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ON VARIANCES OF PARTIAL VOLUMES OF
THE TYPICAL CELL OF A POISSON–VORONOI
TESSELLATION AND LARGE-DIMENSIONAL
VOLUME DEGENERACY

YI-CHING YAO,∗ Academia Sinica and National Chengchi University

Abstract

For a typical cell of a homogeneous Poisson–Voronoi tessellation in R
d , it is shown that

the variance of the volume of the intersection of the typical cell with any measurable
subset of R

d is bounded by the variance of the volume of the typical cell. It is also shown
that the variance of the volume of the intersection of the typical cell with a translation of
itself is bounded by four times the variance of the volume of the typical cell. These bounds
are applied to show large-dimensional volume degeneracy as d tends to ∞. An extension
to the kth nearest-point Poisson–Voronoi tessellation for k ≥ 2 is also considered.
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1. Introduction

Associated with a homogeneous Poisson point process � = �d in R
d with intensity λ > 0,

the Voronoi tessellation is defined as {CX(�) : X ∈ �}, where CX(�), the Voronoi cell of
� centered at X, is given by CX(�) = {x ∈ R

d : ‖x − X‖ ≤ ‖x − X′‖ for all X′ ∈ �},
‖ · ‖ = ‖ · ‖d being the d-dimensional Euclidean norm. A ‘typical cell’ refers to a uniform
random member (translated so as to be centered at the origin) of the Voronoi tessellation, and
can be explicitly described (cf. [5]) by Ct = Ct,d := C0(�∪{0}) = {x ∈ R

d : ‖x‖ ≤ ‖x −X‖
for all X ∈ �}, the Voronoi cell centered at the origin 0 after adding 0 to �. A subscript d is
attached to �, Ct , ‖ ·‖, and µ (the Lebesgue measure on R

d ) in order to emphasize dependence
on d, which is suppressed in the proofs for ease of notation when no danger of confusion arises.

In the literature on the moments and distributions of geometric characteristics of the typical
cell most of the analytic and simulation studies have been concerned with the two important
low-dimensional cases d = 2 and d = 3 (see [9] and [12] for a comprehensive review). At
the other extreme, Newman et al. [11] first studied the large-dimensional limit of µd(Ct,d), the
d-dimensional Lebesgue measure (d-volume) of Ct,d , and showed that, as d → ∞, µd(Ct,d)

converges in distribution to 1/λ. (In fact, their Theorem 10 implies that, as d → ∞, µd(Ct,d)

converges in Lp to 1/λ for all p > 0. Here a sequence of real-valued random variables {Yn},
not necessarily defined on the same probability space, is said to converge in Lp to a constant γ

as n → ∞ if limn→∞ E[|Yn − γ |p] = 0.) Recently, Alishahi and Sharifitabar [1] established
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the following sharp bound on the variance of µd(Ct,d) :

var(µd(Ct,d)) = E

[(
µd(Ct,d) − 1

λ

)2]
<

c

λ2
√

d

(
4

3
√

3

)d

for all d, (1)

where c is a constant. By [1, Remark 3.1], c = 5 suffices for (1) to hold. Note that, to
establish (1), they used the Blaschke–Petkantschin formula (see, e.g. [6, Chapter 4]) to obtain an
integral formula for E[{µd(Ct,d)}2], while a similar integral representation was derived earlier
by Gilbert [4, Formula (14)]. Alishahi and Sharifitabar further showed that, for each fixed
u > 0, as d → ∞, the d-volume of the intersection of Ct,d with a ball of volume u centered
at the origin converges in L2 to λ−1(1 − e−λu). These results indicate the phenomenon of
large-dimensional volume degeneracy of the typical cell.

The geometric covariogram of a bounded measurable set K ⊂ R
d is the function gK(v) =

µd(K ∩(K +v)), v ∈ R
d , which was introduced by Matheron [8], who also asked the question

of whether the geometric covariogram uniquely determines a convex set up to translations
and reflections. While Bianchi [3] found counterexamples for d ≥ 4, gK clearly contains
much information about the geometric characteristics of K and can uniquely determine K

for some classes of convex sets. See Averkov and Bianchi [2] and the references therein.
Alishahi and Sharifitabar [1] considered the (random) geometric covariogram of the typical
cell, gCt,d

(v) = µd(Ct,d ∩ (Ct,d + v)), v ∈ R
d , which is a random function. (Note that

Lantuéjoul [7, p. 23] defined the geometric covariogram of a random set K by taking the
expectation E[µd(K ∩ (K + v))].) For r > 0 and vd ∈ R

d with ‖vd‖d = 1, they proved that
limd→∞ E[gCt,d

(rvd)] = c(r, λ), where

c(r, λ) = 1

λ
√

2π

∫ ∞

−∞
dt

exp(t2/2)�(t) + exp((t − r
√

2πe)2/2)(1 − �(t − r
√

2πe))
, (2)

�(·) being the standard normal cumulative distribution function. An interesting question was
raised in [1, p. 934] as to whether gCt,d

(vd) becomes deterministic for large d. Indeed, a
more general question is to determine those partial volumes of the typical cell which become
deterministic for large d .

