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Double-diffusive convection, in which a fluid is acted upon by two fields (such as
temperature and salinity) that affect the density, has been widely studied in areas as
diverse as the oceans and stellar atmospheres. Assuming classical Fickian diffusion for
both heat and salt, the evolution of temperature and salinity are governed by parabolic
advection–diffusion equations. In reality, there are small extra terms in these equations
that render the equations hyperbolic (the Maxwell–Cattaneo effect). Although these
corrections are nominally small, they represent a singular perturbation and hence can
lead to significant effects when the underlying differences of salinity and temperature are
large. In this paper, we investigate the linear stability of a double-diffusive fluid layer and
show that amending Fick’s law for the temperature, or the salinity, alone can lead to new
modes of oscillation and to very large changes in the preferred wavelength of oscillatory
convection at onset. In particular, the salt finger regime of classical double diffusion is
here replaced by Maxwell–Cattaneo oscillations when the salt concentration is very high.
The more complicated case when both laws are amended is left to a future paper, now in
preparation.

Key words: double diffusive convection, general fluid mechanics

1. Introduction

This paper is concerned with investigating the consequences of introducing the
Maxwell–Cattaneo (M–C) transport effect into the study of double-diffusive convection.
Almost all previous studies of thermal convection, as well as more elaborate models
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involving magnetic fields, double diffusion, etc., use the classical Fick’s law to describe
the relation between quantities such as, for example, temperature and heat flux. For
temperature, this relation (known as Fourier’s law in this specific case) takes the form
q = −K∇T , where q is the heat flux, T is the temperature and K is the thermal
conductivity. The Fourier law predicts an instantaneous response of temperature to the
heat flux gradient, leading to a parabolic diffusion equation for the temperature field. The
instantaneous response at all points implied by this equation cannot be exactly correct as
information must travel at a finite speed. This weakness was recognised by Maxwell (1867)
in his study of the theory of gases, who proposed a modified equation incorporating a
finite relaxation time. Cattaneo (1948) proposed a similar relation for solids, which was
developed further by Oldroyd (1950). Other important contributions were made later, by,
for example, Fox (1969) and Carrassi & Morro (1972).

The idea of a finite relaxation time is incorporated into the M–C relation in the
temperature equation between the heat flux q and the temperature T , which then takes
the form

τT
Dq
Dt

= −q − K∇T, (1.1)

in which τT is the relaxation time. The operator D/Dt here denotes a generalised
Lagrangian time derivative, which should be chosen to give expressions that do not depend
on the frame of observation; a specific form of this generalised derivative is discussed
in § 2.1. The importance of the thermal relaxation term is typically expressed via the
dimensionless M–C coefficient CT , which is defined as the ratio of the thermal relaxation
time to twice the thermal diffusion time; i.e. CT = τTK/(2ρcpd2) = τTκ/2d2, where ρ

is the density, cp the specific heat at constant pressure, d a representative length scale
and κ the thermal diffusivity. (The factor of two in the denominator of the expression
for CT does not seem to be particularly helpful. However, it is the definition of CT used
previously in the literature, which we therefore choose to retain for consistency.) Thus the
classical Fourier law has CT = 0. The introduction of a finite relaxation time changes the
fundamental nature of the parabolic heat equation of Fourier fluids, in which heat diffuses
with infinite speed, to a hyperbolic heat equation with a solution in the form of a heat wave
that propagates with finite speed (Joseph & Preziosi 1989; Straughan 2011a).

The M–C heat transport effect has been studied in a wide variety of different
physical contexts: for example, in solids (Barletta & Zanchini 1997), in fluids (Lebon
& Cloot 1984; Straughan & Franchi 1984; Straughan 2009, 2010; Stranges, Khayat &
Albaalbaki 2013; Bissell 2015; Stranges, Khayat & deBruyn 2016; Eltayeb 2017), in porous
media (Straughan 2013; Haddad 2014), in nanofluids and nanomaterials (Jou, Sellitto &
Alvarez 2011; Lebon et al. 2011), in liquid helium (Liepmann & Laguna 1984; Donnelly
2009), in biological tissues (Dai et al. 2008; Tung et al. 2009) and, in the context of
magnetoconvection, in stellar interiors and the solar photosphere (Bissell 2016; Eltayeb,
Hughes & Proctor 2020). The potential significance of the M–C effect depends on a
number of factors, through the definition of the coefficient CT . In gases, the relaxation time
τT can be as small as picoseconds; CT will then only assume O(1) values over very small
scales, as can occur for heat transport in nanostructures. Nonetheless, even if CT � 1,
the M–C effect can still be important if the thermal driving (measured by the Rayleigh
number, for example) is extremely high; this is often the case in astrophysical settings. In
biological matter, the situation can be quite different, since τT can be of the order of a
second or greater; the M–C effect can then be important on everyday length scales.

In this paper we study the consequences of including the M–C effects on the onset
of double-diffusive convection, in which two quantities affect the density of a fluid,
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but diffuse at different rates. There are now M–C effects to be considered for both
temperature and salinity. The most widely studied example of double diffusion is
thermohaline convection, in which the competing ingredients are heat and salt, with the
diffusion of heat greatly exceeding that of salt. Here we shall stick to the terminology
of ‘heat’ and ‘salt’, although the equations are relevant in a much wider context. On
including the M–C salinity effect, the modified salinity evolution equation can be obtained
by analogy with the temperature equation, so can be written as

τS
DqS

Dt
= −qS − κS∇S, (1.2)

where S is the salt concentration, κS the saline diffusivity, τS the relaxation time for salinity
and qS the salt flux. We note that the relation between salt flux and salt concentration differs
from that between heat and temperature; hence the appearance of K in (1.1) but κS in (1.2).
For later use we define the M–C coefficient for salt as CS = τSκS/2d2.

Double-diffusive convection has been widely studied for many decades in a variety
of geophysical, astrophysical and engineering contexts (see, for example, the reviews by
Turner (1974), Huppert & Sparks (1984), Turner (1985), Schmitt (1994), Garaud (2018)
and the monograph by Radko (2013)), but principally employing the Fickian law for
the evolution of both diffusing ingredients. Herrera & Falcón (1995), via a fluid parcel
argument, considered the new physics introduced by the thermal M–C effect (but with
CS = 0) into double-diffusive convection, motivated by heat transport in neutron stars
and compact X-ray sources, where the competing gradients are of temperature and helium
concentration. Straughan (2011b) looked at this problem in more depth, but again restricted
attention to the case of CS = 0 and for the case of a porous medium rather than a viscous
fluid.

Motivated by geophysical and astrophysical considerations, we concentrate here on the
case where the M–C coefficients are very small. The modified equations then represent
singular perturbations in the time domain, and hence, even when CT , CS � 1, new
mechanisms for oscillatory instability can arise, provided that the initial gradients of
temperature and salinity are very large. The goal of this paper is to investigate the effects
of the new terms on the onset of instability in the regime of CT , CS � 1. The dependence
of the results on CT and CS is very rich, so in this first paper we confine ourselves to the
two special cases where one of the M–C coefficients is zero. The general case turns out to
merit a second paper, which is in preparation.

The plan of the paper is as follows. In § 2.1 we demonstrate how the M–C effects can
be incorporated into the equations describing the evolution of temperature and salinity; in
§ 2.2 we give the full set of governing equations for M–C double diffusion; § 2.3 presents
the linearised stability problem for a basic state with linear gradients of temperature and
salinity, with simple boundary conditions. In the two subsequent sections we investigate
the special cases of CS = 0 (§ 3) and CT = 0 (§ 4); for each of these we investigate the
onset of linear instability for all combinations of the temperature and salinity gradients,
concentrating on small values of the M–C coefficients and large values of the gradients.
The significance of the results is assessed in the concluding section (§ 5).

2. Mathematical formulation

2.1. The M–C effect in a moving frame
To derive the governing equations, it is necessary to consider the modifications of the M–C
effect to be expected in a fluid moving with velocity u. A number of possible formulations
of the nonlinear terms have been proposed (e.g. Lebon & Cloot (1984) commenting on
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Straughan & Franchi (1984); Christov (2009)). Here we follow the formulation of Christov
(2009), who proposed the following frame-invariant equation for the evolution of the heat
flux:

τT

[
∂qT

∂t
+ u · ∇qT − qT · ∇u + (∇ · u)qT

]
= −qT − K∇T. (2.1)

It is convenient to write this equation as

τT

[
∂qT

∂t
− ∇ × (u × qT) + (∇ · qT)u

]
= −qT − K∇T, (2.2)

since, on taking the divergence, we obtain

τT

[
∂QT

∂t
+ ∇ · (u QT)

]
= −QT − K∇2T, (2.3)

where QT = ∇ · qT and where we have assumed that K is constant. When ∇ · u = 0, as
we assume in this paper, the left-hand side of (2.3) can be written as the usual Lagrangian
derivative of QT . Thus the formulation of Christov (2009) is particularly convenient
because it is reducible, in that the governing equation can be written in terms of QT ,
with qT no longer appearing explicitly.

