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ON CRITICAL LEVEL SETSOF SOME TWO DEGREES OF
FREEDOM INTEGRABLE HAMILTONIAN SYSTEMS

CHRISTINE MEDAN

ABSTRACT. We provethat all Liouville'stori generic bifurcations of alarge class of
two degrees of freedom integrable Hamiltonian systems (the so called Jacobi-Moser-
Mumford systems) are nondegenerate in the sense of Bott. Thus, for such systems,
Fomenko'stheory [4] can be applied (we give the example of Gel’ fand-Dikii’s system).
We also check the Bott property for two interesting systems: the Lagrange top and the
geodesic flow on an ellipsoid.

1. Introduction. As explained by Mumford in [10] (actually, this idea could be
fathered on Jacobi), a two degrees of freedom integrable Hamiltonian system (IHS2)
may be associated to a family of polynomials:

fo,0) = % At (0= 1).

Furthermore, we assume that the functions (¢, 1) — ax(&.n), k =1,...,n, are linear
at each variable.

Like Donagi [3], we call it a Jacobi-Moser-Mumford (JMM) system.

Our main result is Theorem 3.1 where we prove that such a system is a Bott system
(i.e., its momentum mapping is a Bott map).

Thetext is organized as follows:

- In Section 2, we definethe IMM system (Section 2.1), and its symplectic structure
(Section 2.2).

- In Section 3, we give definitions of a Bott function, of a Bott map and of a Bott
system (Section 3.1). Then, we state our main theorem (3.1 in Section 3.2):

Two degrees of freedom JMM systems are Bott systems.

- In Section 4, we give the proof of thistheorem. First we study a special casewhen
all the ay are constant except two of them: a;(¢, 1) = £ and g(¢, ) = n. Then we
consider the general case.

- Section 5 is dedicated to examplesand applications. Werecall Fomenko'stheorem
about classification of bifurcations of two-dimensional Liouville's tori. It applies
to Gel’fand-Dikii’s system, which turns out to be a Bott system (Section 5.1). We
also prove that the Lagrange top system is a Bott system (Section 5.2). Finally,
we study Jacobi’s system found while searching for geodesic flow on an ellipsoid
(Section 5.3).
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2. TheJMM model of atwo degreesof freedom integrable system. The reader
can refer to [10] and [3]. Consider the family of polynomials

fo,() = kzo ale. % (a0 =1).

Suppose that the functions (£, n) — a(&. 1), k =1,....n, arelinear at each variable.
Define the curve: C = {(t. §) € C?, &* = f,(t)}. The IMM description of the Jacobian
J(C) of Cleads naturally to an IHS2.

In this section, we recall the IMM model of such a system. At first, we consider a
particular casewhen ay, ..., 4,..., &,.... a, areconstant and a; = £, g = n. Thenwe

extend the results to the general caséwhen each ay dependslinearly on ¢ and 7.

2.1. Asgpecial case. Letusfixiandjsuchasl <i <j < n.Inthissection, we define
the two degrees of freedom JMM system associated with:

fe, () = t"+at" gt”—i +.. 4 ntn—j +.- +a,qt+an.

After a short presentation, we give convenient local coordinates and finally, the first
integrals of the system.

2.1.1. Presentation. LetV bethe set of polynomials (called Jacobi polynomials)
u@) = +ut+up, V) =vit+ve, WE) =" 2wt S+ wo,

satisfying: e, () = u(t)w(t) + Vv2(t).
A simpleidentification of the coefficients showsthe existence of n functionsHa, .. .,

H; such as:
n
fe, = UW+V2 &= V3 Hi(u, v, Wit™* = 0,
k=1
< Hg(u,v,w)=0,k=1...n.
Therefore:

V = {(u.v.w) € C™% H(u.v.w) =0,k=1...n}.

ProOPOSITION 2.1. If f, hasno double root then V' is smooth and biholomorphic to
an affine part of the symmetric product S?(C) of the hyperelliptic curve C.

PrROOF. The reader can refer to [10] for the proof of the proposition. ]
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2.1.2. Loca coordinates. Let M = {(u,v,w), Vk=1,....n, k #i, k #j, Hc = 0}.
Consider (u,v,w) € M, then:

1) e, (1) — VA(t) = u(®w(t) + Hit"" + Hjt" .

Let x; and x, be the roots of u. Two cases must be considered depending on whether u
has simple roots or a double root.
1. If therootsof u arexy, Xo, X1 # X2, then we set yy = v(x) that is:

-y X1Y2 — X2Yy1
Up = —X1 — X2, Up=XgXp, V1= u_\ Vo = u
: X1 — X2 X1 — X2

Replacing t by x, in (1), we get:
2 foa() — Ve = Ho§ '+ Hix 0, k=12,
This leadsto the expressions of thefirst integrals:
Xrl‘lii {f&'.n (XZ) - y%] - Xgii {ff,r/ (Xl) - yﬂ
| X G (™ — -xi’i)
_ % [ fe(a) = V] — x4 [fe (x2) — V3
| QG047

Hj:

2. If x; isadoubleroot of uthenwe sety; = v(x1) and y, = V/(xp), that is:
U =—2x, W=x5, Vi=Yo. Va=Yyi—XiYa.

Hc=0,k#i, k#]jalowtoexpressw, j=1,...,n— 2, intermsof u, Uy, V1, V2> SO
(u1, Uz, v1, Vo) arelocal coordinates on

M={(u.v.w).Yk=1.....n.k#i.k #j.H = 0}.