In the next section we show that µd(Ct,d ∩ S1) and µd(Ct,d ∩ S2) have a nonnegative
covariance for any measurable subsets S1 and S2 of R

d , implying that var(µd(Ct,d ∩ S1)) ≤
var(µd(Ct,d ∩ S2)) ≤ var(µd(Ct,d)) if S1 ⊂ S2 ⊂ R

d . It then follows that, as d → ∞,
µd(Ct,d ∩ Ad) − E[µd(Ct,d ∩ Ad)] converges in L2 to 0 for any sequence of measurable sets
Ad ⊂ R

d , d = 1, 2, . . . . We further strengthen the L2 convergence to Lp convergence for all
p > 0. We also discuss conditions under which µd(Ct,d ∩ Ad)/ E[µd(Ct,d ∩ Ad)] converges
in L2 to 1 as d → ∞.

In Section 3 we consider the geometric covariogram of the typical cell and show that
var(gCt,d

(v)) ≤ 4 var(µd(Ct,d)) for all v ∈ R
d . Together with (1), this inequality implies

that, as d → ∞, gCt,d
(vd) − E[gCt,d

(vd)] converges in L2 to 0 for any sequence of vd ∈ R
d ,

d = 1, 2, . . . , which answers in the affirmative the aforementioned question raised in [1, p. 934].
(The L2 convergence can in fact be strengthened to Lp convergence for all p > 0.)

In Section 4 we consider the typical cell (centered at the origin) of the kth nearest-point
Poisson–Voronoi tessellation, k = 1, 2, . . . , defined by

C
(k)
t,d := {x ∈ R

d : #{X ∈ � : ‖x − X‖ < ‖x‖} = k − 1}. (3)

(See [12, Section 3.3.2] for a brief discussion.) Note that C
(1)
t,d = Ct,d . We show that, for

k = 1, 2, . . . and p > 0, µd(C
(k)
t,d ) converges in Lp to 1/λ as d → ∞, from which follows a
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large-dimensional independent and identically distributed property for nearest-neighbor counts
in two-ensemble Poisson point processes (see Remark 11).

2. Nonnegative covariance of partial volumes of the typical cell and its implications

Theorem 1. For any measurable subsets S1 and S2 of R
d , we have

cov(µd(Ct,d ∩ S1), µd(Ct,d ∩ S2)) ≥ 0.

If S1 ⊂ S2 ⊂ R
d then

var(µd(Ct,d ∩ S1)) ≤ var(µd(Ct,d ∩ S2)) ≤ var(µd(Ct,d)).

Proof. Without loss of generality, assume that λ = 1. For ease of notation, the subscript d

in Ct,d , µd , and ‖ · ‖d is suppressed. Letting 1S denote the indicator function of the set S and
Bv denote the ball centered at v with radius ‖v‖ (i.e. Bv = {x ∈ Rd : ‖x − v‖ < ‖v‖}), we
have, for x, y ∈ R

d ,

E[1Ct (x) − e−µ(Bx)][1Ct (y) − e−µ(By)] = E[1Ct (x)1Ct (y)] − e−µ(Bx)−µ(By)

= e−µ(Bx∪By) − e−µ(Bx)−µ(By)

≥ 0. (4)

Since, for any measurable set S ⊂ R
d ,

µ(Ct ∩ S) − E[µ(Ct ∩ S)] =
∫

S

[1Ct (x) − e−µ(Bx)] dx,

it follows by Fubini’s theorem and (4) that

cov(µ(Ct ∩ S1), µ(Ct ∩ S2)) = E
∫

S1

[1Ct (x) − e−µ(Bx)] dx

∫
S2

[1Ct (y) − e−µ(By)] dy

=
∫

S1×S2

E[1Ct (x) − e−µ(Bx)][1Ct (y) − e−µ(By)] dx dy

≥ 0.

If S1 ⊂ S2 then µ(Ct ∩ S2) = µ(Ct ∩ S1) + µ(Ct ∩ (S2 \ S1)), so that

var(µ(Ct ∩ S2))

= var(µ(Ct ∩ S1)) + var(µ(Ct ∩ (S2 \ S1))) + 2 cov(µ(Ct ∩ S1), µ(Ct ∩ (S2 \ S1)))

≥ var(µ(Ct ∩ S1)).

