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Summary

Despite the progress in conservation risk management, conservation organizations are
reluctant to interface usable risk-diversification strategies with their decision-making processes.
One reason for this reluctance is that the empirical models used to develop risk-diversification
strategies need the expected returns on investment (ROIs) of target assets and their variances
and covariances, and the probabilities of occurrence of the scenarios needed to calculate those
statistics are almost always unknown. We examine how risk diversification for conservation is
influenced by the probabilities assigned to uncertainty scenarios using a case study involving the
conservation of biodiversity at the county level in the central and southern Appalachian region
within the framework of modern portfolio theory. A comparison of risk-mitigating portfolios
with bootstrapped and fixed probability distributions shows that introducing the flexibility of
an unknown probability distribution of uncertainty scenarios allows conservation organ-
izations to spread betsmore thanwith the inflexibility of the fixed probability distribution, while
also achieving higher expected ROIs per unit of risk on average. The improvement becomes
more significant when conservation organizations are less risk averse.

Introduction

Conservation resource allocation tends to be controversial due to what are often perceived as
uncomfortably high levels of uncertainty about their benefits and costs (Ferraro & Pattanayak
2006). For example, species adapt to new environments, move to track suitable climates or go
extinct as climates change (Lawler et al. 2013). Climate shifts may determine shifts in the future
geographical ranges of species of conservation concern. Uncertainty of this type is important to
incorporate when allocating conservation resources for biodiversity and ecosystem services
because climate change poses an increasingly imminent threat to both (Woollings et al. 2012).
Market fluctuations are another critical source of uncertainty related to programme costs and
effectiveness because conservation cost is often tied to real estate markets (Cho et al. 2018).

Conservation resource allocation guided by historical benefit and cost data that ignore future
uncertainty will adversely affect its cost efficiency (Shah et al. 2016). To address this issue, risk-
diversification strategies have been applied in the conservation literature to determine portfolios
of target assets (i.e., species, sites and activities) in the context of conservation programmes that
face mainly climate uncertainty but also, in part, market uncertainty (Sanchirico et al. 2008,
Ando & Mallory 2012, Eaton et al. 2019, Sierra-Altamiranda et al. 2020, Kang et al. 2022).
Despite progress in focusing on conservation risk management, conservation organizations are
reluctant to interface risk-diversification strategies with their decision-making processes (Hunt
& Fraschini 2020). One of the main reasons for this scepticism is that the empirical models used
to develop risk-diversification strategies require the expected returns and their variances and
covariances for the target assets as inputs, but the probabilities of occurrence of the scenarios
needed to calculate those statistics are almost always unknown. For example, the occurrences of
different climate scenarios are difficult to determine because their probabilities depend heavily
on the implementation of climate change mitigation policies, which are uncertain (Ando &
Mallory 2012).

Similarly, scenario analysis in general faces persistent controversy regarding the probabilities
that should be assigned to scenarios and even whether probabilities should ever be assigned to
scenarios (Millett 2009). Studies on this subject acknowledge that determining scenario
probabilities is challenging because the future is a combination of the known and the unknown
or unknowable (Diebold et al. 2010). Achieving consensus on plausible scenarios is rare, and
thus scenario analysis should explore many possible future outcomes instead of just one (Wilson
& Ralston 2006). In addition, scenario analysis typically uses discrete probability distributions
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for scenarios because those distributions provide more determin-
istic solutions than continuous probability distributions
(Schoemaker 1995, Maciel et al. 2018).

Not deviating widely from the scenario analysis literature, the
literature on managing risk and uncertainty in systematic
conservation planning employs randomly fixed probability
distributions for scenario-specific target values. For example,
Liang et al. (2018) used a uniform probability distribution of
climate scenarios in calculating target asset values to illustrate the
optimal location for habitat restoration by coupling modern
portfolio theory (MPT) with the Marxan model to help decision-
makers build a conservation strategy for the lesser white-fronted
goose. Likewise, Ando et al. (2018) applied a consistent stylized
form of MPT to 26 heterogeneous conservation-investment
decision cases and identified correlations between features of
those cases and the success of MPT in mitigating future outcome
uncertainty. The uniform probability distribution for climate
scenarios is consistently used in calculating target asset values for
MPT applications (Ando et al. 2018).

Another branch of literature uses the estimated probabilities for
the scenario-specific values of target assets. For example, Eaton
et al. (2019) estimated the probabilities of sea-level rise scenarios to
calculate the expected conservation benefits and their variances
and covariances under climate change risks using MPT to help
allocate a budget for conservation planning strategies. Since the
probabilities of scenarios in such cases are externally estimated, the
optimization solutions are not subject to the random choice of
probability distributions. However, collecting the needed infor-
mation to estimate scenario probabilities, such as prior knowledge
of conditions that might be related to the scenarios, is often
challenging (Millett 2009, Gaspars-Wieloch 2019).

