in [8]. 

Just after the initial version of this paper was completed, Madden announced a proof 
of the Pierce-Birkhoff conjecture for smooth algebraic surfaces [9]. 

The author wishes to acknowledge the contribution of the (unnamed) referee who 
suggested important improvements to Section 4. These have been incorporated in this 
final version. 
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1. The rings ?WX(A) and SIx(A). Let A be a commutative ring with 1 and let Sper A 
denote the real spectrum of A [1,3,7]. For a G Sper A, the prime ideal pa = a H —a is 
called the support of a. R(a) denotes the real closure of the quotient field K(pa) of the 
domain A jpa at the ordering induced by a. For a G A, denote by a(a) the image of a in 
R(a) via the composite map A —> A/pa Ç K(pa) Ç R(a). 

Let X Ç Sper A be any subset. We say t G Y\aeXR(oc) is piecewise A on X if there 
exist a\,..., ak G A and sets S\,..., Sk Ç X which are relatively closed and relatively 
constructible such that X = S\ U • • • U Sk and t = ai on 5/, / = 1,. . . , k. PW*(A) denotes 
the subring of the product ring Uaex ^(«) consisting of all t which are piecewise A on X. 
In case X = Sper A, PW*(A) is denoted simply by PW(A). 

PWx(A) is actually subring of a big ring Cx(A) Ç Uaex R(oc) consisting of all con­
structible sections on X (e.g., see [1]), but we can get by without this here. All we need 
is that, for any t G PW*(A), the set {a G X : t(a) > 0} is closed and constructible in the 
relative topology on X, but this is clear from our definition. 

There are natural lattice operations V, A on PWx(A) defined by / V u = sup(Y, w), 
t A u = inf(Y, u).t G PWx(A) is said to be sup-inf definable on X if t = V/ A/ ̂ (/ f° r some 
(finite) set of elements {atj} Ç A. As is well-known [4, 5, 8, 10] (but non-trivial), the 
set of all sup-inf definable t G PWx(A) form a subring of PW#(A) which we denote by 
SIx(A). Again, if X = Sper A, we denote Slx(A) simply by SI(A). 

Suppose X Ç Sper A and / Ç A is an ideal such that / Ç ClaexPa- Then, after 
identifying X Ç Sper A/ / Ç Sper A in the natural way, we have PW*(A) = PWx(A/7), 
Slx(A) * Slx(A/I). 

More generally, suppose p: A —» B is any ring homomorphism and X Ç Sper A, 7 Ç 
Sper£ satisfy (*)p~]((3) G X for all/3 G F. Since/?(/?"H/?)) is naturally identified with a 
subfield of R((3), this yields, in a natural way, a ring homomorphism /?x,y: I laex^^) —* 
YlpeyRiP)' Moreover, 

Rr(PW,(A)) Ç PWr(5) mdPx,Y(Slx(A)) Ç Sly(fi). 

EXAMPLE. If B — A and /? = the identity, then the condition (*) on X, Y just reads 
F Ç X. In this case, pXj is just "restriction to T\ 

We are interested in studying the relationship between PW^(A) and SI*(A) for arbi­
trary A,X. In particular, we look for conditions on A and X which insure PW*(A) = 
SIx(A). Note: The restriction map SI(A) —• S\X(A) is surjective. Thus, a necessary con­
dition for t G PWx(A) to be in SI*(A) is that t be in the image of PW(A) —> PWX(A). As 
in [8], A is called Pierce-Birkhoff if PW(A) = SI(A). 

Let R be a real closed field and let R[x] denote the polynomial ring R[x\ ,...,xn](n > 1 
being fixed). For C Ç Rn any semi-algebraic set, C Ç Sper/?[x] denotes the associated 
constructible set [1, 3, 7]. Since C -̂> C, it makes sense to consider the ring PWc(/?[x]). 
(Observe: R(a) = R for all a G C, so elements of PWc(/?[x]) are functions t: C —> /?.) 
The restriction mapping PW^(/?[x]) ^^ PWc(/?[x]) is an isomorphism. The proof of this 
requires the Finiteness Theorem: One has to know that if S Ç C is semi-algebraic and 
relatively closed in C, then S is relatively closed in C. 
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If C Ç Rn is an algebraic set, we denote by R[C] the coordinate ring of C, i.e., R[C] = 
R[x] I flaec Pa- In this case, C is naturally identified with Sper R[C] so we have canonical 
isomorphisms 

PWc(fl[x]) = PWe(/?[x]) = PW(/?[C]). 

