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PRIME ENTIRE FUNCTIONS WITH PRESCRIBED
NEVANLINNA DEFICIENCY
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1. Introduction.

According to [4] a meromorphic function n(z) = f(g)() is said to
have f(2) and g(z) as left and right factors respectively, provided that
f(2) is non-linear and meromorphic and ¢g(z) is non-linear and entire (g
may be meromorphic when f(z) is rational). (z) is said to be E-prime
(E-pseudo prime) if every factorization of the above form into entire
factors implies that one of the functions f, or g is linear (polynomial).
h(z) is said to be prime (pseudo-prime) if every factorization of the above
form, where the factors may be meromorphic, implies that one of f or
¢ is linear (a polynomial or f is rational).

Recently the following result was proved by Goldstein [3].

THEOREM 1. Let F(z) be an entire function of finite order such that
da,F) =1 for some a = oo, where 6&(a,F) denotes the Nevanlinna
deficiency. Then F(z) is E-pseudo prime.

The above theorem might suggest that for an entire function of
finite order the existence of Nevanlinna deficiency and the primeness of
a function are closely related to each other. The purpose of this note
is to show that it is not the case in general. More precisely, we shall
show the following:

THEOREM 2. Given any integer k > 0, and constant ¢, 0 < ¢ <1,
one can construct a prime function f of order k with 50, f) = c.

Remark. By a well-known result of Nevanlinna [7] one sees im-
mediately why the above result cannot hold for an arbitrary real positive k.

Received September 6, 1971.

1 Mathematics Research Center, Naval Research Laboratory, Washington, D.C.,
and University of Maryland, Baltimore County.
2 Mathematics Research Center, Naval Research Laboratory, Washington, D.C.

91

https://doi.org/10.1017/50027763000014938 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014938

92 FRED GROSS, CHARLES 0SGOOD AND CHUNG-CHUN YANG

The proof of Theorem 2 also yields the following result.

THEOREM 3. Given any 0 < ¢ < 1, there exist real constants 2, and
A, such that the function F = ze"*(e*® + 1) satisfies (0, F) = c.

Theorem 3 gives us an example of functions of infinite order which
are not pseudo-prime and which have a prescribed deficiency. The
analogous problem for functions of finite order remains open.

2. Definitions and preliminary lemmas.

We shall say that a polynomial in z with complex coefficients has
property R if (i) p(2) is monic, (ii) p(0) = 0, and (iii) for some sequence
of points (a,) tending to o each root of p(z) — a, =0 lies on one of a
finite number of fixed rays 7, ---,7; out from z = 0, for some positive
integer I. If 2ze¢C,z+# 0, and z = |z2|e? where —7x < 6 <z we define
arg (z) to be 4.

LEMMA 1. (i) The polynominal p(z) has property R if and only if
() = z%"(z%" + b) for some beC and positive integer k. (i) If b #0
all but at most a finite number of the a, lie on the ray defined by
arg (2) = 2(arg (b)) modulo 2z, while if b = 0 the a’s lie on any finite
collection of rays out from z = 0.

Proof. We shall first show the “if” part of (i). If b = 0 this is
trivial. If b + 0 set b = |ble. Choose the a, to all be of the form a,
= |a,|¢®. Then we may write our equations as (2**¢™")* + |b|(zte™") = |a,|.
Since |Dff + 4|a,| > 0 each z which is a root must be such that z#¢' is
real. Thus the roots must lie on a finite number of rays out from z = 0.

The greater part of this proof will be spent establishing the “only
if” part of (i). In doing so we shall show, also, that if p(2) has property
E then there exists a subsequence of the a, consisting only of points a,
with each arg (a,) = « for some —7 < o« <z. We shall now use this last
assertion to help prove (ii) and shall then return to the proof of (i).
If b =0 in (i) there is nothing to prove. If b = 0 pass to a subsequence
of the (¢,) where each arg(a,) # 2(arg (b)) modulo2z. (If this is not
possible we are through.) We shall now obtain a contradiction. Note
that as |a,| goes to co the absolute values of the roots of p(2) —a, =0
go to oo also. Now arg (a,) = arg (p(z,,)) where p(z,,) = a, and each 2,
belongs to the ray 7, say. Thus
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arg (a,) = arg (@*)(¥: + b))

1
(1) = (k(arg (2,,) + arg (1 + bz;#)) modulo 2 .