Although the form of the governing equation for qS has not been addressed previously,
it is clear that, at the very least, the diffusion equation is inconsistent with relativity
theory and so extra terms are essential. A form analogous to the temperature equation
is to be expected, since it should be invariant under space reflection (hence no odd
space derivatives) and with the time derivative term as the leading-order expression in
an expansion for small τS. We thus write the evolution equation for QS as

τS

[
∂QS

∂t
+ ∇ · (u QS)

]
= −QS − Ks∇2S; QS = ∇ · qS. (2.4)

2.2. Governing equations
We consider a horizontal layer of an incompressible (Boussinesq) viscous M–C fluid,
initially at rest, contained between two planes at z = 0 (bottom) and z = dπ (top). The
scaling here with π is helpful in that all factors of π are eliminated from the governing
equations. The fluid has kinematic viscosity ν, and thermal and salt diffusivities κ, κS. The
density depends linearly on two components that diffuse at different rates. By analogy
with classical thermal convection, we shall denote the faster diffusing component by T
(temperature) and the slower by S (salinity). In equilibrium, the fluid is at rest, with
temperature and salinity differences across the layer of ΔT and ΔS. The basic state
temperature and salinity, T̄ and S̄, are thus given by

T̄ = T0 + ΔT(1 − z/dπ), S̄ = S0 + ΔS(1 − z/dπ), (2.5)

where T0 and S0 are representative values of temperature and salinity. For the perturbed
state, with velocity u = (u, v, w), we express the temperature and salinity by T = T̄ + T̂ ,
S = S̄ + Ŝ. The density ρ of the fluid obeys a linear relation of the form

ρ = ρ0(1 − αT(T − T0) + αS(S − S0)), (2.6)

where ρ0 = ρ(T0, S0), and αT and αS are (constant) coefficients of expansion. The crucial
difference in the governing equations for the M–C system, in comparison with those of
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Maxwell–Cattaneo double-diffusive convection

classical double-diffusive convection (with no M–C effects), is the replacement of the
classical Fick’s law equations for T and S by the modified equations (2.3) and (2.4). On
adopting the standard scalings for distance, time, velocity, heat flux, temperature, salinity
flux, salinity and pressure of d, d2/κ , κ/d, ΔTK/d, ΔT , ΔSκS/d, ΔS and ρ0νκ/d2, and
dropping the hats, the governing equations take the form

1
σ

Du
Dt

= −∇p + RaT ẑ − RsSẑ + ∇2u, ∇ · u = 0, (2.7)

DT
Dt

= w − QT , (2.8)

2CT
DQT

Dt
= −QT − ∇2T, (2.9)

DS
Dt

= w − QS, (2.10)

2CS
DQS

Dt
= −QS − τ∇2S, (2.11)

where the Rayleigh number Ra, the salt Rayleigh number Rs, the Prandtl number σ , and
the diffusivity ratio τ are defined by

Ra = gαTΔTd3

κν
, Rs = gαSΔSd3

κν
, σ = ν

κ
, τ = κS

κ
. (2.12)

With the Rayleigh numbers so defined, positive (negative) Ra is thermally destabilising
(stabilising), whereas positive (negative) Rs is solutally stabilising (destabilising).

2.3. Linearisation and stability considerations
In this paper, we address the linear stability of the basic state given by (2.5), subject to the
standard boundary conditions in which the horizontal boundaries are impermeable and
stress-free, and on which the temperature and salinity are fixed. Thus

∂ux

∂z
= ∂uy

∂z
= uz = T = S = 0 on z = 0, π, (2.13)

noting that z is now dimensionless. We assume periodicity in the horizontal directions. In
general, we may decompose the solenoidal velocity as

u = ∇ × (∇ × P ẑ) + ∇ × T ẑ. (2.14)

The linearised form of (2.7) shows, however, that T decays for all parameter values, and
thus only P is of relevance. Following the usual approach to the classical double-diffusive
stability problem, we seek solutions to the linearised versions of (2.7)–(2.11) of the form

P ∝ T ∝ S ∝ QT ∝ QS ∝ f (x, y) sin mz est, (2.15)

where the planform function f (x, y) satisfies

∇2
Hf = −k2f , (2.16)

with ∇2
H being the horizontal Laplacian. For the classical problem, with no M–C effects,

it is easily shown that the fundamental mode (i.e. m = 1) is the most readily destabilised.
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Here we shall also restrict attention to the m = 1 mode, but will discuss this assumption
in § 5, in the light of the results.

On substitution from (2.15) into the linearised forms of (2.7)–(2.11), we obtain, after
some algebraic manipulation, the following quintic dispersion relation for the growth
rate s:

a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0 = 0, (2.17)

where

a5 = 4CTCSβ
2

σ
, (2.18a)

a4 = 4CTCSβ
4 + 2

σ
(CT + CS)β

2, (2.18b)

a3 = 2(CT + CS)β
4 + 2

σ
(τCT + CS)β

4 + β2

σ
+ 4CTCS(Rs − Ra)k2, (2.18c)

a2 = 2(τCT + CS)β
6 +

(
1 + 1 + τ

σ

)
β4 + 2(CT + CS)(Rs − Ra)k2, (2.18d)

a1 =
(

1 + τ + τ

σ

)
β6 − Ra(1 + 2τCTβ2)k2 + Rs(1 + 2CSβ

2)k2, (2.18e)

a0 = τβ8 − τRak2β2 + Rsk2β2 (2.18f )

and where β2 = k2 + 1.
The third-order system of classical thermohaline convection is recovered by setting

CT = CS = 0. The third-order system governing M–C Rayleigh–Bénard convection,
studied by Stranges et al. (2013) and Bissell (2015), is recovered by setting CS = Rs = τ =
0. Note that the system governed by (2.17) and (2.18) possesses the following symmetry:

τ̃ = 1
τ
, σ̃ = σ

τ
, s̃ = s

τ
, R̃a = −Rs

τ
, R̃s = −Ra

τ
, C̃T = τCS, C̃S = τCT .

(2.19)

To provide a natural link to the classical thermohaline problem, we shall restrict attention
to τ < 1; the case of τ > 1 can be recovered through the transformation (2.19).

In this paper, we shall concentrate on determining the conditions for the onset of
instability; this may occur either as a direct mode (steady convection), in which case the
growth rate s passes through zero, or as an oscillatory mode, in which case, at onset,
s = ±iω, with ω ∈ R+. It is traditional in studies of double-diffusive convection to treat
Ra as the bifurcation parameter, although, mathematically, there is nothing to favour Ra
over Rs. For comparison with the existing literature, we shall maintain this tradition here.
We shall refer to the mode that first becomes unstable as Ra is increased as the preferred
or favoured mode.

At the onset of steady convection, the coefficient a0 = 0. Since a0 has no dependence on
either CT or CS, M–C effects therefore have no influence on the onset of steady convection,
as is to be expected from the form of the flux equations (2.9) and (2.11). The value of Ra
at the onset of steady convection is given by

Ra = Ra(s) = Rs
τ

+ β6

k2 . (2.20)
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The critical value of Ra(s), which we shall denote by Ra(s)
c , is given by the minimum value

of Ra(s) over all wavenumbers: Ra(s) is minimised when k2 = k2
c = 1/2, thus giving

Ra(s)
c = Rs

τ
+ 27

4
. (2.21)

We note that for the limiting cases considered here, in which either CT or CS are zero, the
coefficient a5 is zero and the growth rate is governed by a fourth-order equation. Setting
s = ±iω, with ω ∈ R+, leads to the coupled equations

a4ω
4 − a2ω

2 + a0 = 0, a3ω
2 − a1 = 0. (2.22)

Since Ra and Rs occur linearly in coefficients a0, a1, a2, a3 – and are absent in a4 – then
we can, for example, readily combine equations (2.22) either to derive a quadratic equation
for ω2 that does not involve Ra, or eliminate ω2 to derive an expression quadratic in Ra
and Rs. Both approaches turn out to be useful; we shall consider the specific forms of these
expressions in the following two sections.

