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THE SPECTRUM 
OF ORTHOGONAL STEINER TRIPLE SYSTEMS 

CHARLES J. COLBOURN, PETER B. GIBBONS, 
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ABSTRACT. TWO Steiner triple systems (V, #) and (V, £>) are orthogonal if they 
have no triples in common, and if for every two distinct intersecting triples {x^y, z} 
and {w, v, z} of $, the two triples {x,y1 a} and {«, v, b} in (D satisfy a / b. It is shown 
here that if v = 1,3 (mod 6), v > 7 and v / 9, a pair of orthogonal Steiner triple 
systems of order v exist. This settles completely the question of their existence posed 
by O'Shaughnessy in 1968. 

1. Background. We assume familiarity with standard terminology and results in 
combinatorial design theory [1]. A Steiner triple system of order v, or STS(v), is a pair 
( V, #); V is a v-set of elements, and <B is a set of 3-subsets of V called triples or blocks, 
with the property that each 2-subset of V occurs in exactly one triple of 'B. Two STS(v) 
on the same set of elements, say ( V, A) and (V, #), are orthogonal if A Pi <B - 0, and if 
{{w, v, w}, {x, j , w } } c ^ and {{*/, v, s}, {x,v, r}} C *B then s 7̂  t. We denote a pair of 
orthogonal Steiner triple systems of order v as OSTS(v). 

Orthogonal Steiner triple systems were introduced in 1968 by O'Shaughnessy [9] as 
a means of constructing Room squares. O'Shaughnessy constructed OSTS(v) for orders 
v G {7, 13, 19}. He conjectured that OSTS(v) exist whenever v = 1 (mod 6), and 
further conjectured that none exists when v = 3 (mod 6). It is trivial that no OSTS(3) 
can exist. Mullin and Nemeth [6, 7] established that no OSTS(9) exists. They further 
established that OSTS exist whenever the order v is a prime power congruent to 1 
modulo 6. However, Rosa [10] disproved O'Shaughnessy's conjecture by establishing 
the existence of OSTS(27). Subsequently, Gibbons [2] found OSTS of order 15, and in 
fact enumerated all nonisomorphic OSTS(15). 

Apairwise balanced design (or PBD) (V, A) is a set V of elements, together with a set 
A of subsets of V each having size at least two, with the property that each 2-subset of 
elements occurs in exactly one of the sets in !A. The PBD is a (v, A^-PBD if | V\ = v, and 
foreveryA G Si, \A\ G K. Now define B(K) = {v : 3(v,*Q-PBD}. A set K is PBD-closed 
when £(#) = K. It is easy to see that the set OS?S = {v : 30STS(v)} is PBD-closed. 
Thus Wilson's techniques [12] ensure the existence of a finite vo so that if v > vo and 
v = 1,3 (mod 6), an OSTS(v) exists. A major step in determining the spectrum for 
OSTS of orders congruent to 1 modulo 6 came when Mullin and Stinson [8] and Zhu 
and Chen (see [8]) examined the spectrum for pairwise balanced designs whose block 
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sizes are prime powers congruent to 1 modulo 6. Their results ensure that an OSTS(v) 
exists for v = 1 (mod 6) for all v > 1927, and for all but 31 values less than 1927. 

A similar closure result was obtained for the v = 3 (mod 6) class by examining 
PBD that permit blocks of sizes 15 and 27 in addition to prime powers congruent to 1 
modulo 6. Stinson and Zhu [11] showed that an OSTS(v) exists for all v = 3 (mod 6), 
v > 27369, and for all but at most 917 orders in the range 15 < v < 27363. In this class, 
the smallest unresolved case was that of OSTS(21). 

Since that time, Greig [4] has improved the PBD result for the 1 (mod 6) class; he 
produces PBD whose block sizes are prime powers congruent to 1 (mod 6) for orders 
295,655,1243,1255,1795,1819and 1921. Stinson and Zhu [11] eliminated two further 
cases for OSTS. Nevertheless, progress on the problem has been slow. In fact, the 
existence question for Room squares, originally a main motivation for defining OSTS, 
has been long settled [1]. 

In this paper, we settle the existence question for OSTS(v) completely, using a com­
bination of results obtained by computational techniques [3], and a number of recursive 
techniques. 

