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PRIME ENTIRE FUNCTIONS WITH PRESCRIBED

NEVANLINNA DEFICIENCY

FRED GROSS,1 CHARLES OSGOOD,2 AND CHUNG-CHUN YANG2

1. Introduction.

According to [4] a meromorphic function h(z) — f(g)(z) is said to
have f(z) and g(z) as left and right factors respectively, provided that
f(z) is non-linear and meromorphic and g(z) is non-linear and entire (g
may be meromorphic when f(z) is rational). h(z) is said to be £7-prime
(Z?-pseudo prime) if every factorization of the above form into entire
factors implies that one of the functions /, or g is linear (polynomial).
h(z) is said to be prime (pseudo-prime) if every factorization of the above
form, where the factors may be meromorphic, implies that one of / or
g is linear (a polynomial or / is rational).

Recently the following result was proved by Goldstein [3].

THEOREM 1. Let F(z) be an entire function of finite order such that
δ(a,F) = l for some aψoo, where δ(a,F) denotes the Nevaήlinna
deficiency. Then F(z) is E-pseudo prime.

The above theorem might suggest that for an entire function of
finite order the existence of Nevanlinna deficiency and the primeness of
a function are closely related to each other. The purpose of this note
is to show that it is not the case in general. More precisely, we shall
show the following:

THEOREM 2. Given any integer k > 0, and constant c, 0 < c < 1,
one can construct a prime function f of order k with δ(O,f) = c.

Remark. By a well-known result of Nevanlinna [7] one sees im-
mediately why the above result cannot hold for an arbitrary real positive k.
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The proof of Theorem 2 also yields the following result.

THEOREM 3. Given any 0 < c < 1, there exist real constants λx and

λ2 such that the function F = zeλieZ(eλ*eZ + 1) satisfies δ(0, F) = c.

Theorem 3 gives us an example of functions of infinite order which

are not pseudo-prime and which have a prescribed deficiency. The

analogous problem for functions of finite order remains open.

2. Definitions and preliminary lemmas.

We shall say that a polynomial in z with complex coefficients has

property R if (i) viz) is monic, (ii) p(0) = 0, and (iii) for some sequence

of points (ar) tending to oo each root of p{z) — aγ = 0 lies on one of a

finite number of fixed rays rl9 ,rt out from z — 0, for some positive

integer £. If ze C, z Φ 0, and z = \z\eiθ where —π<θ<π we define

arg(z) to be θ.

LEMMA I. (i) The polynominal p{z) has property R if and only if

p(z) = z?k(z?k + b) for some b eC and positive integer k. (ii) // b Φ 0

all but at most a finite number of the ar lie on the ray defined by

arg (z) = 2(arg (6)) modulo 2π9 while if b — 0 the α/s lie on any finite

collection of rays out from z — 0.

Proof. We shall first show the "if" part of (i). If b = 0 this is

trivial. If b Φ 0 set 6 = |6|e. Choose the ar to all be of the form ar

— \ar\ε2. Then we may write our equations as O^ε"1)2 + I&IO^V"1) = \ar\.

Since \b\2 + 4|α r | > 0 each z which is a root must be such that z^ε'1 is

real. Thus the roots must lie on a finite number of rays out from z = 0.

The greater part of this proof will be spent establishing the "only

if" part of (i). In doing so we shall show, also, that if p{z) has property

R then there exists a subsequence of the aγ consisting only of points ar

with each arg (ar) = a for some — π < a < π. We shall now use this last

assertion to help prove (ii) and shall then return to the proof of (i).

If b — 0 in (ii) there is nothing to prove. If b Φ 0 pass to a subsequence

of the (ar) where each arg (ar) Ξ£ 2(arg (6)) modulo 2π. (If this is not

possible we are through.) We shall now obtain a contradiction. Note

that as \ar\ goes to oo the absolute values of the roots of p(z) — ar — 0

go to oo also. Now arg (ar) — arg (p(zUr)) where p(zhr) = aγ and each zltT

belongs to the ray r19 say. Thus

https://doi.org/10.1017/S0027763000014938 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014938


PRIME ENTIRE FUNCTIONS 93

arg (αr) - arg (GsfcXsf* + 6))

= (fc(arg (zUΐ)) + arg (1 + bz^k)) modulo 2π .

Since arg(αr) and arg (zlt7) are constants then so is arg(l + bzffi.
As |α r | goes to infinity \zhγ\ goes to infinity and arg(l + bz^f) goes to
zero. Thus each arg (1 + bz^f) — 0 so every bz^f is real and each b2z^k

is positive. Also, from (1) we have now that

arg (ar) = fc(arg (zUr)) modulo 2π

so, since b2z^k is positive,

arg iaγ) = 2(arg (&)) modulo 2π .