Other MPT approaches in the conservation literature assign
different probability distributions to uncertainty scenarios as a
sensitivity analysis (e.g., Ando & Mallory 2012, Dissanayake &
Hennessey 2017). For example, Ando and Mallory (2012)
considered two sample probability distributions in the MPT
framework for four climate scenarios (i.e., ‘no change likely’ that
was weighted heavily towards historical conditions and ‘uniform’
that assumed each climate scenario is equally likely to occur). The
authors then compared the optimal spatial targeting of con-
servation activity between the two sample probability distributions.
This type of sensitivity analysis offers layers of optimal solutions
with various probability distributions and allows a comparison of
their implications for conservation decisions. Yet, conservation
organizations need to go beyond comparing outcomes using
multiple probability distributions as they give little attention to
which probability distribution is most relevant to their con-
servation decision-making.

We examine how risk diversification for conservation is
influenced by the probabilities assigned to uncertainty scenarios.
We apply the MPT framework to estimate optimal portfolio
weights, reflecting fractions of the total available resources to
allocate to diverse locations, using the expected returns on
investment (ROIs) for biodiversity conservation at the county level
in the central and southern Appalachian region under climate and
market uncertainties. We create probability density functions
(PDFs) of the multiple optimal portfolio weights that are derived
from MPT using bootstrapped probability distributions (referred
to as ‘bootstrapped MPT’) of target counties at given risks. The
PDFs created from the bootstrapped MPT are characterized and
compared with optimal portfolio weights based on MPT with a
fixed uniform probability distribution of uncertainty scenarios

(referred to as ‘fixedMPT’). We also compare the vertical distances
of the efficient frontiers derived from the outcomes of the twoMPT
models for given risks. The vertical distances in expected ROIs
shed light on whether the amount of risk diversification a
conservation organization can achieve, for given risks, is different
for the mean of the bootstrapped MPT from that with the
fixed MPT.

The development of the bootstrapped MPT is a vital
contribution in its own right because it has never been applied
either inside or outside of the conservation literature. The
bootstrapped MPT imposes flexibility on the unknown proba-
bility distribution of uncertainty scenarios while the fixed MPT
does not. A comparison of risk-mitigating portfolios with the
bootstrapped and fixed PDFs using the expected ROIs for
biodiversity conservation shows that introducing the flexibility of
an unknown probability distribution of uncertainty scenarios
allows conservation organizations to spread bets more than with
the inflexibility of the fixed probability distribution, while also
achieving higher expected ROIs per unit of risk on average.
The improvement becomes more significant when conservation
organizations are less risk averse. The bootstrapped MPT
harnesses the full benefits of risk diversification and avoids
potentially misleading results based on the fixed MPT. The major
advantage of the bootstrapped MPT over the more traditional
fixed MPT is its ability to diversify the risk associated with
conservation programmes more efficiently. Our approach will
allow us to determine which risk-diversification strategy provides
the biggest benefit per unit of expenditure.

Study area and methods

Study area

The central and southern Appalachian region offers critical
habitat for biodiversity (Levine et al. 2021) and is expected to
experience rapid climate change and urbanization (Rogers et al.
2016). The region exemplifies the significance of uncertainties
from climate shifts as well as timber and real estate market
fluctuations. For instance, a regional climate model of down-
scaled temperature and precipitation patterns of the eastern USA
(Gao et al., 2012), including our study area, has predicted that
both heatwaves and extreme precipitation will be more severe in
the future. The region has also experienced large shifts in timber
production and prices and real estate values. Specifically, during
1992–2011, the seasonally adjusted wood product volume index
ranged between 87 and 156 and the timber price index ranged
between 132 and 219 in the USA, and the housing price index
varied between 102 and 245 across the South Atlantic region that
covers 8 of the 10 states in our study area (US Bureau of Labor
Statistics 2016).

We first describe how efficient portfolios for the bootstrapped
and fixed MPT models are estimated, followed by a description of
the scenario-specific ROIs. Then, we explain how different
probability distributions of uncertainty scenarios are applied to
both MPT models. Finally, we explain how kurtosis values are
calculated.

MPT framework

The expected ROI for biodiversity conservation of county i, E roiið Þ,
and the covariance of the scenario-specific ROI of counties i and j,
covij, are calculated in Equations (1) and (2), respectively:
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E roiið Þ ¼
Xs

k¼1

pk � roiik (1)

covij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs

k¼1

pk � froiik � E roiið Þg � froijk � E roij
� �g

s
(2)

where pk is the probability of uncertainty scenario k and roiik is the
ROI of the kth uncertainty scenario of county i.

The expected ROI of county i and covariance between counties
are used to calculate the portfolio’s expected ROI, Proi, and its
standard deviation, Psd , based on the allocation of portfolio weight
among counties as shown in Equations (3) and (4), respectively:

Proi ¼
Xn
i¼1

wiE roiið Þ (3)

Psd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xn
j¼1

wiwjcovij

vuut (4)

where n is the number of counties, wi is the portfolio weight in
county i and covij is the covariance of expected ROI between
counties i and j.