We employ definitions and results from Stinson and Zhu [11] without further comment, 
but state some definitions and their results upon which we rely most heavily here. 

The key ingredient that we use repeatedly is a generalization of OSTS(v) suggested 
by Stinson and Zhu [11]. A group-divisible design, or GDD, is a triple (V, Ç, %) where 
V is a set of elements, Q is a partition of V whose classes are called groups, and A is 
a set of subsets of V called blocks, with the property that every 2-subset appears either 
in a group of Q or a block of fr, but not both. We consider here only GDD in which 
every block has size three. An orthogonal group-divisible design (OGDD) (X, Q, fB\, fBi) 
is a set X and a partition Q of X into classes (again called groups), and two disjoint sets 
#i and #2 of 3-subsets of X, so that each pair {JC, y} of elements of X appears once in 
a 3-subset of <3\ and once in a 3-subset of #2 if x and y are from different groups, and 
does not appear in a 3-subset of either if x and y are from the same group. Moreover, 
if {x, j , a) G #1 and {JC, ;y, b} G #2, then a and b are in different groups; and for two 
distinct intersecting triples {JC, y, z} and {w, v, z} of #1, the triples {JC, y, a} and {«, v, b} 
of #2 satisfy a ^ b. We abuse the notation somewhat by referring to the pair of GDD 
(X, Ç, #1) and (X, £, $2) as an OGDD, and also saying that one of the GDD is orthogonal 
to the other. It is easy to see that an OSTS(v) is precisely the same as an OGDD in which 
there are v groups, each having a single element. Adopting usual notation, we say that 
an OGDD has type (g\)U] * • • (gs)

Us if the OGDD has ut groups of size gt for 1 < / < s, 
and no other groups. Thus an OSTS(v) is the same as an OGDD of type lv. 

We shall in addition use conjugate orthogonal quasigroups (COQ), but use them in a 
very standard way. Two quasigroups are conjugate orthogonal if each conjugate of one 
is orthogonal to each conjugate of the other. We refer the reader to [11] for more details 
concerning COQ. 

The following lemmas summarize basic constructions from [11]. 
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LEMMA 1.1. Suppose that there exists an OGDD of type gu. Further suppose that 
v - 1 or that a COQ(v) exists. Then there exists an OGDD of type (gv)u. If in addition 
there exists an OSTS(gv) (OSTS(gv+ l)j then there exists an OSTS(gwv) (OSTS(gwv+1), 
respectively). 

LEMMA 1.2 (DIRECT PRODUCT). If there exists an OSTS(w) and a COQ(v), then there 
exists an OGDD of type vu. If in addition, there exists an OSTS(v), there exists an 
OSTS(wv). 

LEMMA 1.3 (SINGULAR DIRECT PRODUCT). If there exists an OSTS(w), a COQ(v - 1) 
and an OSTS(v), then there exists an OSTS(w(v — 1) + 1 J. 

To apply these results, COQ are needed. These are produced by the following two 
lemmas without further comment: 

LEMMA 1.4. Ifv is a prime power and v £ {2, 3}, then there exists a COQ(v). 

LEMMA 1.5. If there exists a COQ(w) and a COQ(v), then there exists a COQ(wv). 

We require a small extension of the results of [11] for use with the Main construction 
that we introduce later. 

LEMMA 1.6 (FILLING IN GROUPS). If there exists an OGDD of type u8^ and there 
exists an OSTS(w +1) and an OSTS(v +1), then there exists an OSTS(gw + hv + 1). 

PROOF. This is implicit in Section 6 of [ 11 ]. • 

2. Constructions and uses of OGDD. In this section, we first develop some con­
structions for OGDD, and then describe applications of Wilson's Fundamental Construc­
tion [12] to produce OSTS from the OGDD found. 

Let G be a finite abelian group of order v and let H be a subgroup of G. Then a 
(v, k, \)-relative difference set based on G and H is a triple (G, //, F) where F is a family 
of k-subsets of G which has the property that every element of G \ H occurs exactly À 
times as a difference of elements in the subsets of F, and no member of H appears as 
such a difference. Further, let d be a fixed element of G \ H. Then a (v, /:, \)-near relative 
difference set based on G, H and J is a quadruple (G, //, F, d) where F is a family of 
^-subsets which has the property that every element of G \ (//U {±J}) occurs exactly À 
times as a difference of elements in the subsets of F, and no member of HU {±d} occurs 
as such a difference. 