This contradiction proves (ii) subject to our (as yet) unproven
assertion.

We next begin the proof of the "only if" part of (i). Let us look
at the k different algebraic functions

Zj(a) = ^α*" 1 + bo + b.φ^a^'1 + •

for (1 < j < k) which are roots of p(z) = a, where p = exp (2πίk~ι) and
the expressions are valid for all sufficiently large |α|. Let us now pass
to a subsequence of the (ar) such that each series for Zj(ar) converges
and each arg (Zj(ar)) is constant (recall that there are only a finite number
of values possible). Define — π < εfy) < π by

( 2) arg (Zj(ar)) = (k~ι arg (αr) + jk~\2π) + εfy)) modulo 2π ,

for each 1 < j < k. Note that for each 1 < j19 j2 < k

( 3 } ^(α r )) - arg (zJ2(ar))
— OΊ — j2)k~12π) modulo 2π ,

and the right hand side above is a constant. Also each lim εfy) — 0

since pj(a^)k~x is the dominant term of the expansion for Zj(ar) about

infinity. Thus each lim iε^iγ) — εja(γ)) = 0 — 0 = 0, so every εh(γ) — eJ2(γ)
r-*oo

= 0 modulo 2π.
We now require that each \ar\ be sufficiently large to guarantee that

every |e/r)| < k~^/2. Then every ε^γ) - ej2(γ) = 0. Set e(γ) = εfy) = . -*
k

= εk(γ). Since ±a = f] «j(αr) we have
l

arg (αr) = arg (αr) + (k — l)π + feε(^) modulo π ,
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so kε(γ) = 0 modulo π. Thus ε(γ) = 0 for all sufficiently large γ. Then

by (2) with each ed(γ) = 0 we see that arg (ar) is a constant on our sub-

sequence. (This proves the statement needed in the proof of (ii).) From

now on we assume that k > 2, since there is nothing to prove if k = 2.

Also we have from (2) that, for each 1 < j < k,

( 4 ) arg (zj(ar)) = (Ar^arg (αr)) + jk~\2π)) modulo 2π .

Equation (4) says that each Zj(ar) has an argument equal to the

argument of the dominant term in its expansion about ar — oo. We shall

next show by induction that for all non-negative integers n, b_n = 0 unless

k divides 2(n + 1). Further if b_n Φ 0, then, for sufficiently large f,

arg (fe-ndo^α*"1)"*) = arg (^α*"1) modulo π. (Actually, we are only interested

in proving the first statement but the second statement is needed in order

to make the induction go through.) Since k > 2 we must show that 60

= 0. Suppose b0 Φ 0, then for sufficiently large γ we see that Zj(ar) —

io
J(αr)

fc~1 does not vanish so

r j(2π)) = lim (arg ( ,

= arg (&0) modulo π ,

for each 0 < j < k — 1. Since & > 2 this is impossible. Thus b0 = 0.

Now assume the induction assumption for all 0 < I < n — 1 and that
7 1 - 1

b_n Φ 0. If γ is sufficiently large Zj(ar) — 2 b^^a)'1)'1 Φ 0 so that we
1 = 0

have

r) + j(2π)) = arg («^(αr)) modulo 2ττ

( 5) = arg (2/αr) - 5] 6 . ^ ^ ^ " O modulo TΓ
i 0

This proves the second statement in our induction assumption. Also

we see from (5) that

fc-1((arg (aY))(n + 1) + j(2π)(n + 1)) = arg (b_n) modulo π .

Setting j — 1,0 and subtracting we see that k~ι2(n + l)(π) = 0 modulo π.

Therefore k divides 2(n + 1 ) if b_n Φ 0. This completes the proof by

induction.
k

We know that p(z) — a — f] {z — z/α)) and that each
l
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Zj(a) = pW-1 + 6_(χfe_1)( io%fe-1)-(^-1) + &.(fc

where" the last term indicates an infinite number of terms of order

(α f c " 1 )" ( p " 1 ) and lower. Since the coefficients of p{z) are independent of
k

a, if we put in the different series for the Zj(a) m Π (z — s/α)) and
.7 = 1

find the total coefficient of a°zι — zι, for 0 < I < k — 1, we will have the

coefficient of zι in p(z). Our statement which must be demonstrated is

that this coefficient vanishes if above I Φ \k. We shall show that it is

impossible to find a term in the product above which equals a coefficient

times a°zι, if 0 < I < k — 1 and I Φ \k. It is clearly impossible to obtain

such a term if we choose any factor from O((ak~1)~^k~1)). Also choosing

a factor of (/o%fc"1)"(fc"1)