The MPT framework solves for the optimal portfolio weight wi
of county by minimizing the portfolio’s risk Psd with respect to a
given portfolio’s expected ROI, Proi, and the sum of wi over all
counties equals 1, as framed in Equations (5)–(7):

minPsd (5)

subject to

Proi ¼ Proi (6)

Xn
i¼1

wi ¼ 1; 8wi0 (7)

where wi of county i cannot be negative. The grid of a given
portfolio’s expected ROI starts at the global minimum standard
deviation portfolio and ends at the maximum expected ROI of the
county (Zivot 2019).

We apply the same MPT framework to the bootstrapped and
the fixed MPT models by using expected ROIs and their standard
deviations and covariances under 18 uncertainty scenarios for 10
counties (see the grey marked counties in Fig. 1). The 10 counties
are selected from among 246 counties that are wholly or partially
within the study area boundary. Ten counties (conservation
planning units) are selected for the case study since the MPT
cannot determine optimal solutions when the number of scenarios
available (18 for our case study) is equal to or smaller than the
number of conservation planning units (Ando & Mallory 2012).
This constraint arises because the information needed to calculate
the variance–covariance matrix among target sites for the solution
of portfolio weights would not be sufficient (Mallory & Ando
2014). The 10 selected counties are those with variance–covariance
matrixes containing the lowest average pairwise correlations (0.01)
since the MPT works best when multiple assets have negative or
low correlated outcomes across scenarios (Ando et al. 2018). As a
sensitivity analysis, we apply the same MPT framework using four
samples of 10 counties with variance–covariance matrixes
containing pairwise correlations of 0.3, 0.5, 0.7 and 1.

Scenario-specific ROI

For biodiversity risk diversification of conservation investment, we
first estimate expected ROIs in terms of the additional number of
species that will persist per additional dollar paid for ecosystem
services (PES) to protect forestland biodiversity. We focus on 258
forest-dependent vertebrate species (75 amphibians, 89 mammals,
40 reptiles and 54 birds) at the county level under 18 climate and
market uncertainty scenarios for the year 2050. Forest-dependent
species are chosen because forests are a prevailing natural habitat
type that is threatened by land-use conversion to urban and other
development in the study region (Pickering et al. 2002, McKinley
et al. 2019). The 258 forest-dependent vertebrate species are chosen

Figure 1. Study area. The 10 grey marked counties are
sample counties selected for the case study.
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because they are of policy concern (Landscape Conservation
Cooperative Network 2020, US Fish and Wildlife Service 2020),
and 2050 is chosen as the future timeframe because it is far enough
in the future to allow ROIs to vary under the uncertainty scenarios.

Predicted species distributions in 2050 are acquired from the
results obtained from Zhu et al. (2021). The authors use the
Maxent species distribution model to predict the climatically
suitable probability in each 1-km2 pixel for the 258 species with full
dispersal assumption under future climate scenarios for inter-
mediate and high carbon emission levels under two representative
pathways (RCPs): RCP 4.5 and RCP 8.5, with the Community
Climate SystemModel version 4 (CCSM 2019) based on the report
of the fifth Intergovernmental Panel on Climate Change (IPCC
2014). The predicted probabilities of climate suitability for the
pixels are converted into binary variables, indicating whether the
pixels are climatically suitable or unsuitable for each species, using
a 10% training presence threshold. This binarization threshold is
highly conservative in estimating distributions and is suitable for
identifying endemism (Escalante et al. 2013). It allows the pixels
with the top 90% of predicted probabilities of training presence
data to be considered suitable and the remaining 10% unsuitable
(see Zhu et al. 2021 for more details). The suitable areas of species
at the pixel level are aggregated at the county level as the county-
level predicted future species distributions.

The investment bids for the expected ROIs are estimated for
each of the 10 selected counties by urban return minus forestland
return (referred to as ‘relative opportunity cost’). The difference
between the opportunity cost and the explicit cost is used under the
assumption that the ROI is associated with the PES that protects
the forestland while ensuring suitable forest management and
sustainable flows of wood products (Pacific Forest Trust 2019).
The urban return based on median housing price is assumed to be
the opportunity cost of conserving forestland for purposes of
biodiversity conservation since urban development is the
dominant competing land use for forestland, and thus the urban
return is the return from the best alternative use in the study area
(Wear & Greis 2013, Keyser et al. 2014). We subtract forestland
return, based on timber value, from urban return since land value is
equal to the net present value of the flow of land rent over time
(Straka & Bullard 1996), and timber value is the return from one of
the major flows of the wood products.