Let T = {*, y, z} be a triple of elements of an abelian group G. Then the three pairs 
{x — z, y — z}, {x — y, z — y} and {y — x1 z — x} are the fundamental pairs of T. Let F 
be the set of triples of a (v, 3, l)-relative difference set or near relative difference set. 
The multiset of 3|F| fundamental pairs corresponding to the triples of F is the set of 
fundamental pairs of F. 

Now let Si = (G, //, F\) and S2 = (G, //, F2) be a pair of (v, 3, l)-relative difference 
sets based on G and H. Then for each fundamental pair P = {JC, y} of Si there is a unique 
triple T(P) in S2 having a translate 7"(F) containing F, say T'{P) = {x,y,z(F)}. The 
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multiset L = {z(P) : F is a fundamental pair of Si} is an orthogonality certificate for the 
(ordered) pair (Si, S2) of relative difference sets if all members of L are distinct and no 
member of L lies in H. 

Similarly, let Si = (G,//,F\,d\) and Si = (G,//,F^di) be (v, 3, l)-near relative 
difference sets. The multiset L - {z(P) : P is a fundamental pair of Si} U {±d\ ± d2} is 
an orthogonality certificate for the ordered pair (Si, S2) if all members of L are distinct 
and no member of L lies in H. 

The significance of orthogonality certificates for pairs of relative difference sets is 
given in the following two lemmas. 

LEMMA 2.1. Let S\ = (G, //, F\) and S2 = (G, H1F2) be a pair of {v, 3, \)-relative 
difference sets. Let h = \H\, v = \G\, and n = v/h. If there exists an orthogonality 
certificate for the pair (Si, S2) then there exists an OGDD of type hn. 

PROOF. We consider the members of G to be the elements of the OGDD, and the 
cosets of H in G to be the groups of the OGDD. The v\F\ | triples {F+g : T G Fi, g G G} 
forms a {3} — GDD on G, and similarly the v|F2| triples {T+g : T G F2, g G G} forms a 
{3} — GDD on G. The second GDD formed is orthogonal to the first, as is easily verified 
using the definition of the orthogonality certificate. • 

The situation for near relative difference sets is somewhat more complicated. Let 
S = (G, //, F, d) be a (v, 3, l)-near relative difference set. Then S is partitionable if d and 
—d are distinct in G, and there exists a subset F of G containing | G| / 2 elements and having 
the property that {{0, d} + g : g G G} = {{0,d}+p : p € P}u {{0,-d} +p : p eP}. 
The set F is a partitioning set. We write S = (G, //, F, d, F) if (G, //, F, d) is a near relative 
difference set with partitioning set F. 

LEMMA 2.2. Let S\ = {G,H,FuduPx) and S2 = (G,//,F2 , d2lP2) be a pair of 
partitionable (v, 3, \)-near relative difference sets. Let h = \H\, v = \G\ and n = v/h. 
If there exists a orthogonality certificate for (Si, S2) then there exists an OGDD of type 
hn2l. 

PROOF. We take the elements of G, together with two new elements 001 and 002, to 
be the points of the OGDD. The cosets of H in G form the n groups each of size h, and 
{001, 002} forms a group of size 2. The set of v|Fi | triples {T + g : T G Fj, g G G} 
together with the triples {{001,0, d\} +p : p G Fi} U {{002, 0, —d\} +/? : p G P\\ form 
the triples of a GDD. (Here we adopt the usual convention that 00/ + g = oo/.) 

A second GDD is defined similarly using S2. The second is orthogonal to the first, as 
is easily verified using the definition of an orthogonality certificate. • 

We employ these two lemmas to construct a number of OGDD, in each case taking G 
to be the cyclic group of integers modulo v, and the subgroup H is uniquely determined 
by its order. In order that a near relative difference set be partitionable, it is sufficient that 
v/ gcd(v, d) be even and that d ^ v/2. The following arrays are to be read as follows. 
The first line gives the set of starter blocks for the first system, and the second line those 
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of the orthogonal system. The third line gives the orthogonality certificate, specifically 
what occurs in the second system with the fundamental pairs of the starter blocks of 
the first system. In the cases of near relative difference sets, the triple {oo, 0, d} stands 
for both {ooi, 0, d} and {002,0, —d}, and the entries of the orthogonality certificate are 
±di±d2. 