But we will use the variables (X1, X2, y1.Yy2) for most of the following calculations.
Obviously, they are not coordinates on M because of the points where the polynomial u
has adouble root. Nevertheless, they are local coordinates on:

M* = {(u.v.W),.Yk=1..... n.k #Zi.k#]j.H = 0}.

where (u, v, w), issuch as u has no doubleroot.
From now on, we ofteninfer that Vk =1, ..., nk#i,k#j, Hc=0.

2.1.3. Symplectic structure and first integrals. Consider the canonical Poisson
bracket V on R*(x. X2. y1. y2):

V(% %) =0, V(Y Yp) =0, V(X Yp) =dkp, kK p=12

6 being Kronecker’sdelta. The corresponding symplecticformisQ = dxg Adys+dxa Adys.
A direct calculation gives Q = dv, A dug + dvy A dup + ugdug A dvs.
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REMARK. If wesetlh =u, — %uf then Q = dv, A duy + dvy A dus. Notice that the
change of variables (x1, X2, Y1, ¥2) — (U, Uz, V2, V1) is a canonical transformation. Its
generating function is;

1
FOw Xo. V1, V2) = = (1 + XV — 504 +35)va.
ProPosITION 2.2. Consider the manifold
M= {(uv.w).vk=1,..., nk#i.k#j,Hc =0},

endowed with the Poisson bracket VV and the symplectic structure Q.
- Since the functions H; and H; are in involution (and independent), (M. Q, H;, H;)
defines a two degrees of freedomintegrable Hamiltonian system.
- The systemlinearizesin variables (X1, X2, Y1, Y2)-

ProoF. A direct calculation using the expressions of H; and H; in local coordinates
(X1, X2, Y1, ¥2) on M* showsthat V(H;. H;) = 0 and that H; and H; are independent.
The differential equations expressed in (X1, Xz, Y1, Y2) are:

dx; dx; dy; d
(—l G ﬂ) = (V(xe, Hi). V%2, Hi). V(1. Hi). V(Ya. Hk))k:i_j~

dt " dt’ dt’ dt
They yield alinearized system corresponding to each Hamiltonian:
- for H;:

Y1 Y2

qlda e _ o
Lo g0 oy

- for H;i: _
XM dxq Xdxe
1T + Tz - —Zdt
én]ﬂ dxy + ZznijdXZ _ 0
Y1 Y.
Since M \ M* is of dimension three, whereas M is of dimension four, we can conclude
that H; and H; are in involution and independent everywhere. ]

IMPORTANT REMARK. Consider p Z i, p # j. @, only appearsin the function H, and
in no other Hy, g # p. £ (resp ) only appearsin H; (resp in H;j). So ¢ and ;) can be looked
upon asthe first integrals of the system.

2.2. General case. Now, back to the general case, we consider the two degrees of
freedom JMM system associated with

n
mm:Qw@wH (a0 =1).
We can also writef, , (t) = c(t) + £ fy(t) +n f2(t), where c isamonic polynomial of degree

n with constant coefficients, f; and f, are polynomials of degree n — 1 with constant
coefficients.
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We still canwrite f (t) — u(t)w(t) — v3(t) = X0, Hit" < and setup M = {(u, v, W), ¥k #
i,k #j.Hg = 0} aswedid before, for somefixedi and j.

On M, each (¢, n) is alinear combination of H; and H;. Furthermore, there exists
two functions H, and H,, containing respectively ¢ and 5 which are linear combinations
of Hi and H;. Indeed,

[f1000) f202) — Fox2) F1(%2) € = Hi[XAfalx2) — X3~ Falxa) | — Hi DG falxa) — Xi o) |
+f2(x0) [ c(x2) — V3] — fo(xe) [c(x2) — V2. and

[f1(xa) f2(%2) — fa(x2) F1(2) | = Hj [x5 f1(6) =31 (xa)]
— Hipd ™ f106) =3 fa(xa) -

By making use of the proposition (2.2), we can state the following:

ProPosITION 2.3. Consider the manifold
M = {(u.v.w), Yk #i.k # ], Hc = 0}

endowed with the symplectic structure Q.
e The independent functions He and H, are in involution, so that (M, Q,H;.H,)
defines a two degrees of freedomintegrable Hamiltonian system.
e Thesystem (M, Q, H¢, H,) linearizesin variables (X1, X2. Y1, y2).

ReEMARK. Although it does not appear in our notation, each pair (i,]) defines atwo
degrees of freedom JMM system.

