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The opportunity-threat theory of decision-making under risk

Mohan Pandey∗

Abstract

A new theory of decision-making under risk, the Opportunity-Threat Theory is proposed. Analysis of risk into opportunity

and threat components allows description of behavior as a combination of opportunity seeking and threat aversion. Expected

utility is a special case of this model. The final evaluation is an integration of the impacts of opportunity and threat with

this expectation. The model can account for basic results as well as several “new paradoxes” that refuted cumulative prospect

theory in favor of configural weight models. The discussion notes similarities and differences of this model to the configural

weight TAX model, which can also account for the new paradoxes.
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1 Introduction

Expected Utility Theory (EUT) (Von Neumann & Morgen-

stern, 1944) is the most widely accepted normative theory of

decision-making under risk. However, as demonstrated by

the Allais Paradox (Allais, 1953), EUT does not accurately

describe how people decide when presented choices between

risky prospects. Many theories have been proposed to ac-

count for the Allais paradoxes. Two classes of models that

have been the focus of recent experimental work are origi-

nal and cumulative prospect theory (Kahneman & Tversky,

1979; Tversky & Kahneman, 1992) and configural weight

models (Birnbaum, 1974; Birnbaum & Stegner, 1979), in-

cluding the Transfer of Attention Exchange (TAX) model

of Birnbaum & Chavez (1997). This paper proposes an al-

ternative, called the Opportunity-Threat Theory (OTT) and

shows how a simplified special model of OTT (SSOT) can

explain the classic fourfold pattern of risk attitude as well

as key features of the “new paradoxes” (Birnbaum, 2008)

that refute the prospect models in favor of the configural

weight models. In particular, the new model can account for

event-splitting effect, violation of stochastic dominance and

violation of restricted-branch independence.

The intuitions behind OTT are rather simple. People are

influenced not only by the expected results of their actions,

but also are affected by two components of risk, opportunity
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and threat. A model in which expectation, opportunity, and

threat aggregate to form the evaluation of a risky prospect

will be presented first in a simple form, to show that it can

account for empirical phenomena. Comparisons with alter-

native approaches and ways in which the simple model might

be generalized will be taken up in the discussion.

2 A Special OTT (SOT) Model of

Risky Decision Making

Let M refer to a risky gamble of the form M =

(x1, p1; x2, p2 . . . xi, pi . . . xn, pn), which represents a lottery

in which there are exactly n possible mutually exclusive and

exhaustive consequences. Consequence xi occurs with prob-

ability pi and the sum of the probabilities is 1. The expected

value of such a gamble, EV , is given by Equation 1:

EV =

n∑

i=1

pi xi (1)

Expected utility theory (EUT) allows that utilities (subjec-

tive values) of the consequences may be a nonlinear function

of the monetary values of the consequences, ui = u(xi ). The

expected utility of the gamble is µ:

µ =

n∑

i=1

piui (2.1)

Under SOT, µ = EU can be viewed as a reference. With

at least two unequal consequences, there will be at least one

that will be preferred to µ, and at least one over which µwill

be preferred. The present model adds two risk components

to expected utility; the first of these components is a risk

factor due to asymmetry and the second is a risk factor due

to variation.
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It is useful to define the average utility of the consequences

in a gamble, ū computed as if each consequence is equally

likely:

ū =

∑n
i=1 ui

n
(2.2)

When there are two or more consequences, the differ-

ence between the average utility of the consequences and

the expected utility of consequences is used to define the

asymmetry component of the model, θ, as follows:

θ =
ū − µ

(n − 1)/n
(2.3)

A negative deviation is perceived as threat (the possibility

of landing below the reference). A positive deviation is

perceived as opportunity (the possibility of landing above

the reference).

The variation component of the model, ψ, is defined as

follows:

ψ = {σ2
+ (αθ)2}1/2 (2.4)

where α is a parameter representing the weight of the θ

component and σ is the standard deviation,

σ =




n∑

i=1

pi (ui − µ)2




1/2

(2.5)

It has been found that people are typically risk averse for

positive valued gambles and typically risk seeking for nega-

tive valued gambles; therefore, to account for this empirical

finding, a multiplier of ψ, b, reflecting the sign of µ is used,

as follows:

b = +1, i f µ < 0, else − 1 (2.6)

When all the u values are non-negative (µ ≥ 0), spread

is perceived as threat (the possibility of landing below the

reference ); b = −1. On the other hand, when all the u values

are negative (µ < 0), spread is perceived as opportunity (the

possibility of landing above the reference ): b = +1. For

mixed cases with both positive and negative outcomes, sign

of µ determines the sign of b.