The predicted urban return is acquired from results obtained
from Liu et al. (2019) using the following procedure: (1) an
autoregressive distributed lag (ARDL) model is used to forecast
median housing price under three market scenarios (upturn,
moderate, downturn); (2) land value ratios per hectare are
estimated by dividing assessed land value per hectare by total
assessed value at the parcel level for sample counties where data are
available; (3) land value ratios per hectare are predicted for the
counties where parcel-level data are not available; and (4) the
forecastedmedian housing price ismultiplied by the predicted land
value ratio per hectare to estimate median assessed land value per
hectare, which is annualized (see Liu et al. 2019 for more details).

The future annualized forest return for each of the 10 counties is
acquired from the results obtained in Kang et al. (2022) using the
following two-step procedure. In the first step, soil expectation
value (SEV) is used to estimate annualized forest return under an
infinite series of identical harvest rotations of 50–75 years and a
discount rate of 5% with identical timber management practices.
The SEV is established based on stumpage price for the prediction
of timber price from TimberMart-South (TMS 2015) and division
of forestry offices from eight states: Alabama (AL), Georgia (GA),

Kentucky (KY), North Carolina (NC), South Carolina (SC),
Tennessee (TN), Viginia (VA) andWest Virginia (WV). Historical
timber volume data are compiled from the Forest Inventory and
Analysis (FIA) database (US Department of Agriculture Forest
Service 2018; see Cho et al. 2018 for more details). In the second
step, a Brownian motion model is applied to forecast timber
price and per hectare harvest volume using annualized forest
return and historical timber volume data from the first step based
on two Special Report on Emission Scenarios (SRES: B2 and A2;
Nakićenović & Swart 2000) derived from the General Circulation
Model (GCM). The model forecasts the high, low and moderate
timber prices as one standard deviation above and below the mean
price and the mean price, respectively, for each state, with two
timber volumes based on two pairs of GCM and SRES (CSIRO-
MK2 with SRES B2 and CSIRO-MK3.5 with SRES A2; see Kang
et al. 2022 for more details).

In sum, the relative opportunity costs are projected for each of
10 counties under 18 total scenarios (180 projected opportunity
costs) related to both climate and market uncertainties: two timber
volumes, three timber prices and three market conditions.
Consequently, under RCP4.5 assumptions, nine possible futures
are developed (1 SRES × 1 GCM × 1 timber volume projection × 3
timber prices × 3 market conditions). Under RCP8.5 projections,
nine possible futures are developed (1 SRES × 1 GCM × 1 timber
volume projection × 3 timber prices × 3 market conditions).

We develop an econometric land-use model using historical
data from the National Land Cover Database (NLCD 2016) and
the historical relative opportunity cost data.We use forested areas
at the county level that are estimated by aggregating 30-m
resolution land-cover data from the NLCD. The land-use model
quantifies the marginal increase in forestland resulting from a 1
dollar increase in PES through the forest-return portion of the
relative opportunity cost in hectares per dollar. Using the
historical marginal relationship from the land-use model and the
forecasts of the relative opportunity costs under different
scenarios, we forecast forestland area in each county under
different scenarios in 2050.

We estimate the ROI offered by investing in a particular county
in terms of predicted improvement in overall, region-wide species
richness in 2050 with investment compared with what would have
happened without investment. To do so, we combine predicted
climatically suitable area in a county from Zhu et al. (2021) for a
given scenario with predicted change in forestland area in the
county with or without investment from the econometric land-use
model described above. While the land-use change model predicts
the amount of forest that will remain in the county in 2050 with or
without investment, it does not predict where exactly within a
given county this forest area will be located.We therefore needed to
make an assumption about the co-occurrence patterns of future
forested areas within counties with climatically suitable habitats for
species within those counties. To do so, following the optimistic or
fully nested assumption defined in Armsworth et al. (2020), we
assumed that if a county is picked in the optimization procedure,
then a representative unit of habitat is protected within that county
and all species found within the county are then assumed fully
protected. Furthermore, to convert changes in forest within
climatically suitable areas for a species into a statement about
region-wide species persistence in 2050, we also needed to make an
additional assumption. Following Armsworth et al. (2020), we
assumed that the persistence probability for a species increases
linearly with the overall amount of forested area that is climatically
suitable for the species until saturating at 1. Summing the resulting
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persistence probabilities across species gives an estimate of
expected species richness. We calculated this measure with and
without investment in each county to obtain our ROI estimates for
each of our scenarios.

Table 1 depicts heterogeneity in various aspects of the 10
selected counties. Nine of the 10 counties are classified as rural
counties. The sizes of the counties and their private and public
forestlands exhibit substantial variations. For example, Wilkes,
NC, the largest county in the sample (282 867 ha), is more than
threefold greater in size than Clinton, KY, the smallest county in
the sample (77 351 ha). Forestland area generally reflects the size of
the county, and the ratio of private to public forestland on average
over the 18 uncertainty scenarios ranges between 0 and 94 across
the counties. The average of the sum of species ranges for
258 species over the uncertainty scenarios varies from 10.4 million
to 40.3 million ha across the counties. Over the uncertainty
scenarios, the urban return is greater than the forest return in terms
of scale and variation, and thus the disparity of relative opportunity
costs is dictated more by the urban return than the forest return on
average over the uncertainty scenarios. Most importantly, a
discernible disparity exists in the expected ROIs among the
counties. Specifically, a USD 1 million investment would allow
persistence of 0.0066 additional species in Clinton County, KY,
which is more than eight times greater than the expected ROI in
Jefferson County, WV (0.0008) on average over the uncertainty
scenarios. These estimates show that a higher expected ROI is
associated with a lower relative opportunity cost, and vice versa.