In the classical double-diffusive problem, oscillatory instability can occur only in the
first quadrant of the (Rs, Ra) plane (i.e. Rs and Ra both positive). In the absence of M–C
effects, the coefficient a4 = 0; hence, from (2.22), the marginal value of Ra for oscillatory
motions (i.e. when s = ±iω, ω ∈ R+) is given by the expression a0a3 = a1a2, which
becomes

Ra(o) = (σ + τ)

(1 + σ)
Rs + (1 + τ)(σ + τ)

σ

β6

k2 . (2.23)

Using (2.22) and (2.23), the necessary additional constraint of ω2 > 0 translates to the
condition

Rs >
τ 2(1 + σ)

σ (1 − τ)

β6

k2 . (2.24)

It is straightforward to show that when there is a pair of purely imaginary solutions for s,
the third (real) root for s is negative. Thus, since β6/k2 is minimised when k2 = 1/2, we
can see from (2.24) that oscillatory motions are preferred at onset provided that

Rs >
27
4

τ 2(1 + σ)

σ (1 − τ)
; (2.25)

from (2.23), the critical Rayleigh number is then given by

Ra(o)
c = (σ + τ)

(1 + σ)
Rs + 27(1 + τ)(σ + τ)

4σ
. (2.26)

The overall stability boundary for the classical problem is sketched in figure 1. The regime
of steady convection in the third quadrant is often referred to as the salt fingering regime;
that in the first quadrant in which oscillatory modes are preferred as the diffusive regime.
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Ra

Rs

Steady

Osc.

Stable

Ra = Rs

Figure 1. Sketch of the steady and oscillatory (Osc.) stability boundaries in the (Rs, Ra) plane for classical
double-diffusive convection, for τ < 1. The dashed line (Ra = Rs) is the line of neutral buoyancy.

3. The case of CS = 0

3.1. Stability boundaries
As already noted, in this case a5 = 0, and so the dispersion relation (2.17) reduces to a
quartic equation with

a4 = 2CT
β2

σ
, (3.1a)

a3 = 2
(

1 + τ

σ

)
CTβ4 + β2

σ
, (3.1b)

a2 = 2τCTβ6 +
(

1 + 1 + τ

σ

)
β4 + 2CT(Rs − Ra)k2, (3.1c)

a1 =
(

1 + τ + τ

σ

)
β6 − (1 + 2τCTβ2)Rak2 + Rsk2, (3.1d)

a0 = τβ8 − τRak2β2 + Rsk2β2. (3.1e)

If we eliminate Ra between equations (2.22) then the frequency ω on the oscillatory
boundary is determined by the following quadratic equation for ω2:

b4ω
4 + b2ω

2 + b0 = 0, (3.2)

provided that ω2 > 0, where

b4 = 4CT
2β2, (3.3a)

b2 =
(

1 + 1
σ

)
β2 − 2CTβ4 + 4τ 2CT

2β6 + 4τCT
2Rs k2, (3.3b)

b0 = τ 2
(

1 + 1
σ

)
β6 − 2τ 2CTβ8 − (1 − τ)Rs k2 − 2τCTRs k2β2. (3.3c)
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Maxwell–Cattaneo double-diffusive convection

Conversely, eliminating ω2 gives the following quadratic expression for Ra on the
oscillatory boundary (again provided that ω2 > 0):

c2Ra2 + c1Ra + c0 = 0, (3.4)

where

c2 = 4CT
2(1 + 2CTτβ2), (3.5a)

c1 = − 1
σ 2

(
(1 + σ)

β2

k2 + 2CT(τ + στ + σ 2)
β4

k2

+ 4CT
2
(

(σ (σ + τ + τ 2) + 2σ 2τ)
β6

k2 + (στ + 2σ 2)Rs
)

+ 8CT
3στ

(
(στ + τ 2)

β8

k2 + (σ + τ)Rsβ2
))

, (3.5b)

c0 = (σ + τ)

σ 3

(
(1 + σ)(1 + τ)

β8

k4 + σRs
β2

k2 + 2CT(σ 2(1 + τ) + τ 2(1 + σ))
β10

k4

+ 2CT(στ + σ 2 − 2σ)Rs
β4

k2 + 4CT
2σ 2

(
τ
β6

k2 + Rs
)2)

. (3.5c)

For CT � 1, if Rs is O(1), then, in comparison with the classical double-diffusive
problem, there are only small changes to the critical value of Ra and the corresponding
critical k2. The question of interest therefore is to ask where small CT makes a fundamental
difference. To this end, it is instructive to consider the regimes

|Rs| = O(CT
−n), n > 0; (3.6)

increasing n thus provides a means of delineating regimes of increasing Rs. As described
below, distinct regimes can be identified for 0 < n ≤ 1, 1 < n < 2, n = 2 and n > 2. We
have already noted the very different salt fingering and diffusive regimes of the classical
problem, shown in figure 1. With the inclusion of M–C effects, there are further significant
differences between the first and third quadrants of the (Rs, Ra) plane. The exposition is
therefore clearest if we consider these quadrants separately, examining in each the different
regimes for the scaling exponent n in (3.6).

3.2. First quadrant: Ra > 0, Rs > 0

3.2.1. 0 < n ≤ 1
For O(1) values of Rs, the problem is essentially that of classical double-diffusive
convection, with oscillatory instability favoured provided that inequality (2.24) is satisfied.
Indeed, as we shall see, once this inequality is satisfied then oscillatory motions are
preferred for all n. Qualitative changes from the classical problem first arise when n = 1.
For classical double diffusion, the critical wavenumber for oscillatory convection (and
indeed steady convection also) is given by k2 = 1/2. To explore how the M–C effect can
influence this picture, we consider the regime CT � 1, Rs = CT

−1R̃s , Ra = CT
−1R̃a,

where R̃s and R̃a are O(1), and with k2 = O(1). Expanding in powers of CT , the terms in
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(3.4) become

c2Ra2 = 4R̃a2 + O(CT), (3.7a)

c1Ra = − R̃a
CTσ 2

(
(1 + σ)

β2

k2 + 2CT(τ + στ +σ 2)
β4

k2 + 4CT(στ + 2σ 2)R̃s + O(CT
2)

)
,

(3.7b)

c0 = (σ + τ)

σ 3

(
CT

−1σ R̃s
β2

k2 + (1 + σ)(1 + τ)
β8

k4

+ 2(στ + σ 2 − 2σ)R̃s
β4

k2 + 4σ 2R̃s 2 + O(CT)

)
. (3.7c)

If we write R̃a = R̃a0 + CTR̃a1, the leading-order terms give

R̃a0 = (σ + τ)

(1 + σ)
R̃s . (3.8)

We note that expression (3.8), which crops up quite frequently, is the wavenumber-
independent component of (2.26), the expression for Ra at the onset of oscillatory
convection in the classical problem. It can be checked from expression (2.22) that (3.8)
leads to ω2 > 0 only for Rs > 0; thus these considerations apply only to the first quadrant
in the (Rs, Ra) plane. At this order, the steady branch is given by R̃a = R̃s /τ and so, for
τ < 1, it lies above the oscillatory branch.

We note from (3.8) that at leading order there is no wavenumber dependence of the
critical Rayleigh number. This concept, which is similar to the description of the onset
of oscillatory magnetoconvection in a strong magnetic field (see, for example, Weiss &
Proctor 2014), turns out to be prevalent throughout this entire M–C problem. To determine
the critical wavenumber, it is necessary to proceed to the next order. After some algebra,
we obtain

R̃a1 = 4σ(σ + τ)(1 − τ)

(1 + σ)3 R̃s 2 k2

β2 − 2(σ + τ)(2 + σ)

(1 + σ)2 R̃s β2 + (σ + τ)(1 + τ)

σ

β6

k2 .