2 n 2 ! = 212 in Z22 with two infinite points 
0,1,3 0,4,10 0,5,13 oo,0,7 
0,1,9 0,2,18 0,3,15 oo,0,5 
18,13,16 14,4,3 19,oo,8 12,2,20,10 

213inZ26 

0,1,3 0,4,10 0,5,14 0,7,15 
0,1,7 0,2,10 0,3,15 0,4,9 
23,14,22 21,2,15 20,4,12 18,17,1 

2142* = 215 in Z28 with two infinite points 
0,1,3 0,4,9 0,6,18 0,7,20 oo,0,ll 
0,1,10 0,2,8 0,3,7 0,5,17 oo,0,13 
5,15,21 20,13,19 12,17,22 27,oo,7 24,26,2,4 

216inZ32 

0,1,3 0,4,9 0,6,17 0,7,19 ( 3,8,18 
0,1,4 0,2,21 0,5,25 0,6,23 ( 3,8,22 
2,8,31 9,13,10 18,7,3 12,21,26 : 30,6,28 

3n inZ33 
0,1,3 0,4,10 0,5,18 0,7,19 0,8,24 
0,1,8 0,2,20 0,3,9 0,4,14 0,5,17 
20,23,28 7,13,12 32,14,25 8,17,29 > 31,4,1 

317inZ5i 
0,1,3 0,4,9 0,6,16 0,7,26 0,8,28 0,11,24 
0,1,4 0,2,13 0,5,12 0,6,26 0,8,36 0,9,27 
2,8,50 26,38,37 31,25,35 49,1,41 16,14,43 48,29,28 

0,12,30 0,14,29 
0,10,32 0,14,35 
46,15,13 47,27,45 

492] in Z36 with two infinite points 
0,1,3 0,4,10 0,5,16 0,7,19 0,8,21 oo,0,14 
0,1,17 0,2,24 0,3,7 0,5,11 0,8,23 oo,0,10 
6,23,22 oo,15,ll 13,16,30 • 1,26,5 31,7,34 24,4,32,12 

410inZ40 

0,1,3 0,4,9 0,6,18 0,7,21 0,8,23 0,11,24 
0,1,4 0,2,14 0,5,27 0,6,31 0,7,23 0,8,19 
2,8,39 36,31,25 33,11,9 23,29,27 34,1,38 32,18,4 
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68 in Z48 

0,1,3 0,4,9 0,6,18 0,7,26 0,10,25 0,11,28 0,13,27 
0,1,20 0,2,41 0,3,34 0,4,22 0,5,42 0,10,35 0,12,33 
42,30,31 45,17,6 23,18,15 10,25,35 22,7,2 20,4,38 46,11,9 

69 in Z54 
0,1,3 0,4,10 0,5,16 0,7,28 0,8,30 0,12,25 
0,1,5 0,2,12 0,3,23 0,6,19 0,7,33 0,8,38 
11,15,52 6,23,41 

0,14,31 
0,11,25 
42,1,24 

38,34,32 

0,15,34 
0,15,37 
7,8,51 

48,33,31 40,19,49 16,35,46 

In addition to the OGDD produced using relative difference sets, we produce three 

more OGDD by employing smaller groups of automorphisms. On Z7 x {0,1}, define a 

GDD of type 27 by taking | {/ x {0,1}} : / G Z7 \ to form the seven groups, and develop 

the starter blocks 

{ { O o ^ c M ^ O c ^ l l K i O o ^ o ^ ! } , ^ ! , ! ! ^ ! } } 

modulo (7, —) to form the triples. Form a second GDD by developing 

{{Oo,31,41},{Oo,li,61},{Oo,21,51},{Oo,lo,3o}}. 

It is easily verified that the two GDD are orthogonal. 