Thus, for an algebraic set, PWc(/?[x]) = SIc(/?[x]) holds iff the ring R[C] is Pierce-
Birkhoff. In particular, the Pierce-Birkhoff Conjecture is equivalent to the conjecture 
that the polynomial ring R[x] is Pierce-Birkhoff. 

2. Separating ideals. If 7,5 G Sper A, the separating ideal of 7,5 is 

(7,5) = (7n-5 ) + (-7H5). 

THEOREM 2.1. (1) (7,5) is an ideal of A. 

(2) 7,5 have a common specialization in Sper A iff (1,6) ^ A. In this case, a = 7 + 
y(7,5) = 5 + y(7,5) w f/ie /etfsf common specialization of'7,5. Moreover, pa = y (7,5) 
(so v/(7,5) is prime in this case). 

THEOREM 2.2. Assume X Ç Sper A JS Tychonoff closed and t G PWX(A). For eac/z 
a eX,fixta e A such that t = ta at a. Then t G SIX(A) (#>7 - ^ G (7,5) V7,5 G X. 

For the proofs, see [8]. Note: Our definition of (7,5) is different from that given in 
[8], but the proof in [8] shows both definitions are equivalent. Also, the statement of our 
Theorem 2.2 is slightly more general that the corresponding result in [8], but it is clear 
that the proof given in [8] goes through in this more general situation. 

EXAMPLE. Suppose C Ç Rn is s.a. and t:C —• R is piecewise polynomial. Thus 
3/i,... ,fk G R[x] and relatively closed s.a. sets C i , . . . , Q Ç C such that C = Ci U 
" • U Q and t = f on Ci, i = 1 , . . . , fc. Since constructibles are clopen in the Tychonoff 
topology, Theorem 2.2 applies to PWc(/?[x]) = PW^(/?[x]). Thus t is sup-inf definable 
on C ifff -fj G (7,5) holds V7 G Q and V5 G C7, ij = 1, . . . , Jfc. 

Recall thatX Ç Sper A is closed iff X is Tychonoff closed and closed under specializa­
tion (e.g., see [1, Proposition 2.11]). Suppose X is closed, t G PWx(A). Suppose 7,5 G X, 
(7,5) ^ A, and let a G Sper A be the least common specialization of 7,5. Thus a G X 
so, at a, £ = f7 = t$ = ta. Since/7a = y (7,5), this means f7 — ^ G y (7,5). Of course, 
this is also true if (7,5) = A. Thus 

f G PWX(A),X closed => *7 - t6 G v
/(7^5) V7,5 G X. 

Thus t>y — t& G (7,5) is trivially true in cases where (7,5) = y(7,5). This occurs, for 
example, if either (i) 7,5 have no common specialization or (ii) 7 C <5 or 5 Ç 7. Note: in 
regard to (ii), we always have/?7 +p$ Ç (7,5). 

For 7 G Sper A, let B1 be the convex hull of A/p1 in 7?(7), i.e., 

B1 = {x G fl(7) :3aGA, |*| < â}. 
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(Here, â := a(l).) B1 is a valuation ring in 7?(7) with real closed residue field which 
we denote by B1. Denote by f3 the ordering on A induced by the composite map A —-> 
A/p1 Ç B1 —> B1. Thus A/pp Ç /?(/3) C B1 and, by construction, B1 is archimedian 
over A//?^. As is well-known, f3 is the unique maximal specialization of 7. Actually, all 
our computations will take place in the quotient field K(p^ of A//?7, so we could just as 
well work with the smaller valuation ring Z?7 Pi Kip^ in Kip^). 

Suppose now that 7 is a proper generalization of some a G Sper A (so 7 C a Ç j3). 
Assume the ideal pa Ç A is finitely generated. Set 

S1 — {a G pa '• v7(â) < v1(b) Mb G /?a}. 

Here, v7 denotes the additive valuation on R(l) associated to B1. If 5 is another proper 
generalization of a we say 7,5 /*#ve r/ze sam^ direction at a if S7 = S«$ and all elements 
of S1 = Ss have the same sign at 7,5. Otherwise, we say 7,5 /i#ve different direction at 
a. We say 7,5 /*tfv£ opposite direction at a if 57 = S$ and all elements of S1 = S$ have 
opposite sign at 7,5. 

THEOREM 2.3. Hypothesis is as above. Then the following statements are equivalent: 

(1) (7 ,«>^p a . 
(2) 7,5 /ztf ve £/*£ same direction at a. 