(3.9)
Stationary points (dR̃a1/dk2 = 0) are therefore given by the expression

4σ(σ + τ)(1 − τ)R̃s 2

(1 + σ)3(1 + k2)2 − 2(σ + τ)(2 + σ)

(1 + σ)2 R̃s + (σ + τ)(1 + τ)

σ
(2k2 − 1)

(1+ k2)2

k4 =0,

(3.10)

which is a quintic polynomial in k2. Figure 2(a) shows the evolution of the real parts of the
roots of this quintic polynomial as R̃s is increased. With R̃s = 0, the only real positive
root is at k2 = 1/2 (the classical case). As R̃s increases, the existing mode moves to higher
k2 and, at a critical value of R̃s , two equal stationary points appear, which then separate
with a further increase in R̃s ; k2 remains negative (and thus unphysical) for the other two
roots. Figure 2(b) plots the oscillatory stability boundary with no approximations, together
with the zeroth-order approximation (3.8), and the first-order correction (3.9); the latter
is almost indistinguishable from the boundary of the full system. The three stationary
points correspond to the three positive roots for k2 at R̃s = 15 in figure 2(a). Thus the
M–C influence is felt for Rs = O(CT

−1) by the emergence of two new stationary points in
the oscillatory stability boundary. As demonstrated in figure 2, the preferred mode is the
continuation of the classical mode, moved to higher wavenumbers.
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(b)(a)
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k2
s Ra(o)

Figure 2. (a) The real parts of the roots of (3.10) for k2 as a function of R̃s for 0 < n ≤ 1; blue lines denote
real roots, the red line denotes the real part of a conjugate pair; σ = 1, τ = 0.1. (b) Oscillatory stability
boundary (blue solid line), together with the zeroth-order asymptotic expression (3.8) (purple dashed line)
and the first-order correction (3.9) (purple squares); CT = 10−3, CS = 0, Rs = 1.5 × 104 (corresponding to
R̃s = 15).
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k2
10–4 10–2 100 102

k2

Ra(o)
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Figure 3. Oscillatory stability boundary versus k2 for CT = 10−3, CS = 0, Rs = 106 (i.e. n = 2) for
(a) σ = 1, τ = 0.1; (b) σ = 0.05, τ = 0.1. The steady boundary lies at much higher values of Ra.

3.2.2. n = 2
In § 3.2.1, we saw how, for n = 1, a new pair of stationary points emerges, leading to
two minima and one maximum in the Ra(o) versus k2 curve, all with k2 = O(1). As Rs is
increased, (i.e. n increased), these stationary points separate; at n = 2, they attain distinct
asymptotic scalings, with the two minima of Ra(o) having k2 = O(CT) and k2 = O(CT

−1),
and with the maximum having k2 = O(CT

−1/2). This is illustrated clearly in figure 3.
The value of Ra(o) for the minimum at k2 = O(CT) is readily attained analytically, at

least to leading order. Noting that β2 ≈ 1 for small k2, the coefficients of (3.4) become, at
leading order,

c2 = 4CT
2, c1 = −(1 + σ)

σ 2k2 , c0 = (σ + τ)Rs
σ 2k2 . (3.11)

The roots have Ra = O(CT
−2) and Ra = O(CT

−3), with only the former being admissible
(ω2 > 0). Thus, with k2 = O(CT),

Ra(o) = (σ + τ)

(1 + σ)
Rs + O(CT

−1). (3.12)
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We see straightaway that steady modes cannot be preferred when n = 2. The wavenumber
dependence of Ra(o) has again dropped out at this order, possibly unsurprisingly given the
very flat nature of this minimum, as shown in figure 3. If needed, this could be retrieved by
retaining the next-order terms. However, numerical calculations suggest that the minimum
of Ra(o) at large k2 is always the smaller, but that the two minima do become arbitrarily
close for small values of σ and τ (cf. figures 3a and 3b). In general, it is not possible
to obtain an analytic expression for the minimum value of Ra(o) with k2 = O(CT

−1).
However, we can make progress in the case of CT � σ, τ � 1, through a distinguished
limiting process, in which we first let CT → 0 and then let σ and τ become small. To
explore the CT → 0 limit, we introduce the scalings

k2 = CT
−1k̃2, Ra = CT

−2R̃a, Rs = CT
−2R̃s . (3.13)

The coefficients of expression (3.4) are almost unchanged, except with R̃s replacing Rs,
etc., and with CT = 1; the substantive difference is that β2 = k2 at this order. We then let
σ and τ become small, with the wavenumber scaled as k̃2 = σ k̂2. The onset of oscillatory
instability is then given by

R̃a(o) = (σ + τ)

(1 + σ)
(R̃s + σ(k̂2 − 2R̃s )2 + O(σ 2)). (3.14)

Hence R̃a(o) is minimised when

k̂2 = 2R̃s , with R̃a(o) = (σ + τ)

(1 + σ)
R̃s + O(σ 3). (3.15)

Thus, to this degree of approximation, one cannot distinguish between the minimum at
small k2 (expression (3.12)) and that at large k2 (expression (3.15)).

3.2.3. n > 2
As for the case of n = 2, there are two minima in Ra as a function of k2: the minimum at
small wavenumber has k2 = O(Cn−1

T ), that at large wavenumber has k2 = O(CT
−n/2).

When k2 = O(Cn−1
T ), the frequency equation (3.2), at leading order, becomes

4CTω4 +
(

1 + 1
σ

)
ω2 − (1 − τ)Rsk2 = 0. (3.16)

There is one admissible root, given by

ω2 ≈ σ(1 − τ)Rsk2

(1 + σ)
, (3.17)

with the oscillatory stability boundary then given by

Ra(o) ≈ (σ + τ)

(1 + σ)
Rs. (3.18)

For the minimum at large k2, with k2 = O(CT
−n/2), the frequency equation, at leading

order, becomes
2CTω4 + 2τCTRsω2 − τRsk2 = 0. (3.19)
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There is one admissible root, given by

ω2 ≈ k2

2CT
. (3.20)

From the relation ω2 = a1/a3 we then obtain, to leading order,

Ra(o) = 1
2τCT

(
Rs
k2 + τk2

)
. (3.21)

From (3.21), Ra(o) is minimised when

k2 =
(

Rs
τ

)1/2

, with Ra(o) = 1
CT

(
Rs
τ

)1/2

. (3.22)

From (3.22), we can see that the minimum at large k2 has Ra = O(CT
−(1+n/2)), whereas

from (3.18), that at small k2 has Ra = O(CT
−n). Thus for n > 2 (and in contrast to the case

of n = 2), the two minima have distinct asymptotic scalings: the lower minimum occurs at
large k2, and is given by (3.22). Furthermore, since the onset of steady convection is given
by Ra(s) ≈ Rs/τ = O(CT

−n), oscillatory modes are always preferred for n > 2.

3.2.4. Overall stability boundary
It is important to put together the above ideas in order to determine the critical Rayleigh
number and the associated critical wavenumber for a wide range of Rs (i.e. for a range of n).
Figure 4(a) shows Rac for the range 10−5 ≤ Rs ≤ 1015 (corresponding to −5/3 ≤ n ≤ 5)
for fixed values of CT = 10−3, σ = 1, τ = 0.1, together with the asymptotic results for
n > 2. Figure 4(b) shows k2

c at the onset of instability. For small enough Rs, the onset is
always steady, with k2

c = 1/2. As Rs is increased, the preferred mode becomes oscillatory,
initially with little change in the wavenumber of the critical mode. However, for n � 1, the
critical wavenumber increases with increasing Rs: for the n = 2 regime, Rac and k2

c both
depend linearly on Rs (e.g. expression (3.15) for small σ and τ ), whereas for n > 2, Rac
and k2

c both vary as Rs1/2 (expression (3.22)). Also shown in figure 4(a) is the onset of
oscillatory instability for the classical problem. In terms of the critical Rayleigh number
(but, as noted above, not the preferred wavenumber), it can be seen that the M–C effect
only comes into play strongly for n � 2, where it leads to a clear enhanced destabilisation
of the oscillatory modes.

3.3. Third quadrant: Ra < 0, Rs < 0

3.3.1. n ≤ 2
As discussed in § 2.3, for classical double-diffusive convection the onset of instability in
the third quadrant is always via a steady bifurcation (salt fingers). Therefore, in comparison
with the first quadrant (for which the classical problem has an oscillatory instability),
larger values of |Rs| are needed before there are substantive variations from classical
double-diffusive convection: M–C effects are not felt until n = 2 (i.e. Rs = O(CT

−2)).
For n = 2, the minimum in the Ra(o) curve as a function of k2 is located in the regime
of k2 = O(CT

−1/2) (which in the first quadrant is the location of a local maximum).
The behaviour in this regime is captured by the orderings k2 ∼ β2 = O(CT

−1/2), and
Ra, Rs = O(CT

−2); we write k2 = CT
−1/2k̃2, Ra = CT

−2R̃a, etc.
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Figure 4. Plots of (a) Rac and (b) k2
c as a function of Rs for CT = 10−3, CS = 0, σ = 1, τ = 0.1. The onset of

instability is shown as a red solid line if steady and a blue solid line if oscillatory. The red dashed line shows
the continuation of the steady line once it is no longer preferred. The blue dashed line denotes the onset of
oscillatory instability for the classical problem. The purple squares denote the asymptotic n > 2 results (3.22).