Probability estimates

The uniform probability distribution of uncertainty scenarios is
selected for the fixed MPT since it has been most used in MPT
applications for conservation decisions when the probability of
each uncertainty scenario is unknown (Mallory & Ando 2014,
Shah et al. 2016, Ando et al. 2018). The pk in Equation (1) is equal
to 1

s for the uniform distribution of each uncertainty scenario, and s
is determined by the total number of uncertainty scenarios for the
fixed MPT.

The s is determined by the number of uncertainty scenarios
sampled for the probability distributions that are generated by the
bootstrap method for the bootstrapped MPT. We use a bootstrap
method (Efron 1979) to create 1000 samples of the probability

distributions associated with each of the 18 uncertainty scenarios
by resampling with replacement. Resampling from each of the 18
scenarios
1000 times for each of the 1000 bootstraps allows a particular
uncertainty scenario to appear in the bootstrap sample multiple
times whereas another uncertainty scenario may be absent from
the sample for a particular scenario. Thus, the newly created
bootstrap samples have different uncertainty PDFs, and the
assumption is that the percentage of occurrence for each scenario
becomes its probability value in the sample’s scenario PDF. The
1000 samples are applied to 1000 bootstrapped MPT models,
whose optimal solutions of portfolio weights are used to derive
county-specific PDFs with 95% confidence intervals for the 10
counties at various risks.We characterize the county-specific PDFs
with their means and kurtosis values.

The bootstrap method is a resampling method that allows for
construction of the aforementioned statistics, given the assump-
tions related to a distribution (Park et al. 2020). The advantage of
the bootstrap method is that the parametric assumptions, such as
the probability distribution, are not required (Cogneau &
Zakamouline 2013). Since our probability distributions for the
uncertainty scenarios are unknown and uncertain, we apply the
bootstrap method to account for the multiple likelihoods of the
uncertainty scenarios.

An efficient frontier typically shows the relationship between
optimal portfolios’ expected ROIs and their corresponding
standard deviations representing risk levels. We normalize risk
levels as percentages above the minimum standard deviation
(referred to as ‘risk tolerance’) and compare efficient portfolio
weights from the MPT with different bootstrapped probability
distributions for given risk tolerances. Then, we derive the PDF of
efficient portfolio weights for a given county with a positive
portfolio weight for five risk tolerances (i.e., minimum, 10%, 30%,
50% and maximum) with 95% percentile bootstrap confidence
intervals for the range between the 25th and 95th quantile values of
portfolio weights among the 1000 bootstrap samples.

Kurtosis values

The kurtosis value of the county-specific probability distribution of
portfolio weights at a fixed risk tolerance for the bootstrapped
MPT as defined by Pearson (1905) is calculated as in Equation (8):

Table 1. Heterogeneity in various aspects of the 10 selected counties. Species ranges are average values of 258 species over 18 uncertainty scenarios, and private
forestland, forest return, urban return, relatively opportunity cost and return on investment (ROI) are average values over 18 uncertainty scenarios.

County Type Size (ha) Size of
forestland

(ha)

Private
forestland

(ha)

Public
forestland

(ha)

Species
ranges of 258
species (ha)

Forest
return
(USD/
ha)

Urban
return
(USD/
ha)

Relative
opportunity
cost (USD/

ha)

ROI (increase
in no. of
species

persisting/USD
1 million
investment

Wilkes, NC Rural 282 867.11 200 017.87 200 017.87 0 40 263 888.57 44.07 550.60 506.53 0.0018
Clinton, KY Rural 77 350.93 40 982.86 40 982.86 0 10 401 870.09 8.87 162.66 153.79 0.0066
Rutherford,
NC

Rural 209 400.73 129 769.91 129 769.91 0 29 405 237.32 69.63 349.12 279.49 0.0046

Transylvania,
NC

Rural 140 518.55 119 281.49 34 784.73 84 496.17 19 649 933.84 91.19 952.48 861.29 0.0010