3. Bott systems: definitions and main theorem. In this section, we give the def-
initions of a Bott function and of a Bott map. Then, we set out our main theorem (the
proof will be donein the next section).

3.1. Definitions. For the stating of these definitions, we used [5] (p. 6), [4] (p. 55)
and [2].

DEFINITION 3.1. The critical submanifold of an analytic function F:C™ — C is
nondegenerateif its hessian d°F is nondegenerate on normal planesto the submanifold.

DerINITION 3.2. An analytic function F is a Bott function providing its critical sub-
manifold is nondegenerate.

DEFINITION 3.3. AnanalyticmapF = (Fy,..., Fn):C™ — C" isaBott map provid-
ing the functions Fy | Q((c|)|:1“_n), k =1,....n, are either constants or Bott functions
for any smooth level set:

DEerFINITION 3.4. Anintegrable Hamiltonian systemisaBott system if its momentum
mapping is a Bott map.
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3.2. Main theorem.

THEOREM 3.1. Consider
n
fE.l](t) = kX—:Oak(g 77)tn7k (aO = 1)

Suppose that the functions (€. ) — a(€. 1), k=1,..., n, arelinear at each variable.
The two degrees of freedom Jacobi-Moser-Mumford Hamiltonian systems associated
to the family of polynomialsf, ,, are Bott systems.

4. Proof of the main theorem. Once again, we begin with the proof of the main
theorem in the special case and deduce that the result still holdsin the general case.

4.1. Proof in the special case. We consider the IMM system associated with:
fe, () =t"+ at" et gt T 4 gt + Ay
We recall (see (2)) that thefirst integrals of the system satisfy:
fea06) — V2= ol + HX T, k=1,2,

We begin the proof of the theorem with an intermediate step: we study the smoothness
of the sets Q(cy, ¢2) = {c1H; + ¢ H; = 0}. Then, we show that the restrictions of the first
integrals H; and H; to asmooth manifold Q(c1, ¢,) are either constants or Bott functions,
considering two different cases: ¢, # 0 and ¢, = 0. Finally, we show that the momentum
mapping H = (H;, H;): C* — C? isaBott map.
4.1.1. Smoothnessof {ciH; + c;H; = 0}.
ProPOSITION 4.1. Suppose that if (i.j) # (n — 1,n) then (an-1,a,) # (0,0). Let
B = {(¢.n).f, hasadoubleroot}.
Consider (¢°,1°) in B such asfo,0(to) = f{s ,o(to) = 0.
1. Iff% o(to) = Othenany lineistangent to B at (¢°. n°).
2. 155 o(to) # Othentheline A = {(¢. ). ¢, (to) = O} istangent to B at (¢°. n°).
PrOOF. First, for somet # O, let us consider the system:
fe,(0 =0, f (=0
feo o(8) + (€ — Y + (i — )" =0 ,
flo 0@+ (=D =N +(n =) — )" =0
(—)fe0,,00-t1g o)

— (0 )
{ g=g0r TS

(=)0 0O—tf] (1)
n=n s e

So a parametrization of B in a neighbourhood of (£°,7,°) is:

(n=j)f.0,0(0)—ty 5(1)

— 0 &Y, 0,0

N ( é(t) - 5 + ] (jv_i)tn—lg .
(nfl)f&'o‘no(t)ftfgo_]o(t) :

p:t
\ 77('[) = 770 - =t
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Thegradient of ¢ atty is:

(&) - Tl ()
i) (-6

1. 1f£4 (to) # Othengrad ¢ (to) representstheddirection of thetangent to B at (¢°. °)

and is colinear to (—1, ). On the other hand, the line A = {(¢, n)fc,(to) = O}
passes through the point (£°, 7°) and admits (—1, ;') as a directing vector in the
plane (€. n). Thereby, A istangent to B at (¢°. 7).

2. Iff/ (to) = Othen B issingular at (¢, 170) so any lineis tangent to B.

€010

Notice that this process still works if to = 0 and (i.j) = (h— 1,n). Thecasety = 0 and

(i,J) # (n— 1. n) has been excluded by hypothesis when we said (an—1, an) # (0, 0) if

(.)) #(n—1,n). "
We decide to adopt the following definition:

DEFINITION 4.1. The pair (c1, ¢;) defining

Q((c1-©2)) = {(uvow).f = uw+ V2 + Hit" + Hit"™ . cyH; + GoH; = 0}
= {VkZ i,k #],Hk = 0,c1H; + coH; = 0}

is generic if the vector (—c,. ¢y) is never tangent to B = {(¢. n), 3t. f , (t) = f{,(t) =0}

Henceforward, we suppose that
- the function f.,, that defines the system satisfies (an-1,a,) 7 (0,0) whenever
(i.)) #(n—1,n),
- the pairs (c1, ¢;) are generic.
Let usfix somec # 0 and define

Q((c. 1)) =Q(c) = {(u,v.w). Yk #i.k # . Hc = 0.cH; + H; =0}.