Similarly, on Zg x {0,1}, form two GDD by developing the following starter blocks 
modulo (9, —): 

GDD # 1 GDD # 2 
Oo, 2o, 81 Oi,2i,8o 
Oo,40,7i 0i ,4i ,70 

Oo, lo, 5i 0i, li,5o 
Oo, l i ,2i 0i, lo, 20 

0i,2i,5i Oo, 2o, 5o 
Oo,3o, 60 0i,3i,6i 

Each of the first five starter blocks develops into nine blocks, while the sixth generates 
only three distinct blocks. It is an easy exercise to verify that these two GDD form OGDD 
of type 29. 

Finally, on Z5x{0,1, 2, 3}, we present OGDD of type 210 having groups |{/x{0,1}} : 

/GZ 5 )u j { / x {2 ,3 } } : /GZ 5 ) . 

The starter blocks for the two GDD to be developed modulo (5, —) are: 
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G D D # 1 G D D # 2 
00,30,4, Oo, 3o, 22 

Qo, 4o, 2i Oo, lo, b 
Oo, h , 4 2 Oo, 3i ,2i 
Oo,22 ,32 0 0 , l i , 3 2 

Oo,02,23 0 0 , 4 , , 3 3 

0 0 , 1 3 , 3 3 0 0 , 0 2 , 1 2 

0o,4 3 ,0 3 Oo,23,43 

0 i , 2 , , 4 2 Oi,3 , ,Û3 
0 , , 1 | , 2 3 Oi ,3 2 , l 2 

0 , ,3 2 , 4 3 Oi ,4 2 , 3 3 

Ol, 12,03 O i , 0 2 , l 3 

0i ,02 ,3 3 0 2 , 2 3 , 3 3 

We summarize the constructions given thus far: 

LEMMA 2.3. There exist OGDD oftype 
1. 2nforn e {7, 9, 10, 12,13, 15,16}; 
2. 3nforn G {11, 17}; 
3. 410 and 4921; 
4. 6nforne{8,9}. 

We have in fact found many more OGDD than those presented here, but have chosen 
to include here just those that assist us in settling the existence problem for OSTS. 

Now we turn to constructions that use OGDD to produce OSTS. Our main construction 
is an application of Wilson's Fundamental Construction [12]: 

LEMMA 2.4 (MAIN CONSTRUCTION). If there exist OGDD of type gnu\ OGDD of type 
gnvl, and a TD(n + 1, m), then there exists an OGDD of type (mg)n((m — t)u + tv) for 
allO <t < m, 

PROOF. Let G\,..., Gn+\ be the groups of the TD(n + 1, rri). Apply Wilson's Funda­
mental Construction, giving each point of groups G\,..., Gn weight g,m — t points of 
Gn+\ weight u and the remaining t points of Gn+\ weight v. The result is a pair of GDD of 
type (mg)n ((m — t)u + tv) whose orthogonality can be verified easily using the definition 
of OGDD. • 

Next we consider some applications of the Main construction. 

LEMMA 2.5. Let X = {18,24,30}. Let x G X and suppose that there exists a 
TD((JC/2) + 1, m), an OSTS(2m + 1) and an OSTS(2r + 1), where 0 < t < m. Then 
there exists an OSTS(jcra + 2t+ 1). 

PROOF. For each x G X, there exist OGDD of type 2XI2 and of type 2(*/2)+1, by 
Lemma 2.3. Apply Lemma 2.4 with u = 0 and v = 2 to obtain OGDD of type (2m)x l2(2t)x. 
Apply Lemma 1.6 to complete the proof. • 

LEMMA 2.6. Suppose that there exists a TD(10, m\ an OSTS(4m +1) and an 
OSTS(2m + 2t + 1) where 0 < t < m. Then there exists an OSTS(38m + 2t + 1). 
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PROOF. There exists an OGDD of type 4921 and of type 410. Apply Lemma 2.4 with 
u = 2 and v = 4, and then apply Lemma 1.6. • 

In order to apply Lemma 2.5, we require that m = 0, 1 (mod 3) and that t = 0, 1 
(mod 3), t £ {1,4}. In order to apply Lemma 2.6, we require that m = 0, 2 (mod 3) and 
that t = 0,1 (mod 3); moreover, when m = 2 (mod 3), we require that t = 1 (mod 3) 
for an OSTS(2ra + 2t + 1) to exist. In particular, the smallest order obtained when m = 2 
(mod 3) is 38m + 3. 