PROOF. (1) => (2). For this it suffices to prove (a), (b): 
(a) If 3x G 57 D S$ changing sign at 7,5, then (7,5) = p a . 
(b) If 57 ^ S$ then Ek G 57 n S$ changing sign at 7,5. 

To prove (a), suppose y G pa. Let z = «JC — y where a G A is to be determined. In /?(7) 
and 7?(5), z = ax — y = x(â — y/x). Since both of B1, B$ are archimedian over A/p@, 
3a G A such that â—y/x is strictly positive both as an element of 7?(7) and as an element 
of R(6). Thus x, z = ax — y both change sign at 7,5 so _y = ax — (ax — y) G (7,5). Thus 
/?a Ç (7, 5) and consequently (7,5) = pa. To prove (b), suppose y ^ S1,y ^ S^. Pick any 
z G S#. We can assume y >7 0, z >^ 0. Let JC = ay — z, tf G A. In /?(7), Je = y(â — z/y) 
and, as above, we can choose a G A so that â — z/y is strictly positive in 7?(7) so x >7 0. 
In 7?(5), x = —z(l — ày/z). Since v$(y) > vs(z), it is clear that 1 — ây/z is strictly positive 
in R(6) and consequently that x <<§ 0. 

(2)=4>(1). Suppose (2) holds but (1) fails. Pick any x G S7. Since/?a = (7,5),JC = y+z 
withy,z changing sign at 7,5. In /?(7), either v1(y) < v1(x) or v7(z) < v7(jc). We may as 
well assume v7(y) < v7(Jc). Thus y G 57 = S$. This contradicts the hypothesis that 7,5 
have the same direction at a. 

COROLLARY 2.4. For A Noetherian of(Krull) dimension 1 and X Ç Sper A closed, 
the following are equivalent: 

(1) For each a G X with pa maximal, distinct proper generalizations of a in X have 
different directions at a. 
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Also, if either (I) or (2) holds, then 

(3) PWX(A) - SI*(A). 

EXAMPLE. Suppose A is a Dedekind domain with quotient field K. Then, for any 

a G SperA with/?a maximal, the local ring APa is a discrete valuation ring in K. Thus 

there are only two proper generalizations 7,<5 of a, Kip»,) — K(pè) — K, B1 D K = 

Bb H K = APa and 

S^ = S& = {x G A : x is a uniformizing parameter for A P a } . 

Clearly 7,5 have opposite direction at a. 

3. Application to curves. Suppose C Ç /?" is a closed 1-dimensional s.a. set, /? 

real closed. Fix a G C and denote by 7 <-> ^ the natural bijection between proper 

generalizations of a in C and half-branches of C at a [3, Proposition 10.3.1]. To simplify 

notation, assume a = ( 0 , . . . , 0) so pa — (x\, • . . ,xn). Suppose that 7 G C generalizes 

a properly. Clearly *,• G 57 for some /. Reindexing, we can assume JCI G S1. K(p^) is a 

function field in one variable over R so B1 n A ^ ) is a discrete valuation ring in K(p^). 

Also, the residue field of 5 7 H Kip»,) is a finite (ordered) extension of R so is equal to 

R. Thus, for each / G { 1 , . . . , n}, the image of Jc,-/Jci G Z?7 via the mapping # 7 —» Z?̂  is 

some element m; G /?. Either JCI > 7 0 or x\ < 7 0. Replacing x\ by — x\ if necessary, we 

can assume JCI > 7 0. Consider the half-line 7\ Ç 7?" defined by 

r 7 = {x G i?n : x/ = m[X\, / = 2 , . . . , n,x\ > 0} . 

THEOREM 3.1. Set-up as above. Then 

(1 ) 7\ /s f/z£ half-tangent to h^ at a. 

(2) If 6 G C is another proper generalization of a, then 7,<5 have the same direction 

at a iff Ty = Tb. 

PROOF. (1) Let r G R, r > 0, and consider the cone 

Dr = {x G Rn : JCI > 0 and |JC//JCI - mt\ < r, / = 2 , . . . , n}. 

By definition of W2, . . . , ra„, 7 G D r . On the other hand, by the correspondence between 

orderings and half-branches, 7 is the unique ordering in p |{^(^) • s G R, s > 0} where 

bj(s) = {x G tfn : x G b-y and 0 < ||x|| < s}. 