The overall evaluation of a gamble, V , for gambles with

two or more possible consequences is a linear combination

of all three components, as follows:

V = µ + αθ + βbψ + ε (2.7)

where coefficients α and β represent psychological weights

assigned to θ and ψ respectively; and ε is an error term. For

the case of n = 1, V = u. The SOT model is idempotent,

reducing to V = u, when all outcomes are equal. When given

a choice between two gambles, the decision maker chooses

the option with the higher evaluation, V, apart from error.

Equation 2.7 shows that SOT reduces to EU when α = β

= 0, or when αθ + βbψ = 0. When θ = 0, V = µ+ βbσ + ε,

which is a special case of the TAX model when n = 2.1

1The Appendix shows the derivation of θ and ψ.

2.1 Simplified special opportunity-threat

(SSOT) model

For some situations, it may be possible to use a simplified

version of SOT. Consider cases where outcomes are mone-

tary and within a relatively narrow range allowing u(x) = x.

Further, assume that values of p are non-extreme allowing

the approximation, ψ =σ.2 For simplicity, it will be assumed

that there are no errors. Equation 3 represents the simplified

SOT (SSOT) model

V = µ + αθ + βbσ (3)

For simplification, it is assumed that coefficients α and β

do not change due to change in domains (positive to negative

or vice versa). Examples in this paper use this SSOT model

unless otherwise mentioned. It is noted that SSOT model

reduces to Expected Value when α = β = 0, or when αθ +

βbσ = 0.

2.2 Constraints and coefficients

Consider the case of binary gambles (x, p; 0, 1 − p), with

x > 0; here, n = 2 and µ = px. From Equation (2.3),

θ =
x
2 −px

2−1
2

= (1 − 2p)x and from Equation (2.5), σ2
=

p(x − xp)2
+ (1 − p)(0 − xp)2

= {p(1 − p)}x2. Since µ is

non-negative, b = −1. Therefore,

V = px + α(1 − 2p)x − β{p(1 − p)}1/2x (4.1)

transforming to:

V

x
= p + α(1 − 2p) − β{p(1 − p)}1/2 (4.2)

Now, constraints 0 < V
x
< 1 and 0 < p < 1 are applied.

They set the boundary conditions such that even for the

smallest probability of smallest positive value of x, V does

not reduce to zero. Further, even for the smallest probability

of x not obtaining, magnitude of V remains positive under

certain x. Then, at p = 1
2
, from Equation 4.2, V

x
=

1
2
−

β

2
.

Thus, 0 < 1
2
−

β

2
< 1, which implies −1 < β < 1. Also, for

p ∼ 0, V
x
≈ α, thus 0 < α < 1.

For estimation of β, consider a mixed outcome experi-

ment with only two possible outcomes with equal probabil-

ities (x1,
1
2
;−x2,

1
2
) and observed V = 0. Given symmetric

distribution, θ = 0, giving, V = 0 = µ − βσ, or, β = µ/σ.

Now, µ = 1
2

x1−
1
2

x2. Also, σ2
=

1
2

(x1−µ)2
+

1
2

(−x2−µ)2
=

1
2

(x1 −
1
2

x1 +
1
2

x2)2
+

1
2

(−x2 −
1
2

x1 +
1
2

x2)2. That yields,

2For simple binary gambles (x, p; 0, 1 − p), with x > 0 and typical

α = 1
8 , ( αθ

σ
)2
=

(1−2p)2

64p (1−p)
has its minimum value at p = 1

2 , where it

equals 0. The expression ( αθ
σ

)2 increases in value as p moves towards 0

or 1. Even at p = 0.05(or, 0.95), ( αθ
σ

)2
= 0.26, only.
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Table 1: Fourfold pattern shown with experimental dataset for gambles of type (x, p; 0, 1 − p) from Tversky & Kahneman

(1992). SSOT, CPT and TAX, all three are able to explain the fourfold pattern. However, SSOT analyzes risk into opportunity

and threat components.

Gamble Observed SSOT components Calculated cash equivalents (V)

x,p cash equivalent µ αθ bβσ Prior SSOT Prior CPT Prior TAX

−$100,0.95 −84 −95 11 7 −77 −83 −59

−$100,0.05 −8 −5 −11 7 −9 −8 −8

$100,0.95 78 95 −11 −7 77 77 59

$100,0.05 14 5 11 −7 9 10 8

Note: Data presented only to demonstrate the pattern and not to show accuracy of prediction. OTT does

not preclude the coefficients from taking different values for gains and losses domain. However, it is not

necessary to explain the pattern here. Observed and calculated cash equivalents are in $, in this table as

well as the subsequent tables.