This completes the proof.

Remark 1. Note that the inequality in (4) is strict unless the origin 0 lies in the line segment
connecting x and y. It follows that, for measurable subsets S1 and S2 of R

d with d ≥ 2,
cov(µd(Ct,d ∩ S1), µd(Ct,d ∩ S2)) > 0 if µd(S1) > 0 and µd(S2) > 0. (For d = 1,
µd(Ct,d ∩ S1) and µd(Ct,d ∩ S2) are independent if S1 ⊂ (−∞, 0) and S2 ⊂ (0, ∞).)
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Remark 2. By direct calculations, Alishahi and Sharifitabar [1] showed that, as d → ∞,
var(µd(Ct,d ∩S)) decays to 0 at a geometric rate when S is a ball centered at 0. By Theorem 1,
this is true for general S. While a small value of var(µd(Ct,d ∩ S)) implies that µd(Ct,d ∩ S)

is close to its mean with high probability, it does not say much about volume degeneracy when
E[µd(Ct,d ∩ S)] is small, in which case a more relevant measure of volume degeneracy is the
coefficient of variation

CV(µd(Ct,d ∩ S)) :=
√

var(µd(Ct,d ∩ S))

E[µd(Ct,d ∩ S)] ,

since a small value of CV(µd(Ct,d ∩ S)) implies that µd(Ct,d ∩ S)/ E[µd(Ct,d ∩ S)] is
close to 1 with high probability. With rd = d−1/4(4/3

√
3)d/2, it follows from (1) that

limd→∞ CV(µd(Ct,d ∩ Ad)) = 0 whenever measurable sets Ad ⊂ R
d satisfy

lim
d→∞

E[µd(Ct,d ∩ Ad)]
rd

= ∞.

It would be of interest to find the optimal rate of rd satisfying the above property.

Remark 3. As an example, consider Ad = (0, ∞)nd ×R
d−nd = {(x1, . . . , xd) ∈ R

d : xi > 0,

i = 1, . . . , nd}, where 1 ≤ nd ≤ d is an integer. Note that the total volume of the typical cell
µd(Ct,d) can be divided into 2nd parts, one of which is µd(Ct,d ∩ Ad) and all of which have
the same distribution by symmetry. It follows that

λ−1 = E[µd(Ct,d)] = 2nd E[µd(Ct,d ∩ Ad)], (5)

var(µd(Ct,d)) ≥ 2nd var(µd(Ct,d ∩ Ad)),

since the covariance of each pair of the 2nd parts is nonnegative. We have, by (1),

var(µd(Ct,d ∩ Ad)) ≤ c

λ2
√

d
2−nd

(
4

3
√

3

)d

. (6)

While the bound in (6) is crude, (5) and (6) imply that limd→∞ CV(µd(Ct,d ∩ Ad)) = 0 if
lim supd→∞ nd/d < log 27/ log 4 − 2.

Remark 4. By [11, Theorem 10], limd→∞ E[µd(Ct,d)]n = λ−n, n = 1, 2, . . . , which implies
that µd(Ct,d) converges in Lp to λ−1 for all p > 0. We now show that, for any sequence of
measurable sets Ad ⊂ R

d , µd(Ct,d ∩Ad)−E[µd(Ct,d ∩Ad)] converges in Lp to 0 as d → ∞
for all p > 0. Letting Ud := µd(Ct,d ∩ Ad), md := E(Ud), and Vd := µd(Ct,d), and noting
that md ≤ E(Vd) = 1/λ, we have, for p > 2,

E |Ud − md |p = E |Ud − md |p1{|Ud−md |≤2/λ} + E |Ud − md |p1{|Ud−md |>2/λ},

E |Ud − md |p1{|Ud−md |≤2/λ} ≤
(

2

λ

)p−2

E |Ud − md |21{|Ud−md |≤2/λ}

≤
(

2

λ

)p−2

var(Ud)

→ 0 as d → ∞,
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E |Ud − md |p1{|Ud−md |>2/λ} ≤ E |Ud − md |p1{Ud>2/λ}
(since |Ud − md | > 2/λ implies that Ud > 2/λ)

≤ E |Vd − md |p1{Vd>2/λ} (since Vd ≥ Ud )

≤ 2p E |Vd − λ−1|p1{Vd>2/λ}
≤ 2p E |Vd − λ−1|p
→ 0 as d → ∞,

where the second-to-last inequality follows from the fact that Vd > 2/λ implies that 2(Vd −
1/λ) > Vd − md . This proves that µd(Ct,d ∩ Ad) − E[µd(Ct,d ∩ Ad)] converges in Lp to 0
as d → ∞ for all p > 0.