At leading order, (3.4), governing the onset of oscillatory convection, becomes

4R̃a2 − 1
σ 2 ((1 + σ) + 4σ(2σ + τ)R̃s )R̃a + 4(σ + τ)

σ
R̃s 2 + (σ + τ)

σ 2 R̃s = 0. (3.23)

To this order there is no wavenumber dependence of R̃a and thus to determine the
dependence on k2, we need to retain terms of the next order; we thus write R̃a =
R̃a0 + CT

1/2R̃a1. The leading-order terms determine R̃a0 via (3.23); R̃a1 is determined
at the next order through the expression

FR̃a1 =
(

Ak̃2 + B

k̃2

)
, (3.24)

where

F = 8(R̃s − R̃a0) + 4τ

σ
R̃s +

(
1 + σ

σ 2

)
, (3.25a)

A = 8τ R̃a2
0 − 8τ(σ + τ)

σ
R̃a0R̃s − 2(τ + στ + σ 2)

σ 2 R̃a0 + 2(σ + τ − 2)(σ + τ)

σ 2 R̃s ,

(3.25b)

B = −(1 + σ)

σ 2 R̃a0 + (σ + τ)

σ 2 R̃s . (3.25c)

If F, A and B are of the same sign, then R̃a1 is minimised when

k̃2 =
(

B
A

)1/2

. (3.26)

Figure 5 shows the stability boundaries for oscillatory and steady modes as functions
of k2, together with the associated values of ω2; also shown are the asymptotic results
(3.23) and (3.24). It can be seen that oscillatory instability occurs within a closed loop
in the (Ra, k2) plane. As |Rs| decreases (i.e. Rs becomes less negative), the loop shrinks,
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Figure 5. (a) Stability boundaries versus k2 for CT = 10−4, CS = 0, Rs = −109, σ = 0.2, τ = 0.5. The loop
shown in brown and blue is the oscillatory stability boundary, with the two colours representing the two roots
of the quadratic for Ra; the red line shows the steady boundary. The green dashed line shows the first-order
asymptotic result (3.23); the purple dashed line includes the next-order correction (3.24). (b) Corresponding
values of ω2 on the oscillatory stability boundary.

eventually disappearing altogether; equivalently, and maybe what is a more natural way
of thinking, in terms of an experiment, the loop appears at a critical value of Rs as |Rs|
is increased. An important feature is that this spontaneous appearance may occur either
above or below the steady branch. To determine the least negative value of Rs for which
oscillations are possible thus requires determination of the critical value of Rs for which
the loop first appears, calculation of Ra at that value, and a comparison with the value of
Ra on the steady branch at the same value of Rs.

The loop of oscillatory instability appears when the two roots of (3.23) coincide. After
a little algebra, it can be shown that the critical value of R̃s (R̃s �, say) is then given by

1
σ

= 4τ |R̃s �| − 4|R̃s �|1/2(1 − τ)1/2 − 1. (3.27)

For comparison, we must also calculate the values of R̃s at which the stability
boundaries for the steady and oscillatory modes intersect (R̃s so, say). At leading order,
the steady boundary (2.21) is approximated by R̃a = R̃s /τ . Substituting into (3.23), the
leading-order expression for the oscillatory stability boundary, gives

R̃s so = τ(1 + σ + τ)

4σ(σ − στ − τ 2)
. (3.28)

The comparison to be made is between R̃a evaluated at R̃s �, when the loop first appears,
and R̃s �/τ , which is the value of R̃a on the steady branch. If R̃a(R̃s �) < R̃s �/τ (both
negative recall), then the loop of oscillations appears beneath the steady branch (i.e. at
higher |R̃a|); the critical value of R̃s for the onset of oscillations is then R̃s �. If, on the
other hand, R̃a(R̃s �) > R̃s �/τ , then the loop of oscillations appears above the steady
branch (i.e. at lower |R̃a|); the critical value of R̃s for the onset of oscillations is then
R̃s so. It can be shown that R̃s � = R̃s so when

σ = 1
2

(√
1 + 3τ

1 − τ
− (1 + 2τ)

)
. (3.29)

927 A13-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

72
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.721


D.W. Hughes, M.R.E. Proctor and I.A. Eltayeb

0.4 0.5 0.6 0.7 0.8 0.9
–20

–15

–10

–5

0

0.4 0.5 0.6 0.7 0.8 0.9
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

τ τ

k̃2

(b)(a)

Rs

Figure 6. (a) Critical value of R̃s for the onset of oscillatory instability with n = 2 as a function of τ for
σ = 0.3 (with CS = 0). On the dashed line, oscillatory instability first occurs when the oscillatory and steady
branches coincide. On the solid line, oscillatory instability first occurs through the appearance of a loop beneath
the steady boundary. (b) The value of k̃2 at the onset of oscillatory instability.

Figure 6(a) shows the critical value of R̃s as a function of τ for the case of σ = 0.3. For
this value of σ , the critical value of τ distinguishing the two regimes, given by expression
(3.29), is τ = 0.649. We note also, from (3.28), that R̃s so → −∞ as (σ − στ − τ 2) → 0;
thus oscillations can be preferred in the third quadrant only if the following inequality is
satisfied:

σ <
τ 2

1 − τ
; (3.30)

for σ = 0.3, this gives the lower bound of τ = 0.418. Figure 6(b) shows the corresponding
critical value of k̃2, as determined by expression (3.26), at the onset of oscillatory
instability.

3.3.2. n > 2
In the third quadrant, the oscillatory mode remains minimised when k2 = O(CT

−1/2) for
n > 2. This property thus allows us readily to determine the oscillatory stability boundary
from (3.23) (valid for n = 2) simply by considering the case of |R̃s |, |R̃a| � 1. In this
limit, (3.23) factorises to give the two leading-order solutions

R̃a = R̃s , R̃a = (σ + τ)

σ
R̃s . (3.31)

Recall that at leading order, the steady branch is given by R̃a = R̃s /τ . Thus, since
τ < 1, the root R̃a = R̃s always lies above the steady branch and hence is of no physical
relevance. However, the root R̃a = (σ + τ)R̃s /σ lies below the steady branch provided
that inequality (3.30) holds; i.e. the same condition applies for n > 2 as for n = 2.
Since there is cancellation at leading order in expression (3.25b) for the coefficient A,
in order to determine the preferred value of the wavenumber at onset it is necessary to
include the first-order correction to R̃a, which gives

R̃a = (σ + τ)

σ
R̃s +

(
σ + τ

4σ 2τ

)
CT

n−2. (3.32)
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Figure 7. Plots of (a) Rac and (b) k2
c as a function of Rs (−5 ≥ Rs ≥ −1015) for CT = 10−3, CS = 0, σ = 0.3,

τ = 0.5. The onset of instability is shown as a red solid line if steady and a blue solid line if oscillatory. The
red dashed line shows the continuation of the steady line once it is no longer preferred. The inset plots Rac
versus Rac/|Rs| in order to distinguish more clearly the steady and oscillatory branches.

From (3.26), having made use of (3.25) and (3.32), we determine the critical value of k̃2

at the onset of instability as

k̃2 =
(

1
2σ

)1/2

. (3.33)

3.3.3. Overall stability boundary
Figure 7(a) shows the critical Rayleigh number Rac for a wide range of Rs (−5 ≥ Rs ≥
−1015, equivalent to O(1) ≤ n ≤ 5), for fixed values of CT = 10−3, τ = 0.5, σ = 0.3. For
small enough |Rs|, the preferred mode at onset is always steady, with k2 = 1/2, as shown
in figure 7(b). For n > 2, since inequality (3.30) is satisfied with this choice of parameters,
oscillatory modes are preferred; figure 7(b) confirms that the critical wavenumber for the
oscillatory modes has k2 = O(CT

−1/2) for all n > 2. If there is a transition between steady
and oscillatory modes, as here, it occurs when n ≈ 2; for the parameter values in figure 7,
the transition occurs at Rs = −7.9 × 106. For both the steady and oscillatory branches,
Rac varies linearly with Rs; the offset between the two is made clear in the inset, which
plots Rac/|Rs| against Rs.