By making use of (2), let us define an equivalence X so that Q) = {(u,v,w),
f uw + 2}

DEFINITION 4.2. Two polynomials P and Rare é-equival ent if:
Jd e C.P— R=d(t"" — ct").
Let [P] bethe é-equivalent classof P.
Likewise, for Q; = {H; = 0} to be written as { f 2 uw+ v}, we set out:
DEeFINITION 4.3. Two polynomials P and R are E-equival ent if:
deC,P—R=dt"".

Let [P]o bethe g-equivalent classof P.
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Let (u, v, w), standsfor apoint such as u has no double root.

Q©)* = {(u.v.w),.f N uw + v}
{ (% Yidker2: Xa 7 Xz, CHi (X, Yie) + Hj (% Yi) = 0}
Q" = {(u.v.w),.f 2 uw + v}
= { (% Yidke1.2: X1 7 Xo. Hi (X, Vi) = 0}.
ProOPOSITION 4.2. 1. The manifold
Q) ={H1=---=Hy2=0,cH; +H; =0} = {f éuw+v2}.c7fo.

is smooth providing the pair (c., 1) is generic.
2. ThemanifoldQ; = {H; =0} = {f 2 uw+v2} issmooth providing (1, 0) isgeneric.

ProoF. 1. Consider amanifold Q(c) = {cH; + H; = 0}, ¢ # O, such asthe pair (c, 1)
is generic.
Consider (u, v,w) € Q(c). Welook for the dimension of the Zariski tangent space:

Tavw Q(C) = { (0 V, W), U+ Wit + 2V = 0},

The equation
3 PR uW+ Wl + 2w,
awayshasasolution for any P(t) = rat™ 1+ ..+t +... —crit™ i + ... +r,. Indeed,
we look for (U, v, w) solution of (3). A problem can appear if there exists x; such as:

X' = ¢, Ua) = V) = W) = 0.
For sucha(u, v, w) € Q(c), f ~ uw + V2, so that, for somed € C,
f(xa) = 0.f'(xa) = —d(j — ipg~"".

There are three possible cases:
(@ If f(x1) =0, f'(x1) # 0 then (3) can be solved by differentiation.
(b) If f(xa) =f'(x1) =0, f"(x1) # 0 then
(i) ifx # 0, weknowthat (—1,X,") = (—1, c) isadirecting vector of thetangent
to B at (£(x1). 7(x1)). This contradicts the genericity of the pair (c. 1).
(i) if x, =0then O isadoubleroot of f whichis not allowed.
(©) If f(xa) =f'(xa) = f"(x1) = O then any lineis tangent to B at (¢(x1). n(x1)) which
contradicts the genericity of (c, 1).
Thereby, if we consider the map A: (U, v, W) — [uw + wu + 2w/], the dimension of
Im A is the dimension of the set of P-like polynomials, that isn — 1.
Finally, the dimension of the Zariski tangent space T,vw)Q(c) = KerAis(n+2) —
(n— 1) = 3, which showsthat Q(c) hasno singular points.

https://doi.org/10.4153/CJM-1998-007-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-007-7

142 CHRISTINE MEDAN

Let us stress upon the meaning of the smoothness of Q(c): al the é-equival ent-to-f
polynomials have neither double roots x; suchasx} ™' = ¢ nor triple roots.

2. Consider the manifold Q; = {H; = 0} = {f 2 uw +V2}, (1, 0) being generic.

The equation
4) P2 uw+wi+ 2w
has alwaysasolution for any polynomial P = rqt™ 1+ - +r;_gt" 4t 14y
Indeed, a problem occurs at a point (u, v, w) such asu(0) = v(0) = w(0) = 0. But then:

(U v.w) € QC) = f 2 uw+\?
= 3d,f = uw+ V2 +dt"™
— (0) = 0.f/(0) = 0.

Thethree possible cases are:

1. 1ff(0)=0,f'(0) ZOthen P 2 W+ wi + 2w can be solved by differentiation.

2. f(0) =f’(0) = 0, f”(0) # O contradicts the genericity of (1, 0).

3. f(0) =f/(0) =f"(0) = 0isnot allowed.

Like in the first case, we conclude that the Zariski tangent space T(,vw) Qi has no

singular point.
Let us stress upon the meaning of the smoothness of Q;: all g-equival ent-to-f poly-
nomials have neither adouble root at O nor triple roots. ]

4.1.2. Restrictionto Q(c). Since H; and H; are proportional on the smooth subman-
ifold Q(c), we chooseto study H;. We look for critical points of H; | Q(c)*.

PrROPOSITION 4.3. Critical points of H; | Q(c)* are (x1, X2, 0,Y2) € Q(c)* suchasx;
isadoubleroot of a é-equival ent-to-f polynomial (and similar points permuting x; and
Xz).