Fannin, GA Rural 144 180.94 121 038.82 26 004.68 95 033.48 19 112 965.40 60.09 472.55 412.46 0.0018
Jefferson, WV Urban 82 415.53 23 413.53 23 167.08 246.44 10 938 472.02 62.62 1543.65 1481.03 0.0008
Nicholas, WV Rural 251 336.60 203 826.98 175 096.42 28 730.45 38 258 868.25 20.44 225.66 205.22 0.0049
Fayette, WV Rural 255 761.47 219 338.76 200 872.13 18 466.56 37 755 992.00 61.12 390.40 329.28 0.0023
Oconee, SC Rural 247 289.82 156 608.42 98 017.73 58 590.46 33 456 123.63 57.24 661.63 604.39 0.0025
Martin, KY Rural 88 055.19 66 847.71 66 847.71 0 11 724 677.58 14.11 158.07 143.96 0.0056
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Kurtosisi ¼ E Xib � �ið Þ4f g=σ4i (8)

where Xib is the optimal portfolio weight of county i for the bth
bootstrapped sample at a fixed risk tolerance, and �i and σi are the
mean and standard deviation for county i, respectively. If the
kurtosis value of a distribution is high, it tends to have heavy tails,
signalling outliers, while a distribution with a low kurtosis value
tends to have light tails, or a lack of outliers (Westfall 2014).

Results

Figure 2 illustrates the PDFs of the portfolio weights using the
bootstrapped MPT for the counties with positive portfolio weights
and their corresponding portfolio weights using the fixed MPT at
theminimum andmaximum risk tolerances shown in Fig. 2a,b (see
Fig. S1 for those at 10%, 30% and 50% risk tolerances). Table 2
highlights the key values from the optimal solutions of the
bootstrapped MPT (i.e., mean portfolio weights, number of times
the county was assigned a non-negative portfolio weight in one of
the 1000 bootstrap samples and kurtosis values for the optimally
selected counties) and the portfolio weights using the fixed MPT at
the five risk tolerances for comparison.

At theminimum risk tolerance, seven optimal counties (Wilkes,
NC; Clinton, KY; Transylvania, NC; Fannin, GA; Jefferson, WV;
Nicholas, WV; and Oconee, SC) are selected for the portfolio
between 37 and 1000 times by the bootstrappedMPT. The kurtosis
values of their probability distributions at the given risk tolerances
are between 1.75 and 47.75. These findings suggest that for a given

risk tolerance, the portfolio weights obtained from the boot-
strapped MPT for each target county generate various PDF
patterns with different outlier structures. This variation results
from differences in the ways in which the probabilities assigned to
the uncertainty scenarios alter expected ROIs and standard
deviations, thus affecting the covariance structures differently.

By comparison, only four counties are selected for the portfolio
using the fixed MPT, while three counties selected by the
bootstrapped MPT model are not selected using the fixed MPT
model. Overall, the counties selected by both models have
relatively low kurtosis values (7.97 on average) with more normal
PDFs of the portfolio weights and are optimally chosen by the
majority (97%) of the 1000 bootstrappedMPTmodels. In contrast,
the counties selected only by the bootstrapped MPT model are
optimally chosen by fewer than the majority (35%) of the 1000
bootstrapped MPT models and have relatively higher kurtosis
values (27.29 on average) with relatively skewed PDFs of the
portfolio weights (Fig. 2).

At maximum risk tolerance, a single county, Rutherford, NC, is
optimally selected by the fixed MPT, while the means of the
portfolio weights with the bootstrapped MPT are distributed
between Rutherford, NC, Nicholas,WV and Clinton, KY at c. 70%,
30% and less than 1%, respectively. Although the discrepancies
between the two models’ optimal solutions at other risk tolerances
are difficult to generalize in terms of expected ROIs because their
standard deviations and covariances influence them simultane-
ously, the discrepancy in ROIs between the two models’ optimal
solutions at themaximum risk tolerance can be explained relatively

Figure 2. Probability density distributions of the estimated portfolio weights with 95% confidence intervals (the pair of black dotted vertical lines in each graph), means
of the estimated portfolio weights from the bootstrapped modern portfolio theory (MPT; red dotted vertical line in each graph) and the optimal portfolio weights from the MPT
with uniform probability distributions (green vertical line in each graph) at (a) minimum and (b) maximum risk tolerances. The x-axis and y-axis in each probability density
distribution are portfolio weight and probability density, respectively. Values on the x-axis are 95% confidence intervals and means of the estimated portfolio weights from the
bootstrapped MPT.
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simply. For example, at maximum risk tolerance, Rutherford, NC
has the largest expected ROI for the fixed MPT, whereas
Rutherford, NC and Nicholas, WV have the largest expected
ROIs, respectively, for 70% and 30% of the 1000 samples from the
probability distributions of the 18 uncertainty scenarios using the
bootstrapped MPT.

Also notable is that the number of counties selected in optimal
portfolios is consistently higher with the bootstrapped MPT
than with the fixed MPT across the five risk tolerances. For
example, seven, six, three, three and three counties are selected
with the bootstrapped MPT at the minimum, 10%, 30%, 50% and
maximum risk tolerances, respectively. Of these optimally selected
counties, only four, four, two, two and one counties are selected,
respectively, by the fixedMPT at the corresponding risk tolerances.
These findings suggest that the bootstrappedMPT allows flexibility
in the unknown probability distribution of the uncertainty
scenarios, while the fixed MPT does not. Thus, the output from
the bootstrapped MPT suggests that a conservation organization
could more optimally spread its budget across more bets than if the
fixed MPT were used for decision-making.