4. The case of CT = 0

4.1. Stability boundaries
As for the case of CS = 0, the coefficient a5 defined by (2.18a) vanishes; the dispersion
relation (2.17) reduces to a quartic equation with coefficients

a4 = 2CS
β2

σ
, (4.1a)

a3 = 2CSβ
4
(

1 + 1
σ

)
+ β2

σ
, (4.1b)

a2 = 2CSβ
6 + β4

(
1 + 1 + τ

σ

)
+ 2CS(Rs − Ra)k2, (4.1c)
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a1 =
(

1 + τ + τ

σ

)
β6 − Rak2 + Rsk2(1 + 2CSβ

2), (4.1d)

a0 = τβ8 − τRak2β2 + Rsk2β2. (4.1e)

Again, for an oscillatory root we have the conditions

a4ω
4 − a2ω

2 + a0 = 0, a3ω
2 − a1 = 0. (4.2)

Eliminating Ra gives the following quadratic equation for ω2:

b4ω
4 + b2ω

2 + b0 = 0, (4.3)

where

b4 = 4CS
2β2, (4.4a)

b2 = β2 − 4CS
2Qk2 − 4τCSβ

4, (4.4b)

b0 = τ 2β6 − Qk2(1 − τ) + 2τCSQβ2k2, (4.4c)

where Q = σRs/(1 + σ).
Conversely, we could eliminate ω2 to obtain the following quadratic expression for Ra

on the oscillatory boundary (provided that ω2 > 0):

c2Ra2 + c1Ra + c0 = 0, (4.5)

where

c2 = 4σ 2(1 + σ)CS
2, (4.6a)

c1 = −
(

8σ 2(1 + σ)CS
3Rsβ

2 + 8σ 2(1 + σ)CS
2 β6

k2 + 4σ 2(1 + 2σ)CS
2Rs

+ 2σ(1 + σ)(1 + σ − 2τ)CS
β4

k2 + σ(1 + σ)
β2

k2

)
, (4.6b)

c0 = 8CS
3σ 2Rsβ

2
(

(1 + σ)
β6

k2 + σRs

)

+ 4CS
2

(
σ 3
(

β6

k2 + Rs

)2

+ σ 2(1 + τ + στ)Rs
β6

k2 + σ 2 β12

k4

)

+ 2CS
β4

k2

(
(σ 2(1 + σ) + στ)Rs + (1 + σ)(τ (1 + σ 2) + σ(1 + σ))

β6

k2

)
+ (1 + σ)(1 + τ)(σ + τ)

β8

k4 + σ(σ + τ)Rs
β2

k2 . (4.6c)

4.2. First quadrant: Ra > 0, Rs > 0

4.2.1. n ≤ 1
We first recall that once Rs is such that inequality (2.24) is satisfied then oscillatory
modes are preferred. In an analogous fashion to the case of CS = 0, we may investigate
the changes from the classical problem when n = 1. We consider the regime CS � 1,
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Ra(o)

k2

(×104)(b)(a)

k2
s

Rs

Figure 8. (a) The real parts of the roots of (4.9) for k2 as a function of R̃s for the n = 1 regime; the blue
line denotes a real root, the red lines denote the real part of a conjugate pair; σ = 1, τ = 0.5. (b) Oscillatory
stability boundary (blue solid line) for CS = 10−3, CT = 0, Rs = 2 × 104 (corresponding to R̃s = CSRs = 20),
together with the zeroth-order asymptotic expression (4.7) (purple dashed line) and the first-order correction
(4.8) (purple squares).

Rs = CS
−1R̃s , Ra = CS

−1R̃a, with k2 = O(1), and write R̃a = R̃a0 + CSR̃a1. On
substitution into (4.5), the leading-order terms give

R̃a0 = (σ + τ)

(1 + σ)
R̃s . (4.7)

The wavenumber dependence appears at the next order, where R̃a1 is given by

R̃a1 = −4στ(1 − τ)

(1 + σ)2 R̃s 2 k2

β2 + 2τ(σ + 2τ)

(1 + σ)
R̃s β2 + (1 + τ)(σ + τ)

σ

β6

k2 . (4.8)

Stationary points (dR̃a1/dk2 = 0) are therefore given by the expression

4στ(1 − τ)

(1 + σ)2(1 + k2)2 R̃s 2 − 2τ(σ + 2τ)

(1 + σ)
R̃s − (1 + τ)(σ + τ)

σ
(2k2 − 1)

(1 + k2)2

k4 = 0,

(4.9)

which is a quintic polynomial in k2. Figure 8(a) shows the evolution of the real parts of
the roots of this polynomial as R̃s is increased. By contrast with the case of CS = 0 (cf.
figure 2a), no new positive stationary points arise. As R̃s is increased, and contrary to the
behaviour in the first quadrant when CS = 0 (see § 3.2.1), the minimum at k2 = 1/2 of the
classical problem first moves to slightly lower wavenumbers, for all σ and τ < 1, before
then moving gradually to higher wavenumbers. The smallest value of k2

c , taken over R̃s , is
given by the positive root of the quadratic equation

τ(σ + 2τ)2

4(1 − τ 2)(σ + τ)
k4

c + 2k2
c − 1 = 0. (4.10)

Figure 8(b) plots the oscillatory stability boundary, together with the zeroth-order
approximation (4.7), and the first-order correction (4.8); the latter is almost
indistinguishable from the boundary of the full system.
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4.2.2. n = 2
In the first quadrant, the critical Ra for oscillatory modes is minimised when k2 =
O(CS

−1/2). At leading order, the coefficients of (4.5) become

c2 = 4σ 2(1 + σ)CS
2, (4.11a)

c1 = −(4σ 2(1 + 2σ)CS
2Rs + σ(1 + σ)), (4.11b)

c0 = 4CS
2σ 3Rs2 + σ(σ + τ)Rs. (4.11c)

In terms of the scaled variables defined by Ra = CS
−2R̃a, Rs = CS

−2R̃s , this gives the
following quadratic equation:

4σ(1 + σ)R̃a2 − (4σ(1 + 2σ)R̃s + (1 + σ))R̃a + 4σ 2R̃s 2 + (σ + τ)R̃s = 0. (4.12)

It may be verified that in this regime, oscillations are favoured for all values of the
parameters. To see this, we note that the marginal curve for oscillations (4.12) is a
hyperbola passing through the origin, which can be written in the form

((1 + σ)R̃a − σ R̃s − e)(R̃a − R̃s − f ) = ef , where e = τ(1 + σ)

4σ
, f = (1 − τ)

4σ
.

(4.13)

This hyperbola intersects the line R̃s = 0 at R̃a = 0, R̃a = 1/4σ . Thus it is the lower
branch of the hyperbola that passes through the origin, and the gradient along this branch
decreases monotonically along the branch from (σ + τ)/(1 + σ) to σ/(1 + σ); hence the
gradient is always less than 1/τ , and oscillations are therefore always preferred in the first
quadrant when Rs = O(CS

−n), n ≥ 2.
As in § 3.3, we must take the analysis to the next order to determine the wavenumber

dependence of the critical Rayleigh number; we thus write R̃a = R̃a0 + CS
1/2R̃a1. The

leading-order terms determine R̃a0 via (4.12); R̃a1 is determined at the next order through
the expression

FR̃a1 =
(

Ak̃2 + B

k̃2

)
, (4.14)

where

F = 4σ 2(1 + 2σ)R̃s + σ(1 + σ) − 8σ 2(1 + σ)R̃a0, (4.15a)

A = 8σ 3R̃s 2 − 8σ 2(1 + σ)R̃s R̃a0 + 2(σ 2(1 + σ) + στ)R̃s

−2σ(1 + σ)(1 + σ − 2τ)R̃a0, (4.15b)

B = σ(σ + τ)R̃s − σ(1 + σ)R̃a0. (4.15c)

If F, A and B are of the same sign, then R̃a1 is minimised when

k̃2 =
(

B
A

)1/2

. (4.16)

Figure 9 shows Ra(o) as a function of k2, together with the asymptotic results (4.12) and
(4.14), for CS = 10−4 and CS = 10−8.
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Figure 9. The blue lines show the oscillatory stability boundary Ra(o) versus k2 with σ = 1, τ = 0.1,
CT = 0; (a) CS = 10−4, Rs = 108; (b) CS = 10−8, Rs = 1016. The purple dashed lines show the leading-order
asymptotic result (4.12); the purple squares include the first-order correction given by (4.14). At the smaller
value of CS, the numerical results for the full system and the first-order asymptotic results are essentially
indistinguishable.

4.2.3. n > 2
As in the third quadrant with CS = 0 (§ 3.3.2), for n > 2 the oscillatory mode
remains minimised when k2 = O(CS

−1/2). The ensuing analysis to determine the critical
wavenumber is thus entirely analogous, with the oscillatory stability boundary determined
from (4.12) (valid for n = 2) by considering the case of |R̃s |, |R̃a| � 1. In this limit, (4.12)
factorises to give the following two leading-order solutions:

R̃a = R̃s , R̃a = σ

(1 + σ)
R̃s , (4.17)

where the latter is the critical value for the onset of oscillatory instability (which is always
the preferred mode). To determine the critical value of the wavenumber at the onset of
oscillatory instability, it is again necessary to include the first-order correction to R̃a, which
gives

R̃a = σ

(1 + σ)
R̃s +

( τ

4σ

)
CS

n−2. (4.18)

From (4.16), having made use of (4.15) and (4.18), we can determine the critical value of
k̃2 at the onset of instability as

k̃2 =
(

1
2σ

)1/2

. (4.19)

The onset of instability in the first quadrant for CT = 0 is related to that in the third
quadrant for CS = 0. The leading-order expressions (3.32) and (4.18) are connected
through the transformation (2.19). The critical wavenumbers are identical in the two cases,
although this is not readily shown via the transformation (2.19) – the symmetry is lost
since both analyses involve perturbations in Ra but not in Rs.