σ = 1
2

x1 +
1
2

x2. Thus, β = µ/σ =
x1−x2

x1+x2
. Tversky &

Kahneman (1992) reported four problems of this kind that

yield β = 0.42, 0.34, 0.34, 0.30. An average is taken and

converted to an equivalent fraction for convenience, giving

β = 1
3
, which is in the range established above.

Now, with an estimate of β at hand, α can be estimated

as follows. Assume that there exists a point where, V
x
= p.

Then, from Equation 4, 0 = α(1 − 2p) − β{p(1 − p)}1/2

yielding, α =
β {p(1−p) }1/2

1−2p
. Tversky & Kahneman (1992)

considered p ≤ 0.1 as low. Following that, p = 0.1 is taken

as the point of transition from low probability to moderate

probability. Data from the same study shows that V
x
∼ p at

= 0.1 . At that point, with β = 1
3

, α = 1
8

is obtained, which

is in the range established above.

It must be recognized that α and β represent a psycho-

logical weighting process and as such are likely to vary with

individual differences and experimental factors. The rest

of this paper uses α = 1
8

and β = 1
3

as “prior” parame-

ters for purpose of calculations to illustrate how the SSOT

model functions. These rough parameters are not intended

to be used for comparison of accuracy or predictive power

of various models.

3 Results

It has been well argued in Birnbaum (2008) as to how the

so-called “new paradoxes” refute Cumulative Prospect The-

ory, Rank-Dependent Utility, and Rank-and Sign-Dependent

Utility Theories in favor of a class of models that includes

the transfer of attention exchange (TAX) model. Here, it is

examined if SSOT is also capable of explaining key drivers

of these new paradoxes, viz., event-splitting, stochastic dom-

inance and restricted branch independence. It will be shown

first that SSOT can reproduce some basic behavioral obser-

vations in decision-making under risk, including the “four-

fold pattern”.

3.1 Fourfold pattern

Tversky & Kahneman (1992) described a “fourfold pattern”:

risk aversion for gains and risk seeking for losses of high

probability; risk seeking for gains and risk aversion for losses

of low probability. Table 1 shows selected results illustrating

this fourfold pattern and shows how SSOT can account for

them.

Consider (100, 5%; 0, 95%). (i) The reference µ = 100 ∗

5% = 5. (ii) θ = (1−2∗5%)∗100 = 90. It is multiplied with

coefficient α = 1
8
. Thus, the impact αθ = 1

8
∗ 90 ≈ 11. This

is positive and is taken as opportunity. (iii) The standard

deviation, σ = {5% ∗ 95%}
1
2 100 = 22. Since the gamble is

in gains domain, b = −1. Thus, bσ = −22. With coefficient

β = 1
3 we have βbσ = 1

3 (−22) ≈ −7. This is negative

and is taken as threat. The final value, V = 5 + 11 − 7 =

9 > 5(expected value). This is in line with the reported

relationship.

As p increases, θ decreases, crossing 0 when p = 1
2
, and

turning negative after that. In the case of (100, 95%; 0, 5%),

µ = 95. θ = (1 − 2 ∗ 95%) ∗ 100 = −90, leading to negative

impact of αθ = 1
8
∗ (−90) ≈ −11. Standard deviation and

b do not change so V = 95 − 11 − 7 = 77 < 95(expected

value).

For (−100, 5%; 0, 95%), µ = −5. θ = (1 − 2 ∗

5%)(−100) = −90, leading to negative impact of αθ =
1
8
∗ (−90) ≈ −11. Due to domain change, b = +1, hence,

βbσ = 1
3 ∗ (+1) ∗ 22 ≈ 7,. Therefore, V = −5 − 11 + 7 =

−9 < −5(expected value).
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Table 2: Event-splitting problems 1.1 (row 1) and 1.2 (row 2) from Birnbaum (2008). Prior CPT does not, but prior SSOT

and prior TAX predict preference reversal due to event-splitting of gambles in 1.2.