Since arg (a,) and arg (z,,) are constants then so is arg (1 + bz;#).
As |a,| goes to infinity |z,,| goes to infinity and arg (1 + bz;ék) goes to
zero. Thus each arg (1 + bz7) = 0 so every bz is real and each b%;F
is positive. Also, from (1) we have now that

arg (a,) = k(arg (2,,)) modulo 2z
so, since b’%2;F is positive,
arg (a,) = 2(arg (b)) modulo 2z .

This contradiction proves (ii) subject to our (as yet) unproven
assertion.

We next begin the proof of the “only if” part of (i). Let us look
at the k different algebraic functions

2a) = p'a¥™" + by + b_p7laTE T 4 .

for 1 < j < k) which are roots of p(z) = @, where p = exp (2ztk™") and
the expressions are valid for all sufficiently large |a|. Let us now pass
to a subsequence of the (a,) such that each series for z,(a,) converges
and each arg (z;(a,)) is constant (recall that there are only a finite number
of values possible). Define —z < ¢;(y) < = by

(2) arg (z;(a,)) = (k™' arg (a,) + jk7'(2r) + ¢;(y)) modulo 2x ,
for each 1 < j < k. Note that for each 1 < 7,7, < k

e;,(1) — €;,(7) = (arg (2;(a,) — arg (z,,(a,)

(3) e
— (j, — 7))k '2r) modulo 27 ,

and the right hand side above is a constant. Also each limeyy) =0

700

since p/(a)*" is the dominant term of the expansion for z,(@,) about
infinity. Thus each lim (¢;,(y) — ¢,(y)) = 0 — 0 = 0, so every ¢;,(y) — ¢;,(7)
= 0 modulo 2. o

We now require that each |a,| be sufficiently large to guarantee that
every |e;,(y)| < k7'w/2. Then every ¢;,(y) — e;,(;) = 0. Sete(y) =e(p) = ---

k
= e(y). Since *a, = [] z;(a,) we have
i=1

arg (a,) = arg (a,) + (k¥ — Dz + ke(y) moduloz ,
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S0 ke(y) = O modulo z. Thus «(y) = 0 for all sufficiently large y. Then
by (2) with each ¢;(y) = 0 we see that arg (a,) is a constant on our sub-
sequence. (This proves the statement needed in the proof of (ii).) From
now on we assume that k > 2, since there is nothing to prove if &k = 2.
Also we have from (2) that, for each 1 <j <k,

(4) arg (z;(a,)) = (k~'(arg (a,)) + jk~'(2r)) modulo 2x .

Equation (4) says that each z;(a,) has an argument equal to the
argument of the dominant term in its expansion about a, = co. We shall
next show by induction that for all non-negative integers n,b_, = 0 unless
k divides 2(n + 1). Further if b_, #+ 0, then, for sufficiently largery,
arg (b_n(p’af™)"") = arg (o’a¥"*) modulox. (Actually, we are only interested
in proving the first statement but the second statement is needed in order
to make the induction go through.) Since k > 2 we must show that b,
= 0. Suppose b, # 0, then for sufficiently largey we see that z,(a,) —
©(a)¥"" does not vanish so

k=X arg (a,) + 7(2n)) = lrlff} (arg (24(a,)) — pi(a)*™)
= arg (b,) modulo = ,

for each 0 < j <k —1. Since k> 2 this is impossible. Thus b, = 0.
Now assume the induction assumption for all 0 <l <n —1 and that

b_, # 0. If y is sufficiently large z,(a,) — ni b_1(p’ai™)t = 0 so that we
L=0
have

k~'(arg (a,) + j(2n)) = arg (2;(a,)) modulo 2z
(5) = arg (2,(a) — 3 b_i(par™)"") modulor
= arg (b_,(paf™)™) .

This proves the second statement in our induction assumption. Also
we see from (5) that

kE7'((arg (@)(n + 1) + j@2n)(n + 1)) = arg (b_,) modulo = .

Setting 7 = 1,0 and subtracting we see that £ '2(n + 1)(z) = 0 modulo =.
Therefore k& divides 2(n + 1) if b_, = 0. This completes the proof by
induction.