ProoF. From (1) and cH; + H; = 0, we get the expression of H; | Q(c)*:

fe, (X1) — V2
Hi | Q(C)*: (X1. Y1, X2) — #
X, (X —0)
REMARK. Therootsof uareawaysdistinctonQ(c)*, soif x issuchasx] (x| ' —c) =
0 then we use the variable x, to express H; | Q(c)*.
(X1, 2. y1) € Q(c)*, isacritical point of H; /Q(c)* if:

(5) y1= 0, ()04 — ©) — F(xa)[(n— i~ +c(n— )] = 0.
Now consider the new polynomial

f&. n (Xl)

— (" — ™).
X; (c— xi")( )

f, e ) ) =f, @0+
)

o X (c—xjfi) ’ XN e—x)
1 1 1 1
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Clearly, if (x1, X2, y1) € Q(c)* isasingular point of H; | Q(c)* then x; isadoubleroot of

L .c .
f£+ o _aw  Whichis~-equivalenttof. ]
xzfj (c—lefi) & x;fj (c—lefi)

Now we have all the elements to state the following proposition:

ProPOSITION 4.4. Consider
Q(c) ={VkZi,k#j,Hc =0.cH; + H; =0} (c#DO0).

Hi | Q(c) and H; | Q(c) are Bott functions, providing the pair (c. 1) is generic.

PrROOF. In this proof, we note h; the restriction H; | Q}_,. Let S* be the critical
submanifold of h. Let N be the plane generated by the derivations ;5 and adﬁ

Consider asingular point (x;. y1) such as (5) holds. We saw in the former proposition
that x4 is a doubleroot of

fop_to - eiq)
xzfj (c—lefl) ’ xrlkj (c—xllf‘)

If the determinant of the Hessian d?(h; | N)(x,, 0) is zero then adirect computation shows
that x; is atriple root of this new polynomial (indeed, det[d?(h; | N)](x.. 0) = Qiff:

04 = Of" () = [(n= D) —i = )04~ — ) —cli —))@n —i ]~ ]f(xs) =0).

This contradicts the genericity of the pair (c, 1) becausea é-equival ent-to-f polynomial
would have a triple root. Therefore, det[d?(h | N)] # 0 and h; is nondegenerate on the
plane N.

Theplane N doesnot contain any tangent vector vto S* at the point (x4, Y1, Z) (zstands
for the third coordinate in the submanifold S*). Indeed, h; is constant on the trajectory
of the integral curve of v since gradh; = 0 on S*. This can be written L2h; = 0. But
(d?hiv,v) = L2h; = 0 so h; is degenerate along v. As h; is never degenerate on N, the
tangent vector v does not belong to N. Finally, N isanormal planeto S*.

Now, let us study the points (u, v, w) such as u has a double root. Call Sthe critical
submanifold of H; | Q(c). First notice that dZ(Hi | Q(c)) isatensor. Itisinvariant under
any change of coordinates on S(because here grad H; = 0). Since Q(c) is nondegenerate,
grad H; is never equal to zero and the flow of H; has no stationary point on Q(c) or S
Moreover Sisinvariant by the flow of H; since 0 = {H;, H; } = Lx Hi. Consequently, the
flow of H; plays the role of a diffeomorphism transforming a point of S* into a point
of S\ S*. It preservesthe rank of the hessian d?(H; | Q(c)) which is nondegenerate on
normal planesto S*, so we conclude that dZ(Hi | Q(c)) is nondegenerate everywhere on
normal planesto S

Hence H; | Q(c) is nondegenerate on normal planes to its critical submanifold, that
is, Hi | Q(c) isaBott function. As H; is proportionnal to H; on Q(c), we draw the same
conclusion for H; | Q(c). n
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4.1.3. Redtrictionto Q;.

PROPOSITION 4.5. Consider the smooth manifold Q; = {Vk # j, Hx = 0}. Thefunction
H; | Q isa Bott function.

PrROOF. We proceed for H; | Q aswe did for H; | Q(c) in the former section but,
because of the likenesses of the two cases, we sometimes shorten the explanations.
According to (2), the restriction of the function H; to the smooth manifold Q; has the
following form:
G: € — ¢
(X1, 1. X2) 1— f(XTln)jryzl
1

It takes some calculations to show that G; is Bott:
(6) (X1, Y1, %) € SINg(Gj) <= y1 = 0.xf'(xq) + (N —j)f(x1) = 0.
Consider x; such as (6) holds. x; is adoubleroot of

X1 f/(x) — (N —K)F(x0) i
f xq f/(x7)—(n—K) f (x t) = f t) + T tn ].
o q f ((I{)k)ilz—?f( 1) ( ) ( ) (| k)xr:z_]

forany k, 1 < k < n, k #j. Wetemporarily call this new polynomial g. Noticethat gis
R—equival enttof.

L et us keep the notations of the proof of proposition (4.4).

The determinant of the hessian matrix d2(G; | N)(x1. 0) is zero if and only if:

(7 x1f(x)) = (n—j = 1)f'(x) =0.