If /77(5")\Dr 7̂  0 for ail s > 0 then, by compactness of Sper R[\] in the Tychonoff topol­

ogy, n i ^ O O : s € R,s > 0}\Dr ^ 0, contradicting the uniqueness of 7. Thus 3s G R, 

s > 0 such that b^s) Ç Dr. 

(2) E a c h / G p a = (*i , . . . ,xn) is expressible as 

n 

f = ^Tj aixi + terms mx\,...,xn of degree > 2, 

0 I , . . . , Û „ G R. Clear ly / G 57 & T,"=\aimi ^ 0 and, i f / G 57 , t h e n / >^ 0 & 
T!l=\ atnii > 0. The result follows easily from these two facts. 
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COROLLARY 3.2. Suppose C is a closed 1-dimensional semi-algebraic set in Rn. 

Then the following are equivalent: 

(1) For each point a G C, distinct half-branches of C at a have distinct half-tangents. 

(2) (7,5) = ypcûS)foralll,8 G C. 
(3) PWc(*[x]) = SIcOTx]). 

PROOF. (1) & (2) => (3) follows from Corollary 2.4 and Theorem 3.1. (3) =* (1): 

Suppose, at some point a on C we have half-branches bl9 fy,... with Z?7, Z?̂  sharing the 

same half-tangent at a. We can assume a = ( 0 , . . . , 0) so pa — (x\,...,xn) and that 

X\ G O7 — S&. Denote by BH(E) (resp. Sn x(e)) the closed ball (resp. sphere) in Rn with 

radius e centered at ( 0 , . . . , 0). Pick e > 0 sufficiently small, let a = (a 1, . . . , #„ ) be the 

point of intersection of b^ with Sn_1(£), pick c £ R,0 < c < a\ and define f: C —-> R by 

fjci i f x G ^ H F 1 ^ ) , 0 < J C ! < c 

'(«) = < ^ ( j d - a i ) i f x G ^ n ^ e ) , c < J d < £ i i 
I 0 elsewhere on C. 

Then t G PWc(/?[x]) so rextends to ? G P W ^ W ) . ?7 - ^ = x\ - 0 = JCI. If x\ G (7,*) 

then JCI — p — q where /?, g G /?<* change sign at 7,5. Since x\ G S7, one of p,q is in 

S7, say p E S1 = S$. But this is impossible since 7,5 have the same direction at a. Thus 

f 7 - f c £ ( 7 , « ) s o f £ S I c ( / ? [ x ] ) . 

EXAMPLES. (1) If a G C is a non-singular point (i.e., the local ring R[C]Pa is a 

discrete valuation ring) then there are two half-branches at a and these have opposite 

direction. 

(2) If a G C is an isolated point, there are no half-branches at a so there is nothing to 

check. 

(3) For each of the following plane curves, the origin is the only singular point. In (a), 

(b) distinct half-branches have distinct half-tangents, but this is not true in (c), (d), (e). 

(a) y3 = x6 + x8 (b) y2 = x2 - x3 (c) y2 = x3 

(d) y2 = x4 + x5 (e) y3 = x5 - x3y. 

NOTE. If C is a curve, then by [3, Theorem 9.4.6], the number of half-branches at 

a G C is always even. This is because there is natural pairing: Two proper generalizations 

7,5 G C of a, 7 7̂  5, are paired iff p1 = pb (so K(p^) = K(ps)) and B1 D K{p^ = 

B$ n K(ps). Clearly, if 7,5 are paired, then 7,5 have the same (resp. opposite) direction 

at a iff elements of S1 — S^ have even (resp. odd) value. 

4. A relative version of the result. Let AT be a subfield of R and let K Ç R denote 

the real closure of K at the ordering a$ of K induced by K Ç R. (e.g., we could take 

R = R, K = Q, so K = K\g.) Let X = X(a0) Q SpcrK[x] denote the (closed) set of 

orderings on K[x] — K[x\ , . . . , *„ ] extending CCQ. Consider the restriction mappings 

\j)\ Sperfl[x] -+ Sper£[x], p: Sper£[x] —> X. 

According to [1, Theorem 2.1], p is a homeomorphism. For any s.a. set D Ç Kn, let 
D(R) = t / r ^ D ) H Rn. D(R) is a s.a. set in Rn and D(R) H K" = D. A s.a. set C Ç fl" 
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(a) 

(b) 

(c) 

is said to be defined over K if C — D(R) for some s.a. set D Ç Kn. In this situation, if 
E = p(D), then the functorial mapping 

p:PWE(K[x])-^?Wc(R[x]) 

is injective. We say t G PWc(/?[x]) is defined over K if r is in the image of/?. This just 
means that 3 relatively closed s.a. sets C\,..., Cm Ç C defined over K and g i , . . . , gm G 
^[x] such that C = U£i <w and r = gt on C„ / = 1, . . . , m. 