Calculated cash equivalents

Choice % Choosing Prior SSOT Prior TAX Prior CPT

First gamble Second gamble second gamble First Second First Second First Second

A: 85 to win $100

10 to win $50

05 to win $50

B: 85 to win $100

10 to win $100

05 to win $7

62 81.7 83.7 68.4 69.7 82.2 79.0

A’: 85 to win $100

15 to win $50

B’: 95 to win $100

05 to win $7
26 82.2 78.1 75.7 62.0 82.2 79.0

For (−100, 95%; 0, 5%), we have, µ = −95, θ = (1 − 2 ∗

95%)(−100) = 90, αθ = 1
8
∗ 90 ≈ 11 and b = +1, hence,

βbσ = 1
3
∗ (+1) ∗ 22 ≈ 7. Therefore, V = −95 + 11 + 7 =

−77 > −95(expected value). Thus, the model reproduces

the fourfold pattern of Table 1.

More generally, consider gambles of type (x, p; 0, 1 − p).

In the gains domain, spread is perceived as threat. θ, which

equals (1 − 2p)x, is perceived as an opportunity for p ≤ 1
2
.

For any given x, this factor becomes stronger as p reduces.

At low p, it overrides the threat factor when α(1 − 2p) >

β{p(1 − p)}1/2. In the losses domain, spread is perceived as

opportunity. θ, which equals (1 − 2p)(−x), is perceived as

threat for p ≤ 1
2
. Thus, for low p, it is threat aversion and

otherwise it is opportunity seeking. In this model, decision-

makers can be simultaneously opportunity seeking and threat

averse.

3.2 Event-splitting effect

A simple case of event splitting: A(x, p; 0, 1 − p) split to

B(x, p − r; x, r; 0, 1 − p). Obviously, there is no difference

in µ, since, (p − r)x + r x = px . There is no difference in σ

either as p(x − px)2
+ (1− p)(0− px)2

= (p− r)(x − px)2
+

r (x − px)2
+ (1− p)(0− px)2.3 However, there is change in

θ. θA =
x
2 −px

2−1
2

= (1 − 2p)x and θB =
2x
3 −px

3−1
3

= (1 − 1.5p)x.

Take any gamble Gbase (x1, p1; x2, p2 . . . xi, pi . . . xn, pn)

with xi > 0, pick its element k , (xk, pk ) and split it to

generate elements (xk, pk −r) and (xk, r) for another gamble

Gsplit . Then, from Equation 2.3, θbase =
n

n−1
(
∑ xi

n
− µ)

and θsplit =
n+1
n

(
∑ xi

n+1
+

xk
n+1
− µ). Thus, θsplit − θbase =

3It is important to note that none of traditional measures of higher

moments will change either, since for a moment of order m, p(x − px)m +

(1 − p)(0 − px)m = (p − r )(x − px)m + r (x − px)m + (1 − p)(0 −

px)m . Thus, no moments-only model (for example, mean-variance or

mean-variance-skewness models) will be able to explain change in value

due to event-splitting.

xk
n
−
∑

xi−µ

n(n−1)
. Therefore, Vsplit > Vbase if,xk >

∑
xi−µ

(n−1)
.

For a binary gamble (x, p; 0, 1 − p), x > 0, splitting of

higher branch satisfies this condition (x >
x−px

(2−1)
) and leads

to increase in value. Splitting of lower branch (0 <
x−px

(2−1)
)

leads to decrease in value. Because splitting in this model

can either increase or decrease the value of a gamble, this

model violates the property of branch-splitting independence

identified and tested by Birnbaum (2007).

An example of event-splitting non-independence from

Birnbaum (2008) is illustrated in Table 2. 1.1A is produced

by splitting lower branch of 1.1A’ (causing small decrease

in value) and 1.1B is produced by splitting higher branch of

1.1B’(causing significant increase in value). The majority

prefers A to B, and a majority prefers B’ to A’.

3.3 Violation of stochastic dominance

That SSOT predicts violation of stochastic dominance is

demonstrated in this section through a recipe simplified from

Birnbaum (2008). Take a base gamble G0(x, p; 0, 1 − p),

with x > 0. Now, modify it to generate a stochastically

dominating gamble G+(x, p; y, q; 0, 1 − p − q) where y is a

small positive quantity and q is a relatively small probability.

Next, generate a stochastically dominated gamble G−(x, p −

s; z, s; 0, 1 − p) where z is a positive quantity slightly lower

in value to x and s is a relatively small probability.

From Equations 2, for G0(x, p; 0, 1 − p):

µ0 = px, θ0 =
x/2−px
(2−1)/2

= x − 2px = (1 − 2p)x, and

σ0 = p(x − px)2
+ (1 − p)(0 − px)2

= p(1 − p)x2.