Remark 5. The following simple fact may have something to do with the volume degeneracy
property of the typical cell. Let Qd denote a typical point of the Poisson point process �d ,
and let Xi,d ∈ �d denote Qd ’s ith nearest neighbor. Then Xi,d − Qd, i = 1, 2, . . . , are
asymptotically orthogonal as d → ∞, i.e. for i = j ,

〈Xi,d − Qd, Xj,d − Qd〉d
‖Xi,d − Qd‖d‖Xj,d − Qd‖d

→ 0 in probability as d → ∞,

where 〈·, ·〉d is the inner product associated with the norm ‖·‖d . This fact is related to a result of
Newman et al. [11] which states that the number of points among Xi,d , i = 1, 2, . . . , that have
Qd as their nearest neighbor has a limiting Poisson distribution with mean 1 as d → ∞. Further
extensions to general kth nearest-neighbor counts with respect to the lp distance (1 ≤ p ≤ ∞)

can be found in [10] and [13], where p = ∞ refers to the supnorm distance.

3. Bound on the variance of the geometric covariogram of the typical cell

Theorem 2. For all v ∈ R
d , we have

var(µd(Ct,d ∩ (Ct,d + v))) ≤ 4 var(µd(Ct,d)).

Proof. Without loss of generality, assume that λ = 1. For ease of notation, we suppress the
subscript d in Ct,d , µd , and ‖ · ‖d . Recall that Bv = {x ∈ R

d : ‖x − v‖ < ‖v‖}. Since

µ(Ct ∩ (Ct + v)) =
∫

Rd

1Ct (x)1Ct (x − v) dx

and

E[µ(Ct ∩ (Ct + v))] =
∫

Rd

e−µ(Bx∪Bx−v) dx,

we have, by Fubini’s theorem,

var(µ(Ct ∩ (Ct + v)))

= E
∫

Rd

[1Ct (x)1Ct (x − v) − e−µ(Bx∪Bx−v)] dx

∫
Rd

[1Ct (y)1Ct (y − v) − e−µ(By∪By−v)] dy

=
∫

Rd×Rd

[E 1Ct (x)1Ct (x − v)1Ct (y)1Ct (y − v) − e−µ(Bx∪Bx−v)−µ(By∪By−v)] dx dy

=
∫

Rd×Rd

[e−µ(Bx∪Bx−v∪By∪By−v) − e−µ(Bx∪Bx−v)−µ(By∪By−v)] dx dy. (7)
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Note that

µ(Bx ∪ Bx−v) + µ(By ∪ By−v) − µ(Bx ∪ Bx−v ∪ By ∪ By−v)

= µ((Bx ∪ Bx−v) ∩ (By ∪ By−v))

= µ((Bx ∩ By) ∪ (Bx ∩ By−v) ∪ (Bx−v ∩ By) ∪ (Bx−v ∩ By−v))

≤ µ(Bx ∩ By) + µ(Bx ∩ By−v) + µ(Bx−v ∩ By) + µ(Bx−v ∩ By−v), (8)

so that, by (7),

var(µ(Ct ∩ (Ct + v)))

=
∫

Rd×Rd

e−µ(Bx∪Bx−v∪By∪By−v)

× [1 − e−µ(Bx∪Bx−v)−µ(By∪By−v)+µ(Bx∪Bx−v∪By∪By−v)] dx dy

≤
∫

Rd×Rd

e−µ(Bx∪Bx−v∪By∪By−v)

× [1 − e−µ(Bx∩By)−µ(Bx∩By−v)−µ(Bx−v∩By)−µ(Bx−v∩By−v)] dx dy

≤
∫

Rd×Rd

e−µ(Bx∪Bx−v∪By∪By−v)[1 − e−µ(Bx∩By) + 1 − e−µ(Bx∩By−v)

+ 1 − e−µ(Bx−v∩By) + 1 − e−µ(Bx−v∩By−v)] dx dy,

where the last inequality follows from the simple fact that

1 − exp

(
−

k∑
i=1

ai

)
≤

k∑
i=1

(1 − e−ai ) for ai ≥ 0, i = 1, . . . , k.

Then var(µ(Ct ∩ (Ct + v))) ≤ α1 + α2 + α3 + α4, where

α1 :=
∫

Rd×Rd

e−µ(Bx∪Bx−v∪By∪By−v)[1 − e−µ(Bx∩By)] dx dy,

α2 :=
∫

Rd×Rd

e−µ(Bx∪Bx−v∪By∪By−v)[1 − e−µ(Bx∩By−v)] dx dy,

α3 :=
∫

Rd×Rd

e−µ(Bx∪Bx−v∪By∪By−v)[1 − e−µ(Bx−v∩By)] dx dy,

α4 :=
∫

Rd×Rd

e−µ(Bx∪Bx−v∪By∪By−v)[1 − e−µ(Bx−v∩By−v)] dx dy.