One can ask when each t G PWc(/?[x]) defined over K is expressible as t = V/ Ay £*/ 
on C with gy G A [̂x]. Clearly this is the same as asking when the two rings PWf(^[x]), 
Sl£(AT[x]) are equal. Delzell considers this question in [4] in case C = Rn (so E = X). 

Here, we are interested in the case where C is closed and 1-dimensional. In this case, 
by the Transfer Principle, D is also closed and 1-dimensional. Moreover, if b\,..., bk are 
the half-branches of D at some point â G D and Tt is the half-tangent to bt at â then, by 
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the Transfer Principle, b\(R),... ,bk(R) are the half-branches of C at a and T((R) is the 
half-tangent to bi(R) at â. 

Since K[\] is integral over A [̂x] and D is 1-dimensional, K[x]/ f]aeEpa is 
1-dimensional so we can apply Corollary 2.4. But first we must determine the meaning of 
Condition ( 1 ) of Corollary 2.4. Suppose a G E,pa is maximal, and 7 G E is a proper gen­
eralization of a. Let a, 7 be the corresponding orderings in D. Thus 7 is a proper general­
ization of â and â G Z), say â = (a\,... ,<?„). Thus/?<* = (*i— «i , . . . ,xn—an). Since ^[x] 
is integral over K[x], R(ï) = R(l) and #7 = B1. We can assume v1(x\ — a\) < v1(xi — ai) 
for / > 2 and that the half-tangent T7 to Z?7 at â is given by x; — at = mi(x\ — a\), 
i = 2 , . . . ,n, x\ — a\ > 0, m^,.. . ,mn £ K. Take/ G K[x\] to be the minimal polyno­
mial of ai. Then/ = fo - « I )/i, /i G AXxiL/ifai) ^ 0, so v1(fi) = v1(xl - a\). From 
this we see that 

^7 = {f ^Pa ' V1(f)= V1(xl -a\)}. 

Also, any/ G pa decomposes in K[x] a s / = Y!j=\ Dxf(a)(xi — at) + terms in JCI — 
<2i,..., xn — an of degree > 2, so, dividing by x\ — a\ and pushing down via B1 —> #7 , 
we see that 

(a) feS, iff E?=1 Dxf(a)mi ^ 0 (taking mi = 1). 
Moreover, since we are assuming JCI — a\ > 0 at 7, 

(b) if/ G S7, then/ >7 0 iff E?=1 ^ . (aM- > 0. 

THEOREM 4.1. Suppose 6 £ E is another proper generalization of a. Then the fol­
lowing are equivalent: 

(1) 7, è have different direction at a. 

(2) There exists a hyperplane through â — (a\,...,an) defined over K(pa) — 
K(a\,..., an) separating r7 and 7 .̂ 

PROOF. ((1) <= (2)) Suppose 7,<5 have the same direction at a. Then v$(xi — at) is 
also minimal at / = 1 (since f\ G S1 — S$). Also, x\ — a\ has the same sign at 7,<5 (since 
/i has the same sign at 1,6). Thus we can suppose T$ is given by xt — at — ni(x\ — a\), 
i = 2 , . . . ,« , x\ — a\ > 0. By (2) we have g\,...,gn G ^[x] such that 

(c) Zgi(a)mi>09Zgi(a)ni<0. 
Let / G K[XJ] be the minimal polynomial of aj and let hj G K[x] be such that hj(a) = 
gj(2L)/fj(dj), and take/ = EjLi fy$- Then/ G pa and one checks easily that Dxf(a) = 
g/(a), / = 1,. . . , n. Thus, from (b) and (c), we see that/ G S1 — Ss,f >7 0 , / <$ 0, a 
contradiction. 

((1) => (2)) Assume 7,5 have different directions at a. After disposing of trivial cases 
where (2) is clear, we are left with the case where v1(xi — at), v$(xi — at) both achieve 
their minimum at the same / (say / = 1) and x\ — a\ does not change sign at 7,(5, (say 
x\ - a\ > 0 at 7,(5). Now pick/ G S1H Ss,f >7 0 , / <6 0. Such/ exists by the proof of 
Theorem 2.3. Then E ^ / ( a ) m / > 0, EDxf(a)ni < 0 using (b). This proves (2). 