For dealing with the case when v = 1 (mod 6), one further construction of this type 
is useful: 

LEMMA 2.7. Suppose that there exists a TD(9, m), an OSTS(6ra + 1) and an 
OSTS(6r + 1) where 0<t <m. Then there exists an OSTS(48ra + 6f + 1). 

PROOF. There exist OGDD of types 68 and 69 by Lemma 2.3. Apply Lemma 2.4 with 
u = 0 and v = 6, and then apply Lemma 1.6. • 

Each of Lemmas 2.5, 2.6 and 2.7 require transversal designs. Fortunately, all of the 
transversal designs that we require are produced by a single classical construction due 
toMacNeish [5]: 

LEMMA 2.8. Let n > 2 be an integer. Suppose that n = p\a]p2a2 • • mps
as where 

pi1... ,ps are distinct primes. Then there exists a TD(ra, n) for all 2 < m < mmi(piai)+l. 

In the following, Lemma 2.8 is used to produce all of the needed transversal designs. 

3. OSTS with v = 1 (mod 6). In this section, we show that if v = 1 (mod 6), there 
is an OSTS(v). In the process, we consider a number of smaller cases for the class v = 3 
(mod 6), but for the most part we treat the two classes separately. 

We require two direct constructions of Gibbons and Mathon [3] : 

LEMMA 3.1. There exists an OSTS(v) for v G {115, 145}. 

In [8], it is shown that if v = 1 (mod 6) and v > 1927, there exists an OSTS(v). 
Some of the remaining cases were handled by Stinson and Zhu [11], who show: 

LEMMA 3.2. Forv = 1 (mod 6), there exists an OSTS(v) with the possible exception 
ofvEJZ, where 

A = {55,115,145,205,235,265,295,319,355, 391,415,445,451,493,649,655, 

679,697,745,781,799, 805, 1243,1255, 1315,1585, 1795,1819, 1921}. 

Recently, Greig [4] has shown the existence of OSTS(v) for eight values in A. 

LEMMA 3.3. For v = 1 (mod 6), v < 307, there exists an OSTS(v). 
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PROOF. By Lemma 3.2 and Lemma 3.1, we need only consider v G {55,205,235, 
265,295}. For these values, apply Lemmas 1.2 and 1.1 using the following ingredients: 

Order OGDD COQ OSTS 
55 69 - 7 

205 317 4 13 
235 213 9 19 
265 311 8 25 

Greig [4] gives a PBD on 295 points having a unique block of size 49 and all other 
blocks of size 7, producing an OSTS(295). This establishes the lemma. • 

LEMMA 3.4. For v = 3 (mod 6), 15 < v < 201, there exists an OSTS(v). 

PROOF. Rosa [10] constructed an OSTS(27), and Gibbons [2] constructed an 
OSTS(15). Stinson and Zhu [11] constructed OSTS(v) for v G {105,189,195}. Gib­
bons and Mathon [3] have constructed OSTS(v) for v <G {21, 33, 39, 45, 51, 57, 63, 
69, 75, 81, 87, 93, 99, 111, 117, 123, 129, 135, 153, 159, 171}. This leaves the values 
v G {141,147,165,177,183,201}. The values v G {141,147} are handled by Lem­
mas 1.2 and 1.3 using the following ingredients: 

Order OSTS COQ Construction 
141 7 20 Lemma 1.3 
147 7 21 Lemma 1.2 

The values v G {165,183, 201} are handled by Lemma 1.1 using the following 
ingredients: 

Order OGDD COQ OSTS 
165 311 5 15 
183 213 7 15 
201 410 5 21 

For v = 177, apply Lemma 2.5 with x = 18, m = 9 and t = 7 to form an OGDD of 
type (18)9(U)\ and apply Lemma 1.6 using OSTS(19) and OSTS(15). 