For G+(x, p; y, q; 0, 1 − p − q):

µ+ = px + qy, θ+ =
x+y

3 −(px+qy)

3−1
3

=
x+y

2
− ( 3

2
)(px + qy) =

(1−3p)

2
x +

(1−3q)

2
y, and

σ+ = p(x − µ+)2
+ q(y − µ+)2

+ (1 − p − q)(0 − µ+)2
=

px2
+ qy2 − µ2

+
= p(1 − p)x2

+ q(1 − q)y2 − 2pqxy.
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Table 3: Violation of stochastic dominance in Birnbaum (2008) problem 3.1.Values α(θ+ − θ) ≈ −α
(1−p)x

2 = −0.6 and

α(θ − θ−) ≈ −α
px

2
= −5.4 predict slight reduction in value moving from G0 to G+ and relatively higher increase in value

moving from G0 to G−. Prior CPT is not, but prior SSOT and prior TAX are consistent with the observed data.

Calculated cash equivalents

Choice % Choosing Prior SSOT Prior TAX Prior CPT

First gamble Second gamble second gamble First Second First Second First Second

G+: 90 to win $96

05 to win $14

05 to win $12

G−: 85 to win $96

05 to win $90

10 to win $12

73 70.6 74.9 45.8 63.1 70.3 69.7

G0 : 90 to win $96

10 to win $12
− − 70.8 − 58.1 − 70.1 −

For G−(x, p − s; z, s; 0, 1 − p), substituting r = p − s (re-

placed back in the last step):

µ− = r x + sz, θ− =
x+z

3 −(rx+sz)

3−1
3

=
x+z

2 − ( 3
2 )(r x + sz) =

(1−3r )

2
x+

(1−3s)

2
z andσ− = r (x−µ−)2

+s(z−µ−)2
+(1−p)(0−

µ−)2
= r x2

+ sz2 − µ2
− = r (1− r)x2

+ s(1− s)z2 − 2rsxz =

p(1 − p)x2
+ (2sp − s − s2)x2

+ s(1 − s)z2 − 2(p − s)sxz.

The impact on mean is straightforward: µ+ − µ = qy ≈ 0

and, µ− µ− = s(x− z) ≈ 0. The difference inσ is as follows:

σ2
+
− σ2

= q(1 − q)y2 − 2pqxy = qy((1 − q)y − 2px) ≈

0,since, qy ≈ 0 and σ2 − σ2
− = −(2sp − s − s2)x2 − s(1 −

s)z2
+2(p− s)sxz = s(−2px2

+ x2
+ sx2 − (1− s)z2

+2(p−

s)xz) = s(x2 − z2
+ sx2

+ sz2 − 2sxz − 2px2
+ 2pxz) =

s(x − z)(x + z + s(x − z) − 2px) ≈ 0, since, s(x − z) ≈ 0.

The differences in θ, which are decisive, can be calculated:

θ+− θ =
(1−3p)

2
x+

(1−3q)

2
y− (1−2p)x =

−1+p
2

x+
(1−3q)

2
y ≈

−
(1−p)x

2
and θ − θ− = (1 − 2p)x − {

(1−3r )

2
x +

(1−3s)

2
z} =

(−p)

2
x+

(1−3s)

2
(x−z) ≈ −

px

2
. Negative signs in both these ex-

pressions imply violation of stochastic dominance. In sum-

mary, similar to event-splitting effect, violation of stochastic

dominance in cases such as the one described here is driven

by θ. G0 to G+ is splitting of the lower branch leading to

reduction in value; while G0 to G− is splitting of the higher

branch leading to increase in value.

For illustration, calculations for one experimental set from

Birnbaum (2008) are shown in Table 3. It is reported that

a majority (73%) of subjects preferred G− over G+ despite

expected values being 87.3 and 87.7 respectively. SSOT

values these prospects at 74.9 and 70.6, consistent with the

majority preference, driven by change in θ while deltas in µ

and σ are very small.

