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ON THE THEOREMS OF BORSUK-ULAM AND
LJUSTERNIK-SCHNIRELMANN-BORSUK

BY
H. STEINLEIN

ABSTRACT. Let p=3 be a prime number and m a positive integer,
and let S be the sphere S™M V®-D-1 Tet f:S—S be a map
without fixed points and with f* =idg. We show that there exists an
h:S—R™ with h(x)# h(f(x)) for all xeS. From this we conclude
that there exists a closed cover Uy, ..., U, of S with U, Nf(U;) =
& for i=1,...,4m. We apply these results to Borsuk-Ulam and
Ljusternik—Schnirelmann-Borsuk theorems in the framework of the
sectional category and to a problem in asymptotic fixed point
theory.

1. Introduction. We consider in this paper a special type of generalizations
of the following two classical results (cf. [1, 5]):

Borsuk-ULAM THEOREM. Let
(1) nz=m,

and let h:S" —R™ be a continuous map. Then there exists an x < S" with

h(x) = h(—x).

LJUSTERNIK-SCHNIRELMANN-BORSUK THEOREM. Let H, . .., H, be closed sub-
sets of S™ such that U, H;=S" and HN(-H,))= fori=1,..., k. Then

2 n=k—2.

It is a very natural idea to replace —id by a map f: S" — S™ without fixed
points and with f? =idg. for some (prime) number p and to ask for conditions
such that

a) for any h : 8" —R™, there is an x € S™ with h(x)= h(f(x)) or

b) there exists a covering of S" by k closed sets U,, ..., U, with U;N
fU)=D fori=1,... k.

Both questions have already been extensively studied in literature, not only
for spheres, but for more general spaces. For spheres, one has the following
results:

GENERALIZED BORSUK-ULAM THEOREM (cf. [6, 7]). Let p be a prime number,
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m, neN with
3) n=z(m-1(p-1+1,

and let f : S* — S™ generate a free Z,-action on S™ (i.e. f* =idg~ and f has no
fixed points). Then for each continuous h : S™ —R™, there exists an x € S™ with

h(x) = h(f(x)).

GENERALIZED LIUSTERNIK-SCHNIRELMANN-BORSUK THEOREM (cf. [9]). Let p be
a prime number, n, k €N, and let f: S" — S" generate a free Z,-action on S™.
Assume that there are closed sets H,, ..., H,<S™ with U, H,=S" and
HNf(H)= fori=1,...,k. Then

PR3, ifp=3,
@ "=t .
S (k=3)+1, if p>3.

The purpose of this paper is to consider the question of the optimality of the
estimates (3) and (4). It is well known and easy to show that the estimates (1)
and (2) are best possible. The optimality of (3) was known only in the case of
p=3 [2]. We will construct for all prime numbers p a free Z,-action ¢ on
Sm=De-D=1 and an h: ST VPVl @™ with h(x)# h(e(x)) for all xe
Sm~Ve-D-1 This yields the optimality of the generalized Borsuk-Ulam
theorem, since for p =3, there are no free Z,-actions on the even-dimensional
spheres S™ Y@~

Concerning the generalized Ljusternik—Schnirelmann—Borsuk theorem, we
will see that the estimate (4) is in fact not best possible, but it is not far from
the optimal one. We will see that with ¢ : S™M DE=D=1_ gIm=DE=D=1 59
above, there is a cover of S™ VP® V=1 by closed sets Uy, ..., U, with
UnNeU)=@ fori=1,...,4m.

Our main motivation for this work was the following conjecture in asympto-
tic fixed point theory:

AsymrroTic CONJECTURE. Let E be a normed space, f : E— E a continuous
map such that f*(E) is compact for some ko,=2. Then there exists an x € E with

f(x)=x(?).

In [8], we described an approach to this problem via estimates of the genus
g(F[f°1, ) (in the sense of A. S. Svarc [10, 117, cf. chapter 3 below) of the
fixed point set F[f*] of f° for large prime numbers p. Unfortunately, as a
consequence of the above described optimality result for the generalized
Ljusternik—Schnirelmann-Borsuk covering property, we will see in chapter 5
that this approach fails. Instead we get another hint that the asymptotic
conjecture might be wrong.
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2. Optimality results. We start with a result, which shows that estimate (3)
in the generalized Borsuk—Ulam theorem cannot be weakened:

THEOREM 1. Let m eN, p a prime number,

L:= {(xl, cox)e@®™TY

p

Z xj' = 0},
i=1

S:=8m-veingp
and
(P::S'_)S9(P(xl’ e >xp)::(x23 e ,xp,xl)'
There exists a continuous map h : S —R™ with h(x) # h(¢(x)) for all xe S.
REMARKS. S is an ((m —1)(p—1)— 1)-dimensional sphere and ¢ generates a

free Z,-action on S. Examples of such maps h on spheres S™ P® V! with a
free Z,-action ¢ were already known for p=2 and any m =2 (this is trivial
even for ™! instead of S™2=8™ " Y®"D"1) and for p=3 and any m =2 (cf.
[2]). On the other hand, the generalized Borsuk—-Ulam theorem of E. Lusk [6]
says that on S™~P®~D*1 jnstead of S PP~V71 one always has a coincidence

point x, ie. h(x)=h(p(x)). On S™ VPV there are no free Z,-actions, if
p =3. We will describe in the next chapter how one can fill this gap.