This completes the proof. • 

LEMMA 3.5. Suppose that v = 1, 3 (mod 6) and that v satisfies one of 

1. 301 < v < 3 8 1 ; 
2. 397 < v < 441; 
3. 463 < v < 541; 
4. 571 < v < 7 4 1 ; 
5. 757 < v < 865; 
6. 877 < v < 993; 
7. 1027 < v < 1743; or 
8. 1759 < v < 1941. 

Then there exists an OSTS(v). 
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PROOF. TWO tables are given below for applications of Lemma 2.5 and Lemma 2.6, 
respectively. In employing the first table, the OSTS(2ra + 1) exists as a consequence of 
Lemmas 3.4 and Lemma 3.3. Similarly, for the second table, an OSTS(4ra + 1) exists by 
Lemmas 3.4 and Lemma 3.3. 

Applications of Lemma 2.5 
m x rax+13 ra(;c + 2 ) + l 
16 18 301 321 
13 24 325 339 
19 18 355 381 
16 24 397 417 
25 18 463 501 
27 18 499 541 
31 18 571 621 
25 24 613 651 
37 18 679 741 
31 24 757 807 
43 18 787 861 
27 30 823 865 
49 18 895 981 
31 30 943 993 
43 24 1045 1119 
61 18 1113 1221 
67 18 1219 1341 
73 18 1327 1461 
79 18 1435 1581 
64 24 1549 1665 
67 24 1621 1743 
97 18 1759 1941 

Applications of Lemma 2.6 
ra 38ra + 1 38ra + 3 40ra+ 1 
9 343 361 
11 421 441 
17 649 681 
23 877 921 
27 1027 1081 

This completes the proof. 

Now we are in a position to state the definitive result for v = 1 (mod 6). 

THEOREM 3.6. Ifv = 1 (mod 6), there exists an OSTS(v). 

PROOF. In view of Lemma 3.3, we need only consider v > 313, and in view of 
Lemma 3.2, we need only consider v < 1921. By Lemma 3.5, if 301 < v < 1941 and 
v = 1, 3 (mod 6), then there exists an OSTS(v) except possibly when 

1. 385 < v < 3 9 3 ; 
2. 445 < v < 459; 
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3. 543 < v < 567; 
4. 867 < v < 873; 
5. 997 < v < 1023; or 
6. 1747 < v < 1755. 

Upon considering the set A of Lemma 3.2, it suffices to consider values in the first 
two of these intervals. We cover these intervals using Lemma 2.7 as follows: 

Applications of Lemma 2.7 
m 48m + 1 54m + 1 
8 385 433 
9 433 487 

This completes the proof of the theorem. • 

4. OSTS with v = 3 (mod 6). In this section, we complete the proof of the Main 
Theorem, showing that if v = 3 (mod 6) and v > 15, there is an OSTS(v). We shall 
require a few more direct constructions due to Gibbons and Mathon [3] : 

LEMMA 4.1. If v e {207,213,219,237,243,279,291,387,447,453,543,549, 

1011, 1017} then there exists an OSTS(v). 

LEMMA 4.2. Ifv = 3 (mod 6) and 15 < v < 297, there exists an OSTS(v). 

PROOF. In view of Lemma 3.4, we need only consider 207 < v < 297. By 
Lemma 4.1, we need only consider 

v G {225,231,249,255,261, 267, 273,285,297}. 

Applying Lemma 2.5 with x = 18, m = 13 and t G {7,10,13} yields OSTS(v) for 
v G {249,255,261}. Then applying Lemmas 1.2 and 1.3 gives OSTS(v) for v G 
{225, 231, 273, 285}, using ingredients as follows: 

Order OSTS COQ Construction 
225 7 32 Lemma 1.3 
231 7 33 Lemma 1.2 
273 21 13 Lemma 1.2 
285 15 19 Lemma 1.2 

The final value, v = 297, is handled by Lemma 1.1 using the following ingredients: 

Order OGDD COQ OSTS 
297 311 9 27 

This completes the proof. • 

Now we extend the interval of orders for which OSTS are known: 

LEMMA 4.3. Ifv = 3 (mod 6) and 15 < v < 1941, there exists an OSTS(v). 
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PROOF. By Lemma 4.2, we need only consider v > 303. The following list of 
intervals is what remains to consider after applying Lemma 3.5 (as summarized in the 
proof of Theorem 3.6), restricting the intervals to those values congruent to 3 (mod 6): 

1. 387 < v < 3 9 3 ; 
2. 447 < v < 459; 
3. 543 < v < 567; 
4. 867 < v < 873; 
5. 999 < v < 1023; or 
6. 1749 < v < 1755. 