We have

α1 ≤
∫

Rd×Rd

e−µ(Bx∪By)[1 − e−µ(Bx∩By)] dx dy

=
∫

Rd×Rd

[e−µ(Bx∪By) − e−µ(Bx)−µ(By)] dx dy

= var(µ(Ct )),

and similarly αi ≤ var(µ(Ct )), i = 2, 3, 4. This completes the proof.
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Remark 6. By Theorem 2 we have

1 ≤ sup
v∈Rd

var(µd(Ct,d ∩ (Ct,d + v)))

var(µd(Ct,d))
≤ 4.

In view of Theorem 1, it seems natural to ask whether

var(µd(Ct,d ∩ (Ct,d + v))) ≤ var(µd(Ct,d))

for all v ∈ R
d .

Remark 7. By a similar argument, it can be shown that, for every measurable set S ⊂ R
d and

v ∈ R
d , var(µd(S ∩ Ct,d ∩ (Ct,d + v))) ≤ 4 var(µd(Ct,d)), and that, for k = 1, 2, . . . and

v1, . . . , vk ∈ R
d ,

var(µd(Ct,d ∩ (Ct,d + v1) ∩ · · · ∩ (Ct,d + vk))) ≤ (k + 1)2 var(µd(Ct,d)).

To see why a factor of (k + 1)2 appears in the latter inequality, we extend (7) and (8) to
obtain, with v0 := 0, µ := µd , and Ct := Ct,d ,

var

(
µ

( k⋂
i=0

(Ct + vi)

))
=

∫
(Rd )2

[
exp

{
−µ

(( k⋃
i=0

Bx−vi

)
∪

( k⋃
j=0

By−vj

))}

− exp

{
−µ

( k⋃
i=0

Bx−vi

)
− µ

( k⋃
j=0

By−vj

)}]
dx dy

and

µ

( k⋃
i=0

Bx−vi

)
+ µ

( k⋃
j=0

By−vj

)
− µ

(( k⋃
i=0

Bx−vi

)
∪

( k⋃
j=0

By−vj

))

≤
k∑

i=0

k∑
j=0

µ(Bx−vi
∩ By−vj

),

which is a sum of (k + 1)2 terms. The desired inequality then follows along the lines of the
proof of Theorem 2.

Remark 8. By Theorem 2 we have µd(Ct,d ∩ (Ct,d + rvd)) converges in L2 to c(r, λ) for
any sequence of vd ∈ R

d satisfying ‖vd‖d = 1, d = 1, 2, . . . , where c(r, λ) is given in (2).
Furthermore, we can use the argument in Remark 4 to strengthen the L2 convergence to Lp

convergence for all p > 0.

4. Volume degeneracy of the typical cell of the kth nearest-point Poisson–Voronoi
tessellation

Recall that C
(k)
t,d as defined in (3) is the typical cell of the kth nearest-point Poisson–Voronoi

tessellation. Note that E[µd(C
(k)
t,d )] = 1/λ. We first prove the following main result of this

section.
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Theorem 3. For k = 1, 2, . . . and n = 1, 2, . . . , we have

lim
d→∞ E[µd(C

(k)
t,d )]n = λ−n.

Consequently, µd(C
(k)
t,d ) converges in Lp to λ−1 as d → ∞ for all p > 0.

Proof. Without loss of generality, assume that λ = 1. The case k = 1 is contained in
Theorem 10 of Newman et al. [11]. Their proof can be adapted to general k as described below
in detail. Letting Dk,d := ⋃k

i=1 C
(i)
t,d , since E[µd(Dk,d)] = ∑k

i=1 E[µd(C
(i)
t,d )] = k, Lemma 4,

below, implies that var(µd(Dk,d)) → 0 as d → ∞, so that the distribution of µd(Dk,d) is
asymptotically degenerate at k as d → ∞. By Lemma 5, below, we have, for all k and n,

sup
d

E[µd(Dk,d)]n < ∞,

which together with the asymptotic degeneracy of µd(Dk,d) at k implies that

lim
d→∞ E[µd(Dk,d)]n = kn.

Since µd(C
(k)
t,d ) = µd(Dk,d) − µd(Dk−1,d ), where D0,d := ∅, the theorem follows.