4.2.4. Overall stability boundary
Figure 10 shows Rac and k2

c for 10−5 ≤ Rs ≤ 1015 with CT = 10−3, σ = 1, τ = 0.5. The
steady mode, with k2

c = 1/2, gives way to the oscillatory mode when Rs = O(1). When
it first becomes dominant, the oscillatory mode also has k2

c = 1/2. As Rs is increased,
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Figure 10. Plots of (a) Rac and (b) k2
c as a function of Rs (10−5 ≤ Rs ≤ 1015) for CT = 10−3, CS = 0, σ = 1,

τ = 0.5. The onset of instability is shown as a red solid line if steady and a blue solid line if oscillatory. The
red dashed line shows the continuation of the steady line once it is no longer preferred. The blue dashed line
denotes the onset of oscillatory instability for the classical problem. The inset plots Rac versus Rac/Rs in order
to distinguish more clearly the steady and oscillatory branches; here the range of Rs starts at 100.5.

in the n = 1 regime, k2
c decreases slightly, as explained in § 4.2.1, before increasing sharply

in the n = 2 regime. For n ≥ 2, k2
c = O(CS

−1/2), with the precise asymptotic value (4.19)
for n > 2. Also shown in figure 10(a) is the boundary for the onset of oscillatory motion
for the classical problem. In terms of Rac, it can be seen that the M–C effect comes into
play for n � 2, although, since Rac depends linearly on Rs for both these boundaries, the
difference is small on a logarithmic scale; it is made clearer in the inset, which brings
out the difference in the multiplicative factors in (2.23) and (4.17). It is though worth
reiterating that the difference in the spatial structure of the preferred modes between the
case of CS = 0 and that of CS � 1 is significant; as illustrated in figure 10(b), the former
has k2

c = 1/2, the latter k2
c = O(CS

−1/2).

4.3. Third quadrant: Ra < 0, Rs < 0

4.3.1. n = 2
As for the third quadrant in the case of CS = 0, discussed in § 3.3, steady convection in
the form of salt fingers is always preferred for n < 2. For n = 2, oscillatory solutions arise
for a range of wavenumbers lying between two Takens–Bogdanov points, defined as where
the steady and oscillatory branches coincide, with the oscillatory branch having two zero
frequencies. At such points, the coefficients a0 and a1 of the dispersion relation (given by
expressions (4.1d,e)) must both vanish. For large |Rs| (n ≥ 2), simultaneous solution of
the equations a0 = 0 and a1 = 0 requires large k2. Thus, making only the approximation
that β2 ≈ k2, eliminating Ra gives the following condition for Takens–Bogdanov points:

τ 2
(

1 + 1
σ

)
k4 + 2τCSRsk2 − Rs(1 − τ) = 0. (4.20)

Thus when Rs = O(CT
−2), k2 must be O(CS

−1). The two Takens–Bogdanov points
coincide – marking the first appearance of oscillatory solutions – when there are repeated
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Figure 11. Critical Ra for the steady mode (red line) and oscillatory mode (blue line) for σ = 1, τ = 0.2,
CS = 10−3, CT = 0 with (a) Rs = −2.5 × 106 and (b) Rs = −6.5 × 106. In (a), steady convection is favoured,
with the preferred mode having k2 = 0.5; in (b), oscillatory convection is favoured, with the preferred mode
having k2 = 5954.

roots for k2 in (4.20); this occurs when

Rs = RsTB = −(1 − τ)

CS
2

(
1 + 1

σ

)
, with k2 =

(
1
τ

− 1
)

CS
−1. (4.21)

When Rs = RsTB, Ra is given by

Ra = RaTB = (1 − τ)(σ − τ − 2στ)

στ 2 CS
−2. (4.22)

Thus, oscillatory solutions first appear in the third quadrant if τ > σ/(1 + 2σ); otherwise
they first appear in the second quadrant. When oscillatory solutions first appear, at Rs =
RsTB, they are not favoured, even when (RsTB, RaTB) lies in the third quadrant. As Rs is
decreased below RsTB, the extent of k2 for which oscillatory solutions exist increases, but
initially without oscillations being preferred, as shown in figure 11(a). However, as Rs is
decreased further – but still within the n = 2 regime – the minimum of the oscillatory loop
lies below the minimum of the steady branch and oscillations are then favoured; this is the
situation shown in figure 11(b). Analytically, it is not possible to pin down the transition
values of Rs and k2 precisely since, save for the approximation β2 ≈ k2, no additional
simplification is possible of the terms in (4.5), which are all of the same order.

4.3.2. n > 2
For n > 2, expression (4.20) for the Takens–Bogdanov points, being based only on the
condition k2 � 1, is still valid, with roots

k2 ≈ (1 − τ)CS
−1

2τ
, k2 ≈ −2σCSRs

τ(1 + σ)
= −2CSQ

τ
. (4.23)

Thus, in comparison with the case of n = 2, the arc of oscillatory instability is extended;
the lower value of k2 remains O(CS

−1), with the upper value now O(CS
1−n). The minimum

of the oscillatory stability boundary is captured in the same scaling for k2 as the upper
Takens–Bogdanov point. Thus, with k2 ∼ CS

1−n, the frequency equation (4.3) becomes,
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Figure 12. Plots of (a) Rac and (b) k2
c as a function of Rs (−1015 ≤ Rs ≤ −4) for CS = 10−3, CT = 0, σ =

0.3, τ = 0.5. The onset of instability is shown as a red solid line if steady and a blue solid line if oscillatory.
The red dashed line shows the continuation of the steady line once it is no longer preferred.

at leading order,

4CS
2ω4 − 4(CS

2Q + τCSk2)ω2 + (2τCSQk2 + τ 2k4) = 0, (4.24)

which factorises as

(2CSω
2 − τk2)(2CSω

2 − 2CSQ − τk2) = 0. (4.25)

The relevant root for the stability boundary is given by ω2 = τk2/2CS, which is always
admissible. The oscillatory stability boundary is then determined from the leading-order
terms in expression (2.22) to be

Ra(o) = k4 + 2CSRsk2, (4.26)

which, after minimisation over k2, gives

Ra(o)
c = −CS

2Rs2, obtained when k2 = −CSRs. (4.27)

Since the onset of steady convection occurs when Ra = Rs/τ = O(CS
−n), then, for n > 2,

oscillatory convection, with onset given by (4.27), is always preferred.

4.3.3. Overall stability boundary
Figure 12 shows Rac and k2

c for −1015 ≤ Rs ≤ −4, for fixed values of CS = 10−3, CT = 0,
τ = 0.5, σ = 0.3. For small enough |Rs|, the preferred mode at onset is always steady,
whereas for n � 2, oscillatory modes are preferred. There is an abrupt change in scale
of the preferred mode, from k2

c = 1/2 to k2
c = O(CS

−1) in the n = 2 regime. For n > 2,
oscillatory modes are vastly preferred, with Rac scaling as Rs2; k2

c increases linearly with
Rs.

5. Conclusion and discussion

We have investigated the onset of linear instability for double-diffusive convection,
incorporating, separately, the M–C effects for heat and salinity. In most physical situations,
the M–C effects are very small, and we have therefore concentrated our attention on the
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case of C � 1, where here in the discussion, we use C to denote either CT or CS. The
linear theory for classical double-diffusive convection is fairly straightforward, chiefly
because the most favourable horizontal wavenumber for instability is independent of the
governing parameters of the problem – in contrast to the somewhat related problems of
rotating convection or magnetoconvection. However, for two reasons, the introduction of
either one of the M–C effects – although ‘just’ an extra time derivative – leads to a vastly
richer problem. The first is that the additional time derivative is multiplied by the M–C
coefficient and hence represents a singular perturbation in the time domain. The second is
that the dependence on wavenumber becomes decidedly non-trivial.