> for any 1 < j < k, forces us to choose k — 1

factors of the form (phak~1) and forces I to be zero. Thus the problem

reduces to showing that one cannot find two non-negative integers hx and

h2 such that 0 < hx + h2 < k and (α*-1)Al(α*"1)'Aa(i*"1)) = α° = 1 unless hλ +

h2 = \k. Since k > 2,h2 can equal only either 1 or 2. If h2 = 1, then

hλ = \k — 1, so hx + h2 = Jfe. If fc2 = 2 then /^ = k — 2 so /^ + h2 — k,

contrary to our assumption. This proves Lemma I.

LEMMA II. // a, β, γ are complex constants with βγ Φ 0 and n is a

positive integer then y = γz(eazn + eβzn) takes on all values.

Proof. Suppose the statement is false. Then, by a result of Borel

[1], one will obtain a contradiction. We leave the details to the reader.

LEMMA III. The function y = γz(eazn + eβzn) cannot be written in the

form p(g) where g is entire, p is any nonzero, nonlinear polynomial, n

is a positive integer, βγ Φ 0, and aβ~λ is real.

Proof. We shall assume that y — p(g) where y, g, and p = piw) are

as above. This will lead us to the conclusion that y takes on at least

one value infinitely often with multiplicity larger than one; however,

this latter conclusion will subsequently be shown to be false. Since p(w)

is nonlinear, p'(w) = 0 has at least one solution, w0. Thus when g(z) —

w0 we have that y(z) = p(w0) and has multiplicity greater than one. If

p'(w) =z 0 has two or more solutions g cannot omit both roots, hence y

must take on the value of p(w0) infinitely often with multiplicity greater

than one, for some w0 such that p'(w0) = 0. If w0 is the only root of
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p'(w) = 0 then p(w) = p{k){w^{k\)~\w — wo)
k + p(w0) for some positive

integer k > 2. Then either g takes on the value w0 infinitely often (so

that y takes on the value p(w0) infinitely often with multiplicity greater

than one) or g takes on the value w0 only finitely often (so y takes on

the value p(w0) only finitely often, since p(w) — p(w0) has only one zero).

By Lemma II y does not omit any values, therefore y does assume some

value a — p(w0) infinitely often with multiplicity greater than one. We

shall next show that this is impossible.

It is necessary first to dispose of the special cases when a = 0 or

a — β. Suppose a = 0. Then replacing z by Ψ~Jz and then p(w) by

(r( Ψ βYι)~ιv(w) we may assume, without loss of generality, that y —

z(ezn + 1). (Similarly, if aβ~ι — 1, we may assume that y — zezn.) Notice

that a Φ 0, since if z Φ 0, z{ezn + 1) = 0, and nznezn + (ezn + 1) = 0 we

would have that ezn = 0. If a Φ 0 then, for all nonzero z, if #(2) = a

and ?/(z) = 0 we have 0 = (y'(z))(y(z)Yι = z"1 + ra^-VXe*" + I)" 1 = z~ι +

n z n e z n a ~ ι — z ~ ι + n z n ~ \ a — z)a~ι = ^ "1 + n z n ~ ι — n a ' ι z n . F o r fixed α ^ 0

this equation has at most n + 1 distinct solutions. Suppose that zezn =

α, e3W + ^ w e 3 r ι = 0, and z Φ 0. Then z^α + n ^ - 1 ^ = 0. Since z Φ 0 we

see that α ^ 0. Thus we have z~ι + nz71"1 — 0 which can have at most

n distinct solutions.

If aβγ Φ 0 and aβ"1 Φ 1, then without loss of generality we may take

y to be of the form y = z(eλzn + ezn) where λ < 1 but λ Φ 0. Suppose

a — 0. Then requiring that 2 f̂c 0, the equations z(eλzn + ezn) = 0 and

(e^
Λ + e

zn) + nzn(λeλzn + ezn) = 0 imply that e^n = ezn = 0. This contra-

diction shows that α =£ 0. Now assuming that a Φ 0 and ^ O w e have

0 = z"1 + nzn{λeλzn + ezn)(z(eλzn + ezn))~l - z~
ι + nzn~la-\a + z{λ - l)eλzn).