We compute easily that: (7) = g”(x¢) = 0. But, g”(x1) = 0 contradicts the smoothness
of Q; (becausea g-equivalent-to-f polynomial would have a triple root). Thereby, it is
impossible to have det[d?(G; | N)] = 0. H; | Qi is nondegenerate on normal planesto its
critical submanifold, that isH; | Q; isaBott function. n

To sumup, it hasbeen shownthat H; and H; are Bott functionswhen they arerestricted
to smooth manifolds {ciH; + c;H; = 0}. Thus (H;. H;) is a Bott map and the systemisa
Bott system. The proof of Theorem 3.1 is completed in the special case of

fe, ) =t"+at™ Tt g gt +an

4.2. Proof in the general case. We recall that the two integrals (H¢. H,) of the IMM
system associated with:

fo () = % At (0= 1),

arelinear combinations of H; and H;.
Thereby, according to the special case that we have been dealing with in (4.1),

https://doi.org/10.4153/CJM-1998-007-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-007-7

SOME CRITICAL LEVEL SETS 145

1. H¢ | {ciHi + coHj = 0} and H,, | {ciHi + coH;j = O} are Bott functions for any
smooth manifold {ciH; + c;H; = 0},
2. H¢ | {c{H; +c,H, =0} and H, | {c}H, + c,H, = O} are Bott functions for any
smooth manifold {c{H, + c;H, = 0},
3. (H¢, H,) isaBott map.
This completes the proof of Theorem 3.1 in the general case of f.,(t) =
Theo A(E M,
Remembering that each a(¢.n), k= 1,...,n, isalinear combination of H; and H;,
we also state the following corollary:

COROLLARY 4.1. The map (ay, . .., an) isa Bott map.

5. An application and some examples. Bott functions are often intervening in
Hamiltonian systems theory. In this section, we mention Fomenko's theorem (in [4])
about classification of Liouville's tori bifurcations. Then we consider the example of
Gel’fand-Dikii’s system. In a second part, we prove that the Lagrange top system is a
Bott system. Finally, we show that the two degrees of freedom Jacobi’s system (or more
precisely Neumann's system) is a Bott system.

5.1. Fomenko’'stheory about Liouville'stori bifurcations. So far, we have been consid-
ering complex manifolds like V = {f = uw + v?}. Now that we study the bifurcations
of the systems, we must consider the real part Vg of V. Thus, in this section, we use a
“real version” of the propositions and theorems that we have been stating.

Thereader canrefer to [4] and to [5]. Inthissection, wejust recall Fomenko’stheorem
(see [4], p. 67) about classification of bifurcations of two-dimensional Liouville's tori.
Our Theorem 3.1 provesthat it can be applied to the large class of two degrees of freedom
JMM systems. For example, we show that Gel’ fand-Dikii’s system is a Bott system and
we study its bifurcations by making use of Fomenko’s theorem.

5.1.1. Fomenko'stheorem. Askindly explainedto usby A. Fomenko, it is possible
to classify simple Hamiltonian systems on three dimensional constant energy surfaces.
Thereader will find more detailsin [5].

Consider an IHS2 (M*, H, F, w) such as the restriction of F to Q* = {H = const} is
aBott function. Liouville's foliation of Q2 is given by the isoenergy surfaces of f | Q3.
The topological invariant of such a system is a molecule whose atoms are representing
the Liouville's foliation singularities. The links between the atoms of a molecule are
representing Liouville's tori. Let us consider three simple bifurcations and give their
atomic representation:

1. A torus T2 iscontracted to the axial circle of afull torus and then “vanishes’. This
bifurcation is represented by —A.

2. A torus T? splitsinto two tori. This birfurcation is represented by: —B—.

3. A torus T? spirals twice round a torus T2. This bifurcation is represented by:
_A* _
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Furthermore moleculesinclude numbersindicating the way Liouville'stori are glued
(three numbers (r, e, n) for each glueing).
The (simplified) theorem that we use is the following:

THEOREM 5.1. 1. Any orientable Morse-Bott type bifurcation of Liouville'stori is
the direct product of some two dimensional foliated surface (so called “ 2-atom” )
onthecircle: P2 x St

2. Any non-orientable Morse-Bott type bifurcation of Liouville's tori is the skew

product (Seifert product of type (2,1)) of some 2-atom on thecircle: P? x S

. The classification of all 2-atomsisgiven.

4. TheLiouville'stype of global Liouville'sfoliation onthe wholeisoenergy 3-surface
is completely described (up to Liouville's equivalence) by so called “ marked-
molecule’” W* combined form of 2-atoms and some numerical marks.

5.1.2. Gel’'fand-Dikii’s system.

w

PrOPOSITION 5.1. Consider the family of polynomialsf; ,,(t) = t° + £t + 1. The IMM
systemassociated with f, ,, is Gel’ fand-Dikii’s system.