We know that p(z) — a = ﬁ (z — 2;(a)) and that each
j=1
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24(@) = pI0F 4 b_ gy (P10 HED b (paE )
+ O((@+) )

where the last term indicates an infinite number of terms of order
(@®™)~4¢&-Y and lower. Since the coefficients of p(z) are independent of

a, if we put in the different series for the z,(¢) in ﬂ (z — z;(a)) and

find the total coefficient of a’z' = 2!, for 0 < I < k — 1 we will have the
coefficient of 2! in p(2). Our statement which must be demonstrated is
that this coefficient vanishes if above ! # {k. We shall show that it is
impossible to find a term in the product above which equals a coefficient
times a%*', if 0 <1<k —1 and!l = k. It is clearly impossible to obtain
such a term if we choose any factor from O((a* *)~%*-Y), Also choosing
a factor of (p/a*™")~*P, for any 1 <j <k, forces us to choose ¥ — 1
factors of the form (p’a**) and forces ! to be zero. Thus the problem
reduces to showing that one cannot find two non-negative integers #, and
h, such that 0 < &, + h, < k and (a* ") (qF~*)~re@k-D) = o = 1 unless h, +
h, = %k. Since k > 2, h, can equal only either 1 or 2. If h, =1, then
hy=%k—1, so hy + h,=%k. If h,=2 then h =k —2 so h, + h, =k,
contrary to our assumption. This proves Lemma I.

LEMmMmA II. If a,B,7 are complex constants with By = 0 and n is a
positive integer then y = yz(e* + €") takes on all values.

Proof. Suppose the statement is false. Then, by a result of Borel
[1], one will obtain a contradiction. We leave the details to the reader.

LEMMA III. The function y = yz(e=" + €") cannot be written in the
form p(g) where g is entire, p is any nonzero, nonlinear polynomial, n
is @ positive integer, Br + 0, and «f™ is real.

Proof. We shall assume that vy = p(g) where ¥, g, and p = p(w) are
as above. This will lead us to the conclusion that y takes on at least
one value infinitely often with multiplicity larger than one; however,
this latter conclusion will subsequently be shown to be false. Since p(w)
is nonlinear, p’(w) = 0 has at least one solution, w,. Thus when g(z) =
w, we have that y(z) = p(w,) and has multiplicity greater than one. If
p’(w) = 0 has two or more solutions g cannot omit both roots, hence ¥
must take on the value of p(w,) infinitely often with multiplicity greater
than one, for some w, such that p’(w;) = 0. If w, is the only root of
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p'(w) = 0 then pw) = p®(w)k!) (w — wy)* + p(w, for some positive
integer k¥ > 2. Then either g takes on the value w, infinitely often (so
that y takes on the value p(w,) infinitely often with multiplicity greater
than one) or g takes on the value w, only finitely often (so y takes on
the value p(w,) only finitely often, since p(w) — p(w,) has only one zero).
By Lemma II y does not omit any values, therefore ¥ does assume some
value o = p(w,) infinitely often with multiplicity greater than one. We
shall next show that this is impossible.

It is necessary first to dispose of the special cases when a« =0 or
a« = . Suppose @« =0. Then replacing z by ¥ 8z and then p(w) by
(¥ B) ") 'p(w) we may assume, without loss of generality, that y =
2(e" +1). (Similarly, if af™ = 1, we may assume that y = ze*".) Notice
that a # 0, since if z# 0, 2(e + 1) = 0, and nz"e?” + (¢¢" + 1) = 0 we
would have that ¢ =0. If a + 0 then, for all nonzero z, if y(2) = a
and ¥'(z) =0 we have 0 = (W (@)(yR®)) ! =27 + nz*" e + 1) ' =271 +
nz"e"a' = 27+ ne" o — 2ot =27 + nz* ' — na'z®.  For fixed a # 0
this equation has at most n 4+ 1 distinet solutions. Suppose that ze”" =
a,e”" + nze’” =0, and 2% 0. Then z7'a + 2" 'a = 0. Since z %0 we
see that @ # 0. Thus we have 27! + nz"!' = 0 which can have at most
n distinet solutions. .

If apy + 0 and ™! = 1, then without loss of generality we may take
y to be of the form % = z(e*" + ¢*") where 2 <1 but 2% 0. Suppose
a = 0. Then requiring that z == 0, the equations z(e*" + ¢*") =0 and
e + e*") + nz* (e + ¢") = 0 imply that e¢*" = ¢ = 0. This contra-
diction shows that a -+ 0. Now assuming that @ = 0 andz = 0 we have
0=12z"14nzr(Ae™ + e (™ + ") = 27! + " oY a + z(2 — 1)e*").
Then " = a(l 4+ nzM)(nz"*'(A — )7, so substituting back in z(e*" 4 ")
= a we have

2l + nzM(nz"* (1 — D)™ + 2(a(l + ("1 - D) =a,

for an appropriate choice of the 2-th root above. Regardless of this
choice, however, we see upon taking absolute values that oo > |a| >
[z]-]a(1 + nz®)(ne* (A — )7 — [2]-]a(l + nz")(nz"* (1 — 2)7Y. As |z| goes
to infinity the first term on the right hand side above goes to + co while
the second term remains bounded. This contradiction proves Lemma III.