Lemma 1. Let Dk,d := ⋃k
i=1 C

(i)
t,d . Then, for x, y ∈ R

d ,

E[1Dk,d
(x)1Dk,d

(y)] ≥ E[1Dk,d
(x)] E[1Dk,d

(y)].
Proof. Let N1 := #(� ∩ (Bx \ By)) (the number of �-points in Bx \ By), N2 := #(� ∩

(By \Bx)), and N3 := #(�∩Bx ∩By). Then N1, N2, and N3 are independent Poisson random
variables, and {x ∈ Dk,d} = {N1 + N3 ≤ k − 1} and {y ∈ Dk,d} = {N2 + N3 ≤ k − 1}.
It can be readily shown that the conditional distribution of N3 given that N1 + N3 ≤ k − 1
is stochastically smaller than the (unconditional) distribution of N3, which implies that the
conditional distribution of N2 + N3 given that N1 + N3 ≤ k − 1 is stochastically smaller than
the (unconditional) distribution of N2 + N3. It follows that

P(N2 + N3 ≤ k − 1 | N1 + N3 ≤ k − 1) ≥ P(N2 + N3 ≤ k − 1),

which is equivalent to the desired inequality, completing the proof.

For the lemmas below, assume that λ = 1. For given −1 ≤ w ≤ 1, ρ1 > 0, and ρ2 > 0, let
x, y ∈ R

d be any points satisfying

ρ1 = µd(Bx) = νd‖x‖d
d , ρ2 = µd(By) = νd‖y‖d

d , w = 〈x, y〉d
‖x‖d‖y‖d

, (9)

where νd = πd/2/	(d/2 + 1) is the d-volume of the unit ball in R
d . Let

Pk,d(w, ρ1, ρ2) := P{#(� ∩ Bx) ≤ k − 1, #(� ∩ By) ≤ k − 1},
which depends on x and y only through w, ρ1, and ρ2. Note that

Pk,d(w, ρ1, ρ2) = E[1Dk,d
(x)1Dk,d

(y)] (10)

for x and y satisfying (9). Let Wd := 〈X, Y 〉d , where X and Y are independent and uniformly
distributed on the unit sphere Sd−1 in R

d . It can be shown (cf. [11, p. 742]) that the density
function of Wd, fd(w), is proportional to (1 − w2)(d−3)/2, −1 ≤ w ≤ 1.
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Lemma 2. Assume that λ = 1. We have

E[µd(Dk,d)]2 =
∫ ∞

0

∫ ∞

0

∫ 1

−1
Pk,d(w, ρ1, ρ2)fd(w) dw dρ1 dρ2.

Proof. For notational simplicity, write µ = µd, D = Dk,d , and 〈·, ·〉 = 〈·, ·〉d . We have

E[µ(D)]2 =
∫

(Rd )2
E[1D(x)1D(y)] dx dy

=
∫ ∞

0

∫ ∞

0
M(r1, r2)σdrd−1

1 dr1σdrd−1
2 dr2, (11)

where σd = 2πd/2/	(d/2) is the (d − 1)-volume (surface area) of the unit sphere Sd−1, and
M(r1, r2) is the average value of E[1D(x)1D(y)] over x ∈ r1S

d−1 and y ∈ r2S
d−1 (spheres

of radii r1 and r2). To find M(r1, r2), note that E[1D(x)1D(y)] depends on x ∈ r1S
d−1 and

y ∈ r2S
d−1 only through r1, r2, and w = 〈x, y〉/r1r2. For given w, r1, and r2, let

L(w, r1, r2) := E[1D(x)1D(y)] (12)

for any x ∈ r1S
d−1 and y ∈ r2S

d−1 satisfying w = 〈x, y〉/r1r2. Then the average value
M(r1, r2) of E[1D(x)1D(y)] over x ∈ r1S

d−1 and y ∈ r2S
d−1 equals

∫ 1

−1
L(w, r1, r2)fd(w) dw,

since fd(w) is the density of w = 〈x, y〉/r1r2 with x/r1 and y/r2 interpreted as independent
random variables uniformly distributed on Sd−1. Thus, by (11),

E[µ(D)]2 =
∫ ∞

0

∫ ∞

0

∫ 1

−1
L(w, r1, r2)fd(w) dwσdrd−1

1 dr1σdrd−1
2 dr2. (13)

Letting ρi := σdrd
i /d(= νdrd

i ), i = 1, 2, note that x and y satisfy x ∈ r1S
d−1, y ∈ r2S

d−1,
and w = 〈x, y〉/r1r2 if and only if x and y satisfy (9). So, by (10) and (12), L(w, r1, r2) =
Pk,d(w, ρ1, ρ2), which together with (13) completes the proof.

Lemma 3. For −1 ≤ w ≤ 1, ρ1 > 0, and ρ2 > 0, let x and y be any points satisfying (9).
Then

µd(Bx ∩ By) ≤
(

1 + w

2

)d/2

max{ρ1, ρ2}.