Since C is small, the influence of the M–C effect is felt only for concomitantly high
thermal and salinity gradients. This competition is most elegantly treated by determining
the critical thermal Rayleigh number Rac for the regimes defined by Rs = O(C−n)
(n > 0). The only symmetry of the system is given by (2.19); thus the two problems of
CS = 0 and CT = 0 require separate analyses. The chief influence of both M–C effects
is to favour oscillatory convection, with the preferred mode having a large wavenumber.
Oscillatory instabilities in double-diffusive convection may be regarded as capitalising
on a favourable phase lag in the two components that contribute to the density, allowing
a fluid parcel displaced upwards to return to its original position with a higher density
than it had initially; it will then overshoot, with repetition of the process leading to
growing oscillations. The M–C effects introduce a new fast time scale – this can then
be exploited by modes of small horizontal scale to lead to new oscillatory modes of
instability.

For classical double-diffusive convection, the onset of instability with Rs and Ra both
positive (the first quadrant) is steady for small Rs, but oscillatory once inequality (2.24) is
satisfied (the diffusive regime). By contrast, the onset of instability with Rs and Ra both
negative (the third quadrant) is steady for all values of Rs (the salt fingering regime).

In the first quadrant, for CS = 0 or CT = 0, there is some influence of the M–C effect
when n ≈ 1, but this represents only a small change in the critical value of k2 from its
classical value of k2

c = 1/2. Much more drastic changes arise when n ≈ 2. For CS = 0,
with n ≥ 2, the preferred mode becomes small scale, with k2

c = O(CT
−n/2); the critical

Rayleigh number is given by Rac = O(CT
−(1+n/2)) = O(CT

n/2−1Rs). For n = 2, Rac =
O(Rs) and hence is of the same order of magnitude as the critical Ra of the classical
problem – though the preferred mode is characterised by k2

c = O(CT
−1) rather than k2 =

O(1). For n > 2, Rac is asymptotically smaller than Rs (and hence than the critical Ra
of the classical problem). These results are captured in figure 4. For CT = 0, as shown in
figure 10, the preferred mode has k2

c = O(CS
−1/2) for n ≥ 2, with Rac = O(Rs); here Rac

is of the same order of magnitude, but less than the critical value for the classical problem.
In the third quadrant, in which there is no oscillatory instability in the classical problem,

M–C effects are not felt until n = 2. For CS = 0, oscillatory instabilities are favoured only
for sufficiently small σ , given by inequality (3.30); when this occurs, k2

c = O(CT
−1/2)

for all n ≥ 2, with Rac = O(Rs). Thus, as shown in figure 7, Rac = O(Rs) for the entire
range of Rs, with an abrupt increase in k2

c once the onset becomes oscillatory. For CT = 0,
oscillatory motions are always favoured for n � 2, regardless of the values of σ and τ .
When n = 2, k2

c = O(CS
−1), with Rac = O(Rs). For n > 2, k2

c = O(CS
1−n), with Rac =

O(CS
2Rs). As shown in figure 12, for n > 2, the oscillatory branch then has a distinct

asymptotic scaling to that of the steady branch.
The preference for small horizontal scales (k � 1) of the preferred modes at large Rs

has two interesting consequences. The first concerns the vertical structure of the perturbed
quantities, as described in expression (2.15). In the leading-order analysis of §§ 3 and 4,
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we make use of the approximation β2 = k2 + 1 ≈ k2. It is, though, of course the case
that for modes with vertical wavenumber m > 1, the approximation β2 = k2 + m2 ≈ k2

still holds: leading-order expressions for k2 � 1 are therefore degenerate in the vertical
wavenumber. Unlike for classical double-diffusive convection, determining the preferred
value of m is thus not immediately apparent, and requires examination of the higher-order
terms. Here, to avoid further complications, we have considered only the m = 1 mode.
However, numerically, we have also considered the case of m > 1 and found that in all
of the examples considered, the m = 1 mode is preferred. The second consequence of
the preference for k � 1 modes concerns the influence of the boundary conditions on
the planes z = 0, π. In this paper, for algebraic simplicity, we have assumed that the
boundaries are stress-free. For no-slip boundaries, it can be shown that the dominant
terms in the interior give the same solutions as in the stress-free case, with the new
boundary conditions accommodated by viscous boundary layers. This is reminiscent of
the behaviour for convection in an imposed strong magnetic field, discussed in more detail
in Eltayeb et al. (2020).

We have concentrated in this paper on determining the conditions for the onset of
instability and the nature of the preferred mode at onset. An alternative approach to
the linear problem is to consider the mode of maximum growth rate in the unstable
regime. Indeed, sufficiently far into the unstable regime, close to the line Ra = Rs, we
expect steady convection to dominate and for the modes to resemble those of classical
double-diffusive convection, perturbed slightly by the M–C effect. What our analysis has
revealed, however, is that there are regions in (Rs, Ra) space that are stable in the classical
problem, but that can be destabilised by a new instability mechanism arising from the
M–C effect. This feature is particularly marked in the first quadrant of the (Rs, Ra) plane
for CS = 0 and the third quadrant for CT = 0, for which the power-law dependence of Rac
on Rs is different for the classical and M–C problems.

It is important to see where M–C effects may play a role in double-diffusive convection
in physical systems. As we have shown, even very small values of C can be significant,
provided that the Rayleigh numbers are sufficiently high. In an astrophysical context,
double diffusion in the diffusive regime (often referred to as semiconvection in the
astrophysical literature) can be of importance for massive stars and stars on the horizontal
branch. Here, one indeed expects very high values of Ra and Rs. Although estimating
the Rayleigh numbers is not straightforward, one might assume that Ra and Rs are
comparable to Ra in the Sun, which is O(1020) at the base of the convection zone, with
the length d taken to be a scale height H (Ossendrijver 2003). We may then ask what
value of τT (or τS) will give C = O(Rs−1), i.e. the n = 1 regime? With the solar values of
H = O(108 m) and κ = O(103 m2 s−1), we obtain τT = O(10−7 s). Direct calculations of
the relaxation times for gases in stellar interiors are elusive, but for comparison, we note
that kinetic calculations of τT for a rarefied gas yield τT = O(10−9 s) (Carrassi & Morro
1972; Stranges et al. 2016). Thus, in ‘normal’ stellar interiors, the n = 1 regime may be
accessible, but probably not the regimes for larger n, which would require unfeasibly large
values of the relaxation time. However, as pointed out by Herrera & Falcón (1995), in
dense degenerate stellar material, where thermal conductivity is dominated by electrons,
one does indeed expect a much longer relaxation time, owing to the larger mean free path
of electrons.

At the other extreme of very small length scales – as found in microfluidic devices,
for example – values of C are readily obtained that are small, but not outrageously
so. For example, for hydrogen at room temperature and atmospheric pressure, CT =
O(10−2) when d = 10−6 m. Under such conditions, the regimes for n � 2 are attainable
at fairly modest values of Ra and Rs. Microfluidic platforms offer precise capabilities in
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controlling mass transport for biological and medical studies (Kuo & Chiu 2011). Some
form of double-diffusive convection, influenced by M–C effects, may then play a role in
manipulating chemical concentrations at the microscale. It does not appear that there has
been any attempt either to calculate τS theoretically or measure it experimentally; we hope
that our study may trigger work in this direction.

The natural extension of the work described in this paper, which we are currently
pursuing, is to consider the linear stability problem in which CT and CS are small but
both non-zero; this clearly adds another level of complexity, particularly since the relative
sizes of CT and CS will also be an important factor. In terms of investigating the nonlinear
evolution, there are several features of interest that are contingent on the presence of
the M–C effects. As shown in both §§ 3 and 4, and unlike in classical double diffusion,
steady and oscillatory modes of vastly different horizontal scales can be equally readily
excited, thus prompting the question of the emergent dominant nonlinear scale. Nonlinear
simulations of double-diffusive convection often employ periodic boundary conditions for
the perturbations in the vertical as well as horizontal directions. Physically, this reduces
the impact of impermeable boundaries and is thus more relevant in geophysical and
astrophysical settings. Mathematically, it allows the presence of ‘elevator’ modes (i.e.
modes with no vertical structure) and also couches the problem in terms of the density ratio
R0 = |Ra|/|Rs|, rather than Ra and Rs individually (see, for example, Hughes & Brummell
2021). This approach has proved particularly fruitful in the study of the formation and
maintenance of layers or ‘staircases’, which can appear in both the diffusive and fingering
regimes (e.g. Radko 2003; Stellmach et al. 2011; Mirouh et al. 2012). One of the most
important consequence of the formation of double-diffusive staircases is the marked
increase in turbulent transport, in comparison with the unlayered state. It would therefore
certainly be of interest to pursue the nonlinear development of the instabilities studied
here, but with such modified boundary conditions, in order to investigate how the layering
process and associated turbulent transport may be influenced by the new time scale and
very different dynamics introduced by the M–C effects.
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