The following lemma is essentially an observation out of Goldstein’s
proof of Theorem 1.
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LEMMA IV. Let F(2) = ze®*(e*® + 1), where k is a positive integer
and a is a positive real number. Then F is E-pseudo prime.

Sketch of the proof. Set
K@ = (e +1).

Then 6(—1,K) = 1, and so by virtue of a result of Edrei and Fuchs [2,
pp. 281-283] the estimate [2, p. 281] holds for K along a sequence of arcs
and segments. Now we note along those arcs and segments e* is bounded.
Hence the mentioned estimate holds not only for K but also for F(z).
Then following Goldstein’s argument we will arrive at the conclusion.

3. Proof of Theorem?2.

First of all, it is easy to verify that for any non-zero constants 2,
and 2, and any positive integer k, F'(z) = ze***(e** + 1) cannot be periodic.
Thus by virtue of a result of the first author [5], we need only to show
that F is E-prime.

When ¢ =0 or ¢ =1 we choose F' = z(e* + 1) or F = ze®*, respec-
tively, and it is easy to verify that they are all prime functions of order
k. Therefore, we restrict ourselves to the case 0 < ¢ < 1.

Let us choose

(6) F(z) = ze"(e™" + 1),

where 2, > 0 and 2, > 0 are chosen such that ji =c¢. We claim
1 2

that f(2) is E-prime with 6(0,F) = ¢. We first show that F is E-prime.
F is E-pseudo prime by virtue of Lemma IV. By Lemma III, F also
cannot assume the form F' = p(g) with p a polynomial and ¢ transcen-
dental entire. Thus we only need to consider the possibility that F can
be factorized as

(7) F(z) = g(p(2) ,

where g is transcendental, and p is a nonlinear polynomial. We may

assume without loss of generality that p(0) = 0 and that the leading
coefficient of p is one.

Now, according to Lemma 1,

(8) p(2) = 2™*(2"* 4+ D) .
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where n is an integer and b a constant. We claim that » = 1. Suppose
that » > 2. Then from (7) and (8) we have

(9) F(z) = ze" (" + 1) = g™z + D)) .

Now if b = 0, then % has to be even. Let us substitute z by {z into
identity (9) where ¢ is a (r/2)-th root of unity other than one when »n > 2,
and substitute z by —z — 6 when n = 2. Then by Borel’s result men-
tioned earlier one will obtain a contradiction. If b = 0, then n can be
even or odd. We again substitute z by ¢z into identity (9) and obtain
a contradiction unless » = 1 which means p(z) is linear. Thus we have
also excluded the possibility (7). Hence F' is E-prime, therefore is also
prime.

Now we proceed to show that 6(0,F) = ¢. Let us choose a non-
negative number 1 such that 1 4 4, = ni,, n a positive integer.

Multiplying F' by ¢** we have

(10) H(z) = ' F = zems#(ev* 4 1),
or
an HE = z2f"@(f@ + 1 ,

where f(z) = e,
According to a result of Hayman [6, p. 7]

T(r,H) = T(r,2f"@)(f() + 1) ~ T{r, f4=)(f(2) + D}

(12 ~ 4+ DT, ) ~ P T D g
T

Now we have by Nevanlinna’s first fundamental theorem and equation

(10) that
T(r,F) = F(r, He™*")
> T(r,H) — T(r,e™*) + OQ1)
> 0+ DA e 2 o)
(14) T s
T

=Athe o).
T

On the other hand
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T(r,F) = T(r, ze""(e™* + 1))
< T(r, e"*) + T(r, ") + O(log r)

(14) ~ P 4 A L O(log 1)

T T

= Atk Odogr) .

T
Thus from (13), (14), and noticing the fact that F' is transcendental, we
conclude
(15) T, F) ~ (1 + o)At 2 e 560, o,

T

Now the counting function N ('r, ;1 > is equal to N (r, —lglﬁ) which is
[
asymptotic to T(r, e#*) by Nevanlinna’s second fundamental theorem.

Thus from this and (15) we have
50,F) = 1 — Iim Y, 1/F)
r-wo  T(r,F)
—1-Tm__ &M@ A _,
roe (A, + 22)/71.)7.1: A+ 2

The theorem is thus proved.

(16)
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