PrROOF. Thefirst integrals of Gel’ fand-Dikii’s system are:

H = —q} — 3 + 30502 — 01p3 — 2p1po,
K = 0f0p — 20105 + G3p3 + 2quPp1p2 — P50 + P

On the other hand, proceeding asin Section 2 with the family of polynomials
fe (1) = 2+ £t +p.

we get aJMM system with first integrals:

_H) =B —f0e)+ys el FO) Vil fOe) — V]

Hy
X1 — X2 X1 — X2

By making use of the following canonical transformation:

X — X —
(X1, X2: Y1, Y2) — (Ch = X+ Xo. Op = XpX. Py = A 0D2 ) o u) ,

X1 —Xo 2 X1 — X2
we can expressH and K in terms of (X, Yk)i=1.2 and see that:
Hy=h—H, Hs=k-—K. "
Once again we use Theorem 3.1 and state the following corollary:
COROLLARY 5.1. Gd'fand-Dikii's systemis a Bott system.

Thus, Fomenko'stheorem can be applied to Gel’ fand-Dikii’s system. Thebifurcations
of the real part Vz of V = {H = const, K = const} can be described by observing the
behaviour of roots of the polynomial f(t) = t° + £t + 5 asn varies (¢ being fixed). We
sum this up in the following table («; and o, are the roots of f'):
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13 roots domain

" topological type

£>0 _ one r$a2I root D1

£=0 70 one rigl root D1

0 quintuple root

bifurc at O
onereal root
T2

adouble root

£€<0 n= —(Ofi o) bifurcat Py(&.m) |

three real roots
2T?

- c adoubleroot
£<0 n=—(a, +&az) bifurcat P(¢,m) |
one real root
T2

£E<O0 n < —(oci) +£&a) D1

£ < 0| —(a; +Ear) < 1 < —(0 + Eaxp) D2

<0 n> —(ocg +£ap) D1

Letusfix &9 < 0. P1(£0, —n0) and P2(£o, 170) arethe common points of the bifurcation
diagram and of the line £ = &o. Going from the domain D2 to the domain D1 through
P1(&, 1), two tori aretransformed into onetorus. The bifurcationis —“B—. Going from the
domain D1 to thedomain D2 through P, (€. ), itisthe“inverse” bifurcation —B~—. Going
from the domain D1 to the domain D2 through the origin, we also have the bifurcation
—BC.

1. Moving alongtheline ¢ = &g, we gluetwo atoms —BZ and we get the correspond-

ing molecule:

-B_"B—- e _B—B_.

2. Now imagine a path going from D1 to D2 through 0 and going back to D1 by
passing through P1. The bifurcations are represented by the same molecule:

—_B=—B_.

Obviously, although their moleculesareidentical, these bifurcationsare different. Indeed,
the glueings of the atoms —B~ are different in cases 1. and 2. This showsthe importance
of the “marks’ (numbers) that must be added to the molecules since they reflect these
differences. But this is not our intention to compute these numbers here. The reader can
refer to [5] to get more information.

REMARK. Thissubject istreated in aquite different way in [12].

5.2. TheLagrangetop system. Werecall that the Lagrangetop is a heavy symmetrical
top (see[8]).
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PROPOSITION 5.2. Fix (a1, ap) € C2. Consider the family of polynomials:
fe, () = t* +at® + apt® + ct+9y.
The JMM system associated with f; , is a Lagrange top system.

PROOF. Let us consider the usual Poisson bracket W used for the Lagrange top
system:

|W/|| w1 |w2| w3 | Y1 |“/2|“/3|

w1 0 —kws | K ws 0 V3| V2

wy kws 0 |—klwi| 73 0 [-m

w3 —k71w2 k=1 0 —k 1y, k1,

0
Y1 0 —vs | kT, 0 0 0
0
0

Y2 Y3 0 |-k o0 0
Y3 —Y2 Y1 0 0 0

Thefirst W-integrals of the system are:
1
Fi=ws Fo= E(wi +w + k) —7s.
The W-Casimirs are:
Fz=wiV1 +waYo +kwzys, Fq=72+75+73 wherek=1+m.

Thus, we get the equations describing the motion of the L agrange top:
( w1=—Mupwz—"72
[ w2 =muiws+71
(:03 =0
Y1 = Vows — Vawz
Yo = Yawi — V1ws
{ V3 = Vawz — Vawi.

On the other hand, considering the polynomial:
fe, () = t* + at? + apt? + ct+ 1y,

and processing like in Section 2, one gets atwo degrees of freedom Hamiltonian system
with the following first integrals:

1

et L R Sl CORS1S

T a(t0e) ) — %o (10w ).