We also have the following analogue of Corollary 3.2: 
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COROLLARY 4.2. Suppose C Ç Rn is a closed 1 -dimensional s.a. set which is defined 
over K. Then the following are equivalent: 

(1) At each point a G CHKn, distinct half-branches ofC have (distinct) half-tangents 
which are separated by a hyperplane through a defined over K(a). 

(2) (7,(5) = y/Çyjîîforall'yJ G E. 
(3) PWE(K[x]) = SlE(K[x]), i.e., for each t G PWc(/?[x]), if t is defined over K, then 

3gtj G K[x] so that t = A,- Vy gij on C. 

PROOF. (1) & (2) => (3) follows from Corollary 2.4 and Theorem 4.1 
(3) => (1). If (1) fails, then by Theorem 4.1, we have a G E with pa maximal and 

proper generalizations 7 ^ 6 of a in E having the same direction at a. We can suppose 
v1(xt — at), v$(xi — af) are both minimal at / = 1 and that x\ — a\ > 0 at 7,<5. Let 
ôc — («i, . . . ,an) and let/i G K[x\] denote the minimal polynomial of a\. Denote by 
Bn(e) (resp. Sn~x(e)) the closed ball (resp. sphere) in Rn with radius e centered at â. Pick 
e > 0 in K sufficiently small, and let b = (b\,..., bn) G Kn be the point of intersection 
of b^ with Sn~l(e). Let/7 G K[x\] be the minimal polynomial of b\ and choose c G Â", 
«i < c < b\,p{c) T̂  0, and let (̂  G AT[JCI] be the minimal polynomial of c. Let r, s G K[x\] 
be such that rp + sq = 1. Define t: C —+ R by 

f/i(jci) i f x G ^ f l 5 n ( £ ) , ai <JCI < c 
Kx) = < fx(xx)r(xx)p(xx) if x G ^ n Â " ( e ) , c < JCI < b\ 

I 0 elsewhere on C. 

Then t G PW£(/^[x]). Also,/i G S1 = 56 so, as in the proof of Corollary 3.2, t g 
SlE(K[x]). 

Condition (1) of Corollary 4.2 requires further comment. It clearly holds at non-
singular points a G C Pi Kn (since then the half-tangent have opposite direction so are 
separated by some hyperplane xt — at = 0). Also, if A' is dense in K, then the statement 
of Corollary 4.2 can be simplified: 

THEOREM 4.3. If K is dense in K then Condition (1) of Corollary 4.2 is equivalent 
to the simpler condition: 

(V) At each points G CP\Kn, distinct half-branches of C have distinct half-tangents. 

PROOF. Ignoring trivial cases, we can suppose the half-tangents 7},y = 1,2 are 
given by xt — at = mij(x\ — a\), i = 2 , . . . , n, x\ — a\ > 0. Then, picking / minimal with 
w/i ^ m/2, T\, 72 are separated by any hyperplane of the form JC/ — at = b(x\ —a\) where 
b G K is between ran and ra/2. 

We conclude by giving an example to show the density assumption in Theorem 4.3 
cannot be deleted. 

EXAMPLE. Suppose K is not dense in K. Thus 3rai,ra2 G K, m\ < m^ such that 
the interval im\,mi) has empty intersection with K. Let / ,g G K[x] be the minimal 
polynomials of rai,ra2 respectively. We can assume/ ^ g. (Just replace ra2 by some 
ra G K, m\ < m <m^ which is not a root of/.) Consider h(x, y) G K[x,y] defined by 

h{x,y) = xdf(y/x)xeg(y/x) + (y - nx)d+e+] 
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where d = deg/, e = degg, and n G K is any fixed element which is not a root of fg. 
Take C Ç R2 to be the curve defined by /I(JC, j) = 0. C is irreducible and (0,0) is its 
only singularity. Moreover, (0,0) is an ordinary multiple point. Thus, the branches of C 
at (0,0) correspond bijectively to the roots in K off g in such a way that if m G K is a root 
of fg then the associated branch passes through (0,0) with tangent y = mx. In particular, 
we have two half-branches with half-tangents y = m\x, x > 0 and y = mix, x > 0 
respectively. Since (m\,m2)nK = 0, it is clear that these half-tangents are not separated 
by any hyperplane through (0,0) defined over K. 
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