Figure 3 illustrates the expected ROI–risk tolerance relationship
with two efficient frontiers based on the average expected ROIs of
the optimal solutions and their standard deviations obtained from
the bootstrapped and fixed MPTs. Both efficient frontiers are
upward sloping and concave downward, implying that benefit
increases as risk increases, but at a decreasing rate, regardless of
the probability distribution of the uncertainty scenarios. This
illustrates how allowing flexibility in the probability distribution of
the uncertainty scenarios by employing the bootstrapped MPT,
compared to the fixed MPT, impacts the expected ROIs at given
risks (Fig. 3). The vertical distances between the two efficient
frontiers illustrate differences in the expected ROIs between the
MPT frameworks at given risks. The vertical distances between the
efficient frontiers are largest (even greater than at 1.0) between c.

0.1 and 0.2 risk tolerances, and those distances favour the fixed
MPT (Fig. 3). Differences are still close to zero at risk tolerances
between 0.2 and c. 0.4, even though the bootstrapped MPT
has higher ROI. Between risk tolerances of 0.4 and 1.0, the
bootstrapped MPT is higher, and increasingly so, than the fixed
MPT. These findings suggest that the bootstrapped MPT achieves
higher expected ROI per unit of risk on average than the fixed
MPT for risk tolerances greater than c. 0.2 when a conservation
organization can accept higher risk. The results also suggest that
the fixed MPT would provide ROIs per unit of risk that are at least
as high as those for the bootstrapped MPT for organizations that

Table 2. Key values from the optimal solutions of the bootstrappedmodern portfolio theory (MPT; i.e., mean portfolio weights, number of optimally selected counties
and kurtosis values for selected counties) and portfolio weights using the fixed MPT at five risk tolerances for the 10 sample counties with the variance–covariance
matrix containing the average pairwise correlations of 0.01.

Risk tolerance County Bootstrapped MPT Fixed MPT

Mean portfolio weight Number of timesa Kurtosis
value

Coefficient of variation Portfolio
Weight

Minimum Wilkes, NC 0.2071 972 5.36 0.2605 0.2207
Clinton, KY 0.1047 980 9.10 0.2205 0.1127
Transylvania, NC 0.2087 971 15.67 0.2072 0.2093
Fannin, GA 0.0027 37 45.75 5.7965 –
Jefferson, WV 0.4673 1000 1.75 0.1293 0.4573
Nicholas, WV 0.0066 350 18.58 2.6568 –
Oconee, SC 0.0030 57 17.53 4.2358 –

10% Wilkes, NC 0.1186 818 –0.32 0.8633 0.0740
Clinton, KY 0.0338 539 1.78 1.3576 0.0216
Rutherford, NC 0.3185 1000 –0.04 0.1671 0.3385
Nicholas, WV 0.5031 1000 –0.23 0.2210 0.5659
Fayette, WV 0.0074 70 36.42 4.7159 –
Martin, KY 0.0102 149 6.75 2.7224 –

30% Clinton, KY 0.0045 19 110.85 8.8270 –
Rutherford, NC 0.4885 1000 –0.11 0.2237 0.5522
Nicholas, WV 0.5070 995 1.39 0.2288 0.4478

50% Clinton, KY 0.0059 22 77.1 7.4177 –
Rutherford, NC 0.5739 1000 –0.11 0.3463 0.6824
Nicholas, WV 0.4202 991 –0.03 0.4827 0.3176

Maximum Clinton, KY 0.0050 7 195.00 14.0387 –
Rutherford, NC 0.7818 881 –0.11 0.5266 1.0000
Nicholas, WV 0.2132 706 –0.01 1.9151 –

aNumber of times the county was assigned a non-negative portfolio weight in one of the 1000 bootstrap samples.
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Figure 3. The expected return on investment (ROI)–risk tolerance relationship with
two efficient frontiers based on the average expected ROIs and their standard
deviations of the optimal solutions from the bootstrapped modern portfolio theory
(MPT) and the fixed MPT.
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are more risk averse than c. 0.2. In summary, the results suggest
that a conservation organization might want to estimate the
bootstrapped MPT if it wants to let the results inform its decisions
about the amount of risk–return it might be willing to accept.

The sensitivity analysis using the four alternative samples of 10
counties reaffirms what is found using our main sample counties:
(1) the counties selected by both models have relatively low
kurtosis values with more normal PDFs; (2) at maximum risk
tolerance, a single county is optimally selected by the fixed MPT,
while multiple counties are selected using the means of the
portfolio weights from the bootstrapped MPT; (3) the number of
counties selected as optimal portfolios is consistently equal or
higher with the bootstrappedMPT than with the fixed MPT across
the five risk tolerances; and (4) the bootstrapped MPT achieves
equal or higher expected ROIs per unit of risk on average, and the
gap increases with risk tolerance (see Figs S2–S9 & Tables S1 & S2).