2

H3:

Hs =
4 X

In fact, thisJIMM system isa L agrangetop system. Indeed, there exists a bi-Hamiltonian
structure for the Lagrange top (see [9], Theorem 4.2 and [7]). Briefly, we say that:

https://doi.org/10.4153/CJM-1998-007-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-007-7

SOME CRITICAL LEVEL SETS 149

1. An appropriate change of variables givesthe following relations between the first
integrals:
- F1= Z(a1 — Hy),
- F2 = 3|ap — Hz — f2(a — H1)?),
- Fa=3(Hs — ),

- F4=a4 — Ha.
2. LetV bethe canonical Poisson bracket givenin 2.1.3. Let usexpress V in variables
(wis M)

LV lwnfwafws] 71 [ 72 ] s ]

w1 0/0|0f O |-1] 0
w2 0j0|0f 1 0 0
w3 0j0j0f O 0 0
V1 0|-1/0| O [kws|—w>
V2 1{0|0|—kws| O | wr
V3 0|00 wp [—w1| O

3. F1 and F; are V-Casimirs, F3 and F4 are V-first integrals of the system of the
Lagrange top. Furthermore, V(., mF F3 + %F4), give the equations of motion of
L agrange top. L]
Hence, Theorem 3.1 holds and the following corollary ensuesfrom it:

COROLLARY 5.2. The Lagrangetop systemis a Bott system.

5.3. Geodesicflow onan ellipsoid. First, we briefly recall the statements of R. Donagi,
but the reader can refer to [3] for more details.
We consider an ellipsoid:

E= {(CI1-QZ-C]3)- it + % + % = 1} C R
ap o 03

The geodesic flow on the symplectic manifold TE is given by the Hamiltonian function
of the squared length. But, the system TE hastwo drawbacks:

1. TE isnot a symplectic space since the induced metrix is degenerate at (complex)

points satisfying (&)? + (£)? + (£)> =0,

2. thefirst integrals are not symmetric.
Nevertheless, the system TE can be recovered as a C*-bundle over an hypersurface in
the tangent bundle TS of the sphere S:

S = {(qn: %, gs) € C°, of + 05+ 05 = 1},
TS = {(Ok: Pk=1.23 € C°, 0f + G5 + 05 = L1, 0apa + G2P2 + Qa3 = O}
The new system TS is symplectic. The three functions:

3 _ 2
F(@p) =B+ (@Pr — AP ,

1=1 ok — O
17k

k=123,
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subject to the condition F; + F, + F3 = 1, provide two independent first integrals.
This system is known as Neumann’s system.

PrRoPOSITION 5.3 ([3], P. 28). Neumann'ssystemisa JMM system (except at points of
theCil’CleSq% + q% = 1, q% + qg =1and q% + qg - l)

PrROOF. We only give here essential stages of the proof.
- Thefunction that definesthe IMM systemiis:

f(t) = (t— )t — 02)’(t — 3)?¢ + (t — 1) ’(t — a2)(t — a3)™n
+Ht — a1)?(t — o2)?(t — az)(L — € — 7).

f can bewritten c(t) + & f1(t) + n fo(t) with

f1(t) = (t — )t — 2)*(t — 23)® — (t — n)(t — 2)(t — va).
fa(t) = (t — ) (t — 2)(t — a3)® — (t — D)t — o) ?(t — cx3),
c(t) = (t — a1)?(t — a)?(t — aa).

- The Jacobi polynomials are:

U(t) = (t — a)(t — az)qf? + (t — a)(t — az)c + (t — a)(t — ),
V() = V=1[(t — a2)(t — az)apa + (t — o) (t — aa)aapz + (t — cn)(t — 22)qaps).
W(t) = (t — a2)(t — ag)p? + (t — au)(t — ag)p3 + (t — o) (t — ).
(Werecall that g + @3 + g5 = Land cupy + 2Pz + 0zps = 0.)

- Thereby, the usual IMM system and Neumann's system are corresponding viathe
change of variables ¢: (Q1. 02, p1, P2) — (U1, Uz, V1, Vo) Where:

U = (a3 — a)off + (a3 — a2)gh + ax + az,
Up = (s — 1)off + ca(a — a2)0 +
vi = —V/—1[(a3 — an)capr + (03 — @2) 0Pz .
V2 = \/—_1[062(063 — a)0apy + ooz — @2)GaPa2 .

det(de (0. G2, P1. P2)) = —4(as — a1)*(arz — )X (o2 — 0)?3. If g # O and
gz # 0 then ¢ isadiffeomorphism and Neumann'ssystemisaJMM system. =
Now, we state:

COROLLARY 5.3. The momentum mapping of Neumann’s systemis a Bott map at any
point (qs. Gz, P1. P2) suchasa, # 0and g # 0.

PrOOF. Neumann’s system is a IMM system whenever the change of variables ¢
(expressed in the proof of proposition 5.3) is a diffeomorphism. So, whenever g; # 0
and g, # 0, we use Theorem 3.1 and say that the momentum mapping of Neumann’s
system is a Bott map. n
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REMARK. Nguyen Tien Zung studied Neumann's system in a quite different way
(see[11]).

6. Conclusion. We have shown that the two degrees of freedom JMM Hamiltonian
system associated with:

fo () = ;J ale. )t (a0 =1).

(We suppose that the functions (¢, 7) — ak(&, 1), k = 1,....n, are linear at each
variable) is a Bott system.

Thelogical extension of this paper consistsin proving Theorem 3.1 for k > 2 degrees
of freedom JMM Hamiltonian systems. We believe that the proof is quite similar.
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