Employing Lemma 4.1, what remains is then only 

v G {393,459,555,561,567,867,999,1005, 1011,1023,1749,1755}. 

For v G {459, 867}, we apply Lemma 1.1 using the following ingredients: 

Order OGDD COQ OSTS 
459 317 9 27 
867 317 17 51 

For the remaining cases, we apply Lemmas 1.2 and 1.3, using the following ingredi­
ents: 

Order OSTS COQ Construction 
393 7 56 Lemma 1.3 
555 15 37 Lemma 1.2 
561 7 80 Lemma 1.3 
567 7 81 Lemma 1.2 
999 37 27 Lemma 1.2 

1005 15 67 Lemma 1.2 
1023 33 31 Lemma 1.2 
1749 135 13 Lemma 1.2 
1755 19 92 Lemma 1.3 

This completes the proof. • 

Although we have already settled all cases when v = 1 (mod 6), in the remainder we 
treat both classes v = 1, 3 (mod 6) because it is convenient to do so. 

LEMMA 4.4. Let (rai, W2,..., mu) be a sequence of positive integers, and let s be a 
positive integer, satisfying 

L mi = 1 (mod 6) for 1 < / < u; 
2. there exists a TD(10, mi) for 1 < / < u; 
3. 0 < nti+i — mi < 6s for 1 < / < u; and 
4. mt > 54s + 6. 

Suppose further that if v = 1,3 (mod 6) and 13 < v < 18mi + 9, there exists an 
OSTS(v). 

Then there exists an OSTS(v) for v = 1, 3 (mod 6) and 13 < v < 20mu + 1. 
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PROOF. Apply a straightforward induction based on Lemma 2.5 with x = 18. The 
fact that m > 54s + 6 implies 20m + 1 > 18(w + 6s) + 13 ensures that all values are 
produced. • 

COROLLARY 4.5. Let (m\, ni21...) be an infinite sequence of positive integers, and let 
s be a positive integer, satisfying 

1. mi = 1 (mod 6) for 1 < / < u; 
2. there exists a TD(10, mi) for 1 < / < u; 
3. 0 < nii+i — nii < 6s for 1 < / < w; and 
4. nii > 54s + 6. 

Suppose further that if v = 1,3 (mod 6) a«J 13 < v < 18rai + 9, there exists an 
OSTS(v). 

Then there exists an OSTS(v)/or v = 1, 3 (mod 6), v > 13. 

Corollary 4.5 provides the vehicle to complete the solution. 

MAIN THEOREM 4.6. Ifv = 1, 3 (mod 6), v > 7, and v ^ 9, there exists an OSTS(v). 

PROOF. First, if m = 1 (mod 6) and (m, 35) = 1, there exists a TD(10,m) by 
Lemma 2.8. Since at least one of 6m, 6m + 6 and 6m + 12 is relatively prime to 35, 
we can apply Corollary 4.5 with s = 3 to the sequence whose entries are elements of 
M = {m : m > 169, m= I (mod 6), (m, 35) =1} , provided that an OSTS(v) exists for 
all v = 1,3 (mod 6), 13 < v < 3051. We begin by applying Lemma 4.4 with s = 1 to 
the sequence (103,109), noting that 18 • 103 + 9 = 1863 and that 20 • 109 + 1 = 2181. 
Thus, together with Lemma 4.3 and Theorem 3.6, we have the result f o r l 3 < v < 2 1 8 1 . 
Extend this interval to include 2185 and 2187 by noting that 2185 = 1 (mod 6), and 
2187 = 37, so we can apply Lemma 1.2 to an OSTS(27) and a COQ(81) to obtain an 
OGDD of type 8127, and thus an OSTS(2187). 

Now apply Lemma 4.4 with s = 2 to the sequence (121,127,139,151,157), noting 
that 12118 + 9 = 2187 and 157-20+ 1 = 3141. Since 3141 > 3041, we can now apply 
the corollary as stated to complete the proof. • 
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