Proof. Let ρ := max{ρ1, ρ2}, x′ := (ρ/ρ1)
1/dx, y′ := (ρ/ρ2)

1/dy, so that µd(Bx′) =
µd(By′) = ρ and 〈x′, y′〉d/‖x′‖d‖y′‖d = w, and Bx ∩ By ⊂ Bx′ ∩ By′ . Since the angle θ

between the line segments x′0 and y′0 satisfies cos θ = w (0 ≤ θ ≤ π), the intersection of
Bx′ ∩By′ with the (d−1)-dimensional hyperplane passing through (x′+y′)/2 and perpendicular
to x′y′, is a (d − 1)-dimensional ball centered at (x′ + y′)/2 with radius ‖(x′ + y′)/2‖d =
‖x′‖d cos(θ/2) = (ρ/νd)1/d cos(θ/2). It is readily seen that Bx′ ∩ By′ is contained in the
(d-dimensional) ball centered at (x′ + y′)/2 with radius (ρ/νd)1/d cos(θ/2). It follows that

µd(Bx ∩ By) ≤ µd(Bx′ ∩ By′) ≤ ρ cosd

(
θ

2

)
= ρ

(
1 + w

2

)d/2

,

completing the proof.
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Lemma 4. Assume that λ = 1. As d → ∞, E[µd(Dk,d)]2 → k2.

Proof. For ρ1 > 0 and ρ2 > 0, let

Gd(ρ1, ρ2) :=
∫ 1

−1
Pk,d(w, ρ1, ρ2)fd(w) dw, (14)

so that, by Lemma 2,

E[µd(Dk,d)]2 =
∫ ∞

0

∫ ∞

0
Gd(ρ1, ρ2) dρ1 dρ2. (15)

By (10), for x and y satisfying (9),

Pk,d(w, ρ1, ρ2) = E[1Dk,d
(x)1Dk,d

(y)] ≤ E[1Dk,d
(z)] = P{#(� ∩ Bz) ≤ k − 1},

where z := x1ρ1≥ρ2 + y1ρ1<ρ2 . Since µd(Bz) = max{ρ1, ρ2},

Pk,d(w, ρ1, ρ2) ≤
k−1∑
i=0

(max{ρ1, ρ2})i
i! e− max{ρ1,ρ2} ≤ cke− max{ρ1,ρ2}/2, (16)

where

ck := sup
u>0

k−1∑
i=0

ui

i! e−u/2 < ∞. (17)

It follows by (14) that Gd(ρ1, ρ2) ≤ cke− max{ρ1,ρ2}/2. If we can show that

lim
d→∞ Gd(ρ1, ρ2) =

(k−1∑
i=0

ρi
1

i! e−ρ1

)(k−1∑
i=0

ρi
2

i! e−ρ2

)
for ρ1 > 0 and ρ2 > 0, (18)

then it follows from the dominated convergence theorem and (15) that

lim
d→∞ E[µd(Dk,d)]2 =

∫ ∞

0

∫ ∞

0

(k−1∑
i=0

ρi
1

i! e−ρ1

)(k−1∑
i=0

ρi
2

i! e−ρ2

)
dρ1 dρ2 = k2.

It remains to establish (18). For fixed ρ1 and ρ2, we have, by (16),∫ 1

1/2
Pk,d(w, ρ1, ρ2)fd(w) dw ≤ cke− max{ρ1,ρ2}/2

∫ 1

1/2
fd(w) dw → 0 as d → ∞. (19)

For −1 ≤ w ≤ 1
2 , we have, by (10) with x and y satisfying (9),

Pk,d(w, ρ1, ρ2)

= P{#(� ∩ Bx) ≤ k − 1, #(� ∩ By) ≤ k − 1}
≤ P{#(� ∩ Bx ∩ By) > 0}

+ P{#(� ∩ (Bx \ By)) ≤ k − 1, #(� ∩ (By \ Bx)) ≤ k − 1}

= 1 − e−u(w) +
(k−1∑

i=0

(ρ1 − u(w))i

i! e−ρ1+u(w)

)(k−1∑
i=0

(ρ2 − u(w))i

i! e−ρ2+u(w)

)

→
(k−1∑

i=0

ρi
1

i! e−ρ1

)(k−1∑
i=0

ρi
2

i! e−ρ2

)
as d → ∞, (20)
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uniformly in −1 ≤ w ≤ 1
2 , where u(w) := µd(Bx ∩ By) ≤ [(1 + w)/2]d/2 max{ρ1, ρ2} by

Lemma 3. On the other hand, by Lemma 1 we have, for −1 ≤ w ≤ 1 and x and y satisfying
(9),

Pk,d(w, ρ1, ρ2) = E[1Dk,d
(x)1Dk,d

(y)]
≥ E[1Dk,d

(x)] E[1Dk,d
(y)]

=
(k−1∑

i=0

ρi
1

i! e−ρ1

)(k−1∑
i=0

ρi
2

i! e−ρ2

)
,

which together with (19) and (20) implies (18). The proof is complete.