Then eλzn = α(l + nz n )(nz w + 1 (l — X))~\ so substituting back in z(eλzn + ezn)

= α we have

a(α(l + nzn)(nzn+1(l - X))'1) + z(a(l + nzn)(nzn+1(l - X))'1)"'1 = α ,

for an appropriate choice of the Λ-th root above. Regardless of this

choice, however, we see upon taking absolute values that 00 > |α| >

|s | |α( l + nzn)(nzn+\l - ^ ) ) ' 1 Γ 1 - |2 | |α( l + nzn)(nzn+1(l - λ))'1]. As \z\ goes

to infinity the first term on the right hand side above goes to + 00 while

the second term remains bounded. This contradiction proves Lemma III.

The following lemma is essentially an observation out of Goldstein's

proof of Theorem 1.
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LEMMA IV. Let F(z) = zez\eazk + 1), where k is a positive integer

and a is a positive real number. Then F is E-pseudo prime.

Sketch of the proof. Set

K(z) = (eazk + 1) .

Then δ( — 1,X) = 1, and so by virtue of a result of Edrei and Fuchs [2,

pp. 281-283] the estimate [2, p. 281] holds for K along a sequence of arcs

and segments. Now we note along those arcs and segments ezk is bounded.

Hence the mentioned estimate holds not only for K but also for F(z).

Then following Goldstein's argument we will arrive at the conclusion.

3. Proof of Theorem2.

First of all, it is easy to verify that for any non-zero constants λx

and λ2 and any positive integer fc, F(z) = zehzk(ehzk + 1) cannot be periodic.

Thus by virtue of a result of the first author [5], we need only to show

that F is l?-prime.

When c — 0 or c = 1 we choose F = z(ezk + 1) or F — zezk, respec-

tively, and it is easy to verify that they are all prime functions of order

k. Therefore, we restrict ourselves to the case 0 < c < 1.

Let us choose

( 6) F(z) = zehzk(eλ*zk + 1) ,

where λx > 0 and λ2 > 0 are chosen such that — - ± — = c. We claim
^ 1 ~t~ Λ 2

that f(z) is E'-prime with 3(0, F) — c. We first show that F is Z?-prime.

F is Z?-pseudo prime by virtue of Lemma IV. By Lemma III, F also

cannot assume the form F = p(g) with p a polynomial and g transcen-

dental entire. Thus we only need to consider the possibility that F can

be factorized as

( 7 ) F(z) = g(p(z)) ,

where g is transcendental, and p is a nonlinear polynomial. We may

assume without loss of generality that p(0) = 0 and that the leading

coefficient of p is one.

Now, according to Lemma 1,

( 8) p(z) = zn/2(zn/2 + b) .
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where n is an integer and b a constant. We claim that n = 1. Suppose

that n > 2. Then from (7) and (8) we have

(9) F(z) = zeλlZ\e^k + 1) = g(zn/2(zn/2 + &)) .

Now if b Φ 0, then n has to be even. Let us substitute z by ζz into

identity (9) where ζ is a (w/2)-th root of unity other than one when n > 2,

and substitute z by — z — 6 when n = 2. Then by BoreΓs result men-

tioned earlier one will obtain a contradiction. If b = 0, then n can be

even or odd. We again substitute z by ζz into identity (9) and obtain

a contradiction unless n = 1 which means p(^) is linear. Thus we have

also excluded the possibility (7). Hence F is Z?-prime, therefore is also

prime.

Now we proceed to show that d(0, F) — c. Let us choose a non-

negative number λ such that λ + Λ = nλ2, n a positive integer.

Multiplying F by eλzk we have

(10) Ή(z) - eλzkF = z

or

(11) H(s) - zf\z){f(z) + 1) ,

where /(s) = &*\

According to a result of Hayman [6, p. 7]

T(r,H) = T(r, zΓ(z)(/(z) + D) - Γ{r,/»(«;)(/(«) + D}

) - ( t ι + 1 )^2 rfc , as r -> oo .

Now we have by Nevanlinna's first fundamental theorem and equation

(10) that

(14)

>T(r,H)-T(r,e-*zk) +

> O + 1)̂ 2 ru __ J_r

fc + 0(1)

= A±A_rA: + 0(1)

On the other hand
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T(r, F) = Γ(r, zel*Xex** + 1))

< T(r, e*12*) + T(r, ^2Z*) + O(log r)

(14) ~ -A_rfc + A r fe + O(log r)
7Γ π

= A ± A r

f c + O(log r) .

Thus from (13), (14), and noticing the fact that F is transcendental, we

conclude

(15) T(r, F) ~ (1 + o(D) ^ + ^ rfc a s r - ^ o o .

Now the counting function NIr, — ] is equal to JV fr, τ ) which is

\ F I \ ehz + 1 /

asymptotic to T(r, ehzk) by Nevanlinna's second fundamental theorem.
Thus from this and (15) we have

(Λ + λ2)/π)rk Λ + λ2

The theorem is thus proved.
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