3.4 Violation of restricted branch indepen-

dence

Consider two gambles with the same number

of branches and the same probability distribu-

tion, S = (x1, p1; x2, p2 . . . xi, pi . . . xn, pn) and

R = (y1, p1; y2, p2 . . . yi, pi . . . yn, pn) having a com-

mon branch such that xn = yn = z. Restricted branch

independence assumes that a change in z will not change

the preference relationship between S and R. Suppose S

is preferred over R, then, under SSOT, VS > VR. Then, if
∂Vs

∂z
≥

∂VR

∂z
, VS > VR for all z. Otherwise, with increase

in z, the gap in values will close and preference may get

switched. A standard case is analyzed to understand how

this derivative function works. For convenient tracking,

label pn = r . Assume, xi ≥ 0, for all i, such that µ ≥ 0 and

b = −1. Also, introduce an additional constraint 0 < β < 1

to model a typical spread-averse agent.

Differentiating Equation 3 w.r.t. z, ∂V
∂z
=

∂µ

∂z
+α ∂θ

∂z
− β ∂σ

∂z
.

Now,
∂µ

∂z
= r , ∂θ

∂z
=

n
n−1

( 1
n
− r) and ∂σ

∂z
=

1
2σ

∂σ2

∂z
=

r (z−µ)

σ
.

Therefore, ∂V
∂z
= r + α n

n−1
( 1
n
− r) − β

r (z−µ)

σ
. Thus, if,

∂Vs

∂z
≥

∂VR

∂z
, then −β

r (z−µS )

σS
≥ −β

r (z−µR )

σR
. That is,

(z−µS )

σS
≤

(z−µR )

σR
or z ≤

µSσR−µRσS

σR−σS
. This is not guaranteed

and will depend on all the constituents of S and R. Assume

that for z′ this condition is not satisfied. Then, the corre-

sponding second gamble (R′) will be preferred over the cor-

responding first gamble (S′), that is, a violation of type SR′

will be observed. Note that this condition (z ≤
µSσR−µRσS

σR−σS
)

is not dependent on θ, α or β . Thus, the same pattern ap-

plies to the gambles with uniform probabilities as well and

also for any value of the coefficients and the only type of

violation predicted by SSOT is SR′. In summary, violation

of restricted branch independence is driven by the change in

σ.
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Table 4: Violation of restricted branch independence in Birnbaum (2008) problems 13.1 (row 1) and 13.2 (row 2). While, R

is preferred over S in 13.1, the preference switches in 13.2. Prior CPT is not, but prior SSOT and prior TAX are consistent

with the observed data.

Calculated cash equivalents

Choice % Choosing Prior SSOT Prior TAX Prior CPT

First gamble Second gamble second gamble First Second First Second First Second

S: 25 to win $44

25 to win $40

50 to win $5

R: 25 to win $98

25 to win $10

50 to win $5

40 18.5 17.8 20.0 19.2 19.8 29.8

S’: 50 to win $111

25 to win $44

25 to win $40

R’: 50 to win $111

25 to win $98

25 to win $10

62 62.8 66.7 57.2 60.7 69.4 62.3

As an example from Birnbaum (2008, Table 4), for

Problem 13.1, R is preferred over S and (z = 5) ≤

(
µSσR−µRσS

σR−σS
= 18). Thus, this preference holds as long

as z ≤
µSσR−µRσS

σR−σS
holds. However, for Problem 13.2,

(z = 111) > (
µSσR−µRσS

σR−σS
= 49), and the preference re-

versal is predicted.

4 Discussion

As the previous section shows, SSOT is capable of explaining

several empirical phenomena explained by CPT and TAX

both (fourfold pattern) or by TAX only (event-splitting effect,

violations of stochastic dominance and violation of restricted

branch independence).

Event-splitting effect and violations of stochastic domi-

nance in the examples described above are related and are

explained by the θ component under SSOT.

Violations of restricted branch independence are ex-

plained by the σ component.

4.1 The Opportunity-Threat Theory

Let S be a set of future states (s ∈ S) of the world of which

exactly one state will obtain. Assume that it is unknown to the

decision-maker as to which state will obtain. Further, assume

that S can be mapped to a consequence set X through some

function φ(s) = (x, p) where the first term (x) denotes the

objective magnitude of the consequence and the second term

(p) denotes the objective probability of that consequence.

These objective probabilities sum to 1. In addition, assume

that the outcome set X can be mapped by the decision-maker

to a mental set M through some functions u(x) = u and

π(p) = π corresponding to subjective or implied utilities

and subjective or implied probabilities, respectively. These

subjective or implied probabilities also sum to 1. Also,

assume that the decision-maker is able to map this mental

set M to a decision-making single number V (called value)

such that V (M) = V .