Discussion and conclusion

The comparison of risk-mitigating portfolios from the boot-
strapped and fixed probability distributions shows that imposing
flexibility of an unknown probability distribution of uncertainty
scenarios allows conservation organizations to spread bets across
more counties. Allowing the flexibility of the bootstrapped
distribution achieves higher expected ROI per unit of risk on
average than not allowing flexibility as with the fixed probability
distribution. The improvement becomes more significant when
conservation organizations are willing and able to accept higher
risk. The bootstrapped MPT is useful for risk-diversifying spatial
targeting under unknown probabilities of uncertainty scenarios,
especially when conservation organizations choose to accept
relatively higher risk tolerances greater than 0.2.

Comparing the bootstrapped and the fixedMPToutcomes under
various risk tolerances demonstrates the susceptibility of assuming a
uniform probability distribution to the risk-mitigating portfolios. It
helps conservation organizations evaluate risk-diversifying strate-
gies with a flexible unknown probability distribution of uncertainty
scenarios. Although the bootstrapped MPT does not offer a single
portfolio weight for a selected county at a given risk tolerance, which
in contrast can be obtained from the fixed MPT, it offers county-
specific PDFs with means and kurtosis values of portfolio weights.

The county-specific PDFs of portfolio weights from the
bootstrapped MPT for a given risk tolerance can identify ranges
of optimal portfolio weights associated with the risk-mitigating
allocation of conservation investment. Instead of accepting the
possibility of misleading optimal solutions from the fixedMPT, the
information from the county-specific PDFs may be preferred
because it allows flexibility in the ranges of bets. For example, given
county-specific PDFs, a conservation organization can choose the
ranges of fractions of the overall available budget to allocate to the
optimally selected counties.

The option to choose from a range of portfolios with a
conservation organization’s flexibility to choose different target
areas is required for this approach to be beneficial. Such flexibility
is allowed for conservation trust funds and revolving loan funds
that have become mainstays of the land protection movement in
the USA and elsewhere (Briand & Carret 2012, Lennox et al. 2017,
Fovargue et al. 2019). The bootstrapped MPT is also particularly
useful when the risk of losing species is relatively large, such as
some highly threatened salamanders in our case study region.
Failing to protect the areas comprising such species by following
historical benefit and cost data that ignore future uncertainty

potentially would lead to high risk of losing those threatened
species in those areas.

Despite the contribution of our study, one caveat is worth
mentioning regarding future research. A conservation organization
attempting to protect species is typically limited by physical
constraints, and our bootstrapped MPT model is framed without
accounting for the upper and lower bounds of returns from
conservation investments in target counties. Incorporating upper
and lower bound constraints in the bootstrappedMPTmodel would
limit the ranges of the bets, narrowing the target portfolio weights.
For example, return on conservation investment for forest-
dependent species is clearly bounded by the forested area that can
be protected for a given area. Likewise, the carrying capacity of a fully
functioning ecosystem would narrow the target portfolio weights of
conservation investments. On the other hand, in some circum-
stances, including lower bounds is also necessary. For example, if the
application of the bootstrapped MPT for biodiversity conservation
involves creating portfolios of species, the possibility of significantly
small or zero portfolio weights may be problematic. The concern is
that the possibility of small or zero weights would potentially lead to
poor ecological outcomes, in which a whole group of species could
be lost following such suggestions. Thus, future research could
consider developing a bootstrappedMPTmodel that accommodates
both upper and lower bound constraints.

Our data could support much larger numbers of uncertainty
scenarios and counties up to maxima of 486 scenarios and 246
counties, respectively, by further varying the GCM, SRES and
timber volume projections as was done in Kang et al. (2022). Yet,
we reduce the number of scenarios and create multiple samples of
counties for both MPT models based on different average pairwise
correlations of the variance–covariance matrix to determine the
suitability of the MPT application (Ando et al. 2018). The
downside of applying the MPT using the smaller number of assets
is that its outcome only supports situations with smaller portfolios.
This constraint may be a substantial limitation for applications
where conservation organizations are evaluating portfolios from a
field of assets far larger than 10, as opposed to other situations
where evaluating fewer than 10 assets is not an issue. However, the
smaller numbers of scenarios and counties are not significant
concerns for this study. Instead, they allow us to apply both MPT
models using multiple samples of counties with different variance–
covariance matrix structures with minimum computational
complexity.

Another caveat is that the use of county-level relative
opportunity costs does not include maintenance costs, which
may be important to consider in conservation planning for cases
where the relative opportunity costs are similar but the
maintenance costs vary significantly across counties. For example,
the maintenance costs of habitat may be different across counties
and can lead to significantly different total costs if relative
opportunity costs are similar. An analysis that considers costs of
ongoing management associated with maintaining conservation
benefits is another future research direction for the bootstrapped
MPT application.
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