Lemma 5. Assume that λ = 1. We have

E[µd(Dk,d)]n ≤ ck2nn!, n = 1, 2, . . . ,

where ck is as defined in (17).

Proof. Write µ = µd, ‖ · ‖ = ‖ · ‖d , and D = Dk,d for notational simplicity. By Fubini’s
theorem,

E[µ(D)]n =
∫

(Rd )n
E[1D(x1) · · · 1D(xn)] dx1 · · · dxn

≤
∫

(Rd )n
E[1D(xI (n))] dx1 · · · dxn, (21)

where I (n) = I (n, x1, . . . , xn) := min{1 ≤ i ≤ n : ‖xi‖ ≥ ‖xj‖ for all 1 ≤ j ≤ n}. We have

E[1D(xI (n))] = P{#(� ∩ BxI(n)
) ≤ k − 1} =

k−1∑
i=0

ui

i! e−u ≤ cke−u/2, (22)

where u := µ(BxI(n)
) = max{µ(Bxi

) : i = 1, . . . , n}. It follows from (21) and (22) that

E[µ(D)]n ≤ ck

∫
(Rd )n

exp

(
−1

2
max

1≤i≤n
µ(Bxi

)

)
dx1 · · · dxn = ckn!

(
1

2

)−n

,

where the equality is derived in the proof of Lemma 3.1 in [1, pp. 922, 923]. The proof is
complete.

Remark 9. Similarly to Theorem 1, it is easily shown from Lemma 1 that the covariance of
µd(Dk,d ∩ S1) and µd(Dk,d ∩ S2) is nonnegative for any measurable subsets S1 and S2 of R

d .
(Note that the nonnegative covariance property does not hold for C

(k)
t,d with k ≥ 2.) It then

follows that

var(µd(Dk,d ∩ S1)) ≤ var(µd(Dk,d ∩ S2)) ≤ var(µd(Dk,d)),

if S1 ⊂ S2 ⊂ R
d . So, by Theorem 3 for any measurable sets Ad ⊂ R

d , µd(Dk,d ∩ Ad) −
E[µd(Dk,d ∩Ad)] converges in L2 to 0 as d → ∞. Since µd(C

(k)
t,d ∩ Ad) = µd(Dk,d ∩Ad)−

µd(Dk−1,d ∩Ad), we have µd(C
(k)
t,d ∩Ad) − E[µd(C

(k)
t,d ∩ Ad)] converges in L2 to 0 as d → ∞.

By the argument in Remark 4, the L2 convergence can be strengthened to Lp convergence for
all p > 0.
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Remark 10. Along the lines of the proof of Lemma 4 with more refined calculations, it can
be shown that var(µd(Dk,d)) decays to 0 at a geometric rate as d → ∞, which in turn implies
that var(µd(C

(k)
t,d )) decays to 0 at a geometric rate as d → ∞. Define, for k = 1, 2, . . . ,

ρk := inf

{
ρ > 0 : sup

d

var(µd(C
(k)
t,d ))

ρd
< ∞

}
.

While Alishahi and Sharifitabar [1] obtained ρ1 = 4/3
√

3, it is of theoretical interest to find the
exact value of ρk for k ≥ 2 as well as to study the qualitative behavior of the ρk . In particular,
it seems of interest to know whether the ρk are monotone in k.

Remark 11. Newman et al. [11, Theorem 10] considered a two-ensemble d-dimensional
Poisson point process with �1-points of intensity λ1 and �2-points of intensity λ2. Let
Q�1 denote a typical �1-point, and let Nk,d, k = 1, 2, . . . , be the number of �2-points
that have Q�1 as their kth nearest �1-neighbor. Newman et al. proved that, as d → ∞, N1,d

is asymptotically Poisson with mean λ2/λ1. Denote by C
(k)
t,d,�1

the (typical) kth nearest-point
Voronoi cell centered at Q�1 generated by the �1-points. Then Nk,d is the number of �2-points
in C

(k)
t,d,�1

. Since, as d → ∞, µd(C
(k)
t,d,�1

) is asymptotically degenerate at 1/λ1, k = 1, 2, . . . ,
and since, conditional on µd(C

(k)
t,d,�1

), k = 1, 2, . . . , the Nk,d are independent Poisson random

variables with means λ2µd(C
(k)
t,d,�1

), it follows that, as d → ∞, the Nk,d, k = 1, 2, . . . , are
asymptotically independent and identically distributed Poisson with mean λ2/λ1.
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