Two key assumptions underlie this (M to V ) mapping

process:

• First, the decision-maker has a referencing algorithm

that generates reference with which M can be divided

into two mutually exclusive and collectively exhaus-

tive subsets Mup (the upside set, containing elements

considered more or equally preferred compared to refer-

ence) and Mdn (the downside set, containing elements

considered less preferred compared to reference).

• Second, that there is available a netting algorithm that

maps Mup and Mdn into Yup , the relative upside set,

containing elements of Mup net of reference and into

Ydn, the relative downside set, containing elements of

Mdn net of reference), respectively.

With these assumptions, the following definitions are stated:

1. Yagg = agg(Yup,Ydn), where agg is a function that

measures direction and impact of aggregation of Yup
and Ydn.

2. Ydis = dis(Yup,Ydn), where dis is a function that mea-

sures direction and impact of distance between Yup and

Ydn.

3. opportunity = Yagg > 0, Ydis > 0.

4. threat = Yagg < 0, Ydis < 0.
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Then, the Opportunity-Threat Theory (OTT) asserts that

V = f (re f erence, opportunity, threat) (5)

and that the decision-maker will prefer or be indifferent to

M1 compared to M2 iff V (M1) ≥ V (M2), except by way of

error.

To illustrate, assume a roll of dice that pays $1, if rolled

1, $2, if rolled 2 etc. Thus, M = (1,1/6; 2,1/6; 3,1/6; 4,1/6;

5,1/6; 6,1/6). Further, assume an obvious reference point that

is the average (3.5). Outcomes higher or equal to average are

mapped to Mup = (4,1/6; 5,1/6; 6,1/6) and rest are mapped

to Mdn = (1,1/6; 2,1/6; 3,1/6). Now, assume a simple netting

algorithm that is to subtract the average from each of the

outcomes. Thus, the relative sets are constructed as Yup
= (0.5,1/6; 1.5,1/6, 2.5,1/6) and Ydn = (−2.5,1/6, −1.5,1/6,

−0.5,1/6). To complete the illustration, assume agg(.) =

EV (Ydn) + EV (Yup) and dis(.) = EV (Ydn) − EV (Yup) (so

that it accounts for spread aversion). Then, these numbers

are respectively, Yagg = 0 (note that it was a symmetric

gamble) and Ydis = −1.5. Thus, opportunity = 0 and threat

= −1.5. Assuming V(.) = reference + opportunity + threat,

V = 3.5 + 0 − 1.5 = 2. Thus, this gamble will be valued at

$2.00 instead of expected value of $3.50.

In general, OTT applies to cases involving monetary out-

comes or otherwise. It allows incorporation of different

measures of opportunity and threat. It also permits differ-

ent attitudes to opportunity and threat. It does not require

symmetry in attitudes in gains and losses domains. In moral

situations, opportunity may lie in domain of morally correct

and threat may lie in domain of morally incorrect. In such

cases attitudes may be modelled with binary parameters.

Several parameters that can serve as reference have been

discussed in the literature, for example, status quo (Thaler,

1980; Samuelson & Zeckhauser, 1988), omission (Baron &

Ritov, 1994) or aspiration (van de Ven & Diecidue, 2008).

OTT allows incorporation of different points of reference

and even multiple points of reference. In a special case, the

point of reference happens to be Expected Utility. In that

case, if either the agent is neutral to both opportunity and

threat or net impact of opportunity and threat cancel out, the

model reduces to Expected Utility.

4.2 A structural comparison of SSOT, CPT

and TAX

To structurally compare SSOT with CPT and TAX, a

working model of OTT was developed. Consider, X =

(x1, p1; x2, p2 . . . xn, pn), with n denoting the number of ex-

haustive and mutually exclusive future states and
∑

pi =

1. Assume Xup = (x1, p1; x2, p2 . . . xi, pi . . . xk, pk ) and

Xdn = (xk+1, pk+1; xk+2, pk+2 . . . x j, pj . . . xn, pn), such that

the upside set has k elements and the downside set has

n − k elements. Define, V (Xup) =
∑

(xi − µ), i = 1 . . . k

and V (Xdn) =
∑

(x j − µ), j = k + 1 . . . n. Further,

define V (O) = V (Xup) + V (Xdn) analogous to θ and

V (T ) = |V (Xup) − V (Xdn) | analogous to σ (using range

as a measure of spread instead of standard deviation). Then,

analogous to Equation 2,

V = µ + α′V (O) + β′bV (T ) (6.1)

where µ =
∑n

i=1 pi xi and α′ and β′ are coefficients for

respective terms.

Now, assuming non-negative domain (b = −1) and for

simplicity V (XO) − V (XT ) > 0, expansion of all the terms

in Equation 5 yields,

V =

k∑

i=1

wi xi +

n∑

j=k+1

w j x j (6.2)

where wi = (α′− β′)+ {1− (α′− β′)k − (α′+ β′)(n− k)}pi
and w j = (α′ + β′) + {1− (α′ − β′)k − (α′ + β′)(n− k)}pj .

Equation 6.2 reveals that there is an implied rank-order.

However, there are only two ranks — greater than expected

value and lower than expected value. Also, the weights carry

a component that is not a product of p. Thus, the SSOT

model is significantly different from CPT. Now, Equation

6.2 is also analogous to a two-branch gamble. Clearly, there

is transfer of weight from the upper branch to the lower

branch. SSOT thus has similarities with TAX. However, in

this formulation, all gambles reduce to a two-branch gamble.

Therefore, potentially, there could be differences from TAX

that will need to be explored.

SSOT, in this paper is shown to explain certain key phe-

nomena underlying the new paradoxes. TAX has been very

extensively studied and explains a wide range of empiri-

cal findings. SSOT may or may not be able to explain all

those findings. Also, TAX and SSOT treat probabilities in

a fundamentally different manner (non-linear vs. linear, re-

spectively). I thus speculate that TAX cannot be a special

case of SSOT, although under limiting conditions (for ex-

ample, binary gambles with equal probabilities) SSOT and

special TAX appear identical.

4.3 Areas of future research and conclusion

Further, areas of future research should include exploration

of nature and stability of the coefficients α and β used in

SOT. In SSOT, a single value of α and a single value of β

was assumed for convenience. One question is whether these

coefficients should have different values in different domains

(positive, negative and mixed). Moreover, SOT should be

extended to a stochastic model and to probability distribu-

tions that may not be discrete. The nature and impact of

error should also be explored. Another important area will

be to understand how this model can be applied in ambigu-

ous (Ellsberg, 1961; Camerer & Weber, 1992) situations.

Implications forinvestment decisions (Markowitz, 1952), in

particular, also remain to be explored.
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In conclusion, a new theory of decision-making under

risk is proposed. This Opportunity-Threat theory relies on

analyzing risk into its components. A simplified special

model (SSOT) of this theory is able to explain a range of

empirical phenomena that are explained by TAX but not by

CPT.
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Figure 1: Consider a simple binary gamble with utility, probability pairs (u1, p1; u2, p2), where u2 > u1 > 0 and p1 + p2 = 1.

Panel a shows the expected value µ that is analogous to the center of gravity balancing the weights of the shaded areas.

Imagine that the decision-maker wants to find a value equivalent µ′ that is certain (p = 1). This then becomes the decision-

enabling center of gravity (µ′, 1) shown in panel b.

Appendix: Derivation of θ and ψ parameters

Special Opportunity-Threat (SOT) model introduces param-

eters θ and ψ, which are derived as shown in Figure 1:

Following Figure 1, characterize the linear shift (on x-axis)

as an aggregation parameter, net of upside and downside,

θ = µ′ − µ. Now, if µ′plays the role of center of grav-

ity,
∑n

i (1 − pi)(ui − µ
′) = 0. Simple expansion leads to∑n

i (ui − µ
′) −
∑n

i pi (ui − µ
′) = nū − nµ′ − µ + µ′ = 0,

where ū =
∑n

i=1 ui

n
. That gives, µ′ =

nū−µ

n−1
. Thus,

θ = µ′ − µ =
nū−µ

n−1
− µ =

n(ū−µ)

(n−1)
. Alternatively, θ can

be viewed as sum of (ui − µ) residuals divided by the degree

of freedom (n − 1).

Now, only a fraction of this factor is actually incorpo-

rated in the decision-making process depending on psy-

chological weighting. Thus, the center of gravity ends

up at µ′′ = µ + αθ (µ′′ is not shown in the fig-

ure). Finally, distance parameter is calculated as stan-

dard deviation of outcome values around this new point.

ψ2
=

∑n
i=1 pi (ui − µ

′′)2. Now,
∑n

i=1 pi (ui − µ
′′)2

=∑n
i=1 pi (ui − µ − α.θ)2

=

∑n
i=1 pi (ui − µ)2

+

∑n
i=1 pi (α.θ)2.

Thus, ψ = {σ2
+ (αθ)2}1/2.
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