Proof of Theorem 1. It suffices to consider m=2. Let h:S—
R™ " h(xy,...,x,) =X,
Since (x,,...,x,)#0 and }?_, x; =0, we have
d(x):=|(h(e(x)—h(x), h(¢*(x)— h(e(x)), . .., h(e"(x))— h(e" " (x)))|
= ‘(x2_x1’ X377 X2, ..., xl_xp)l #0

for every x=(x,,...,x,)€S. Let a :R—[0, 1] be continuous with «a(0)=1
and a(t)=0 for t=p " Let g:S >R,

T (1P i) — h(eP T (x))]
g(x).—igbjlrloa< o) )

Obviously, d(x)=d(e(x)) for every xeS. If xeS with h(x)=h(e(x)), we
have

(lﬁ(cp””(x)) - ﬁ(<p"(X))l> _ a(lﬁ(cp(X)) —h(x)|
d(e(x)) d(x)

In addition, by the definition of d and a, there must be a j€{0, ..., p—1} with

(" 7(x))— h(e” 7' (x))| _
a( d(x) >_ 0.

)za(0)= 1.
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We have just seen that this cannot be for j=p—1, thus

~ (A" (x) = hle" ' @) _

,D) °‘< d(x) ) =0
We obtain in the case of h(x)= h(p(x))

P (AP (%) — h(eP ()]
stot)= I I oM E—1005 )

T a(lﬁ(<p"_”‘(X))—ﬁ(<p”_’(x))|>
i=1j=1 d(e(x))
S ‘acﬁwwﬂu»—ﬁ@W**u»g
=0 i=0 d(x)

=1+g(x),

in particular g(¢(x)) # g(x).
Thus, h:S—R™ defined by h(x):=(h(x), g(x)), has the desired
properties. q.e.d.

Our next result enables us to apply Theorem 1 to the Ljusternik—
Schnirelmann-Borsuk covering problem:

THEOREM 2. Let M be a normal space, p a prime number, and let f : M — M
generate a free Z,-action on M. Let meN such that there exists a continuous
h:M—R™ with h(x)# h(f(x)) for all xe M. Then there exist closed sets
U,...,UpcsMwith \ U™, U, =M and U,NfU)=D forn=1,...,4m.

Proof. Let g: M— S™ !,

BNLLLGL5) el 1C)
T IRGG) R G

For l€{1, ..., m}, we define
Ri:={xeM||(g(x))|=m™""},
Wi ={xeM|(g(x)), =0},
Wi i={xeM| (g(x)), =0}
and
RE:=R NW:.

We fix le{l, ..., m} and consider first only R;:
Let a,:M —[0, 1] be a continuous map with a+|R(+= 1 and a+lw,— =0. We
define b, : M —R,

box):= ¥, 1] au( i),

k=0j=0
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We first prove that for all xe M with f(x)e R}, we have b, (f(x))—b.(x)=1:
Since a,(f(x))=1 and since for some j€{0, ..., p—1}, we must have
(h(fP7* (%) = h(f*7(x))); =0,
i.e. fP(x)e Wy, it follows that
p

II a. (P i) = [T an(f(x) =0,

] i=0

Thus,
p—2 k ) p—2 k )
b.(fx)=b. ()= X [T a.(P7 ') - X [T au (P ix))
k=0j=0 k=0j=0
p—2 k ) p—3 k .
=1+ Y [Ta.(P7 ) X IT ac(Pitx))
k=1j=1 k=0j=0
p—3 k ) p—3 k )
=1+ Y [Ta(r )= X I ar(fito))
k=0j=0 k=0j=0
=1.
We define c, : M— S'<C, ¢,(x):=e"®™,
D,:= {ez"" -t ; 1 stsg}
and
G}l:=R;Nc (D)
for d=1,2,3.

Doing the same with a function a_ : M —[0, 1] with a_|g-=1 and a_|w, =0,
we obtain in an analogous way a function b_ : M — R, such that for x € M with
f(x)e Ry, we have

b_(f(x))—b_(x)=1.
With c_: M— S, c_(x):=e"®™ we then define for d=1,2,3
Gi:=R;NcZY(D,).
Let x € M with f(x)e R;. Then
b,(f(x))=b.(x)+1

and hence c. (f(x))=—c,(x), which implies that there is no de{1, 2, 3} with
c.(x), c.(f(x)) e D, simultaneously. It follows that for d =1,2,3

GiNnf(Gy =D
and (with the same proof)

G Nf(G)=.
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In addition, we get for d=1 and d =3

GiNf(Gy)= O and G Nf(G)) = D:
Let xe G <= R; < W; such that f(x)e R{. Then a,(x)=0 and therefore

b.G0)= T I a1 = . () = 1.

It follows c.(f(x)) =e™e D,\ (D, UD;), which implies
f(x)e G3\(GTUG3).
Thus, G Nf(G3)= . The proof of G;Nf(G}) = is identical.
We define the closed sets
H,:=GiUG{,H,:=G3,H;:=G5,H,:=G3UGS3.

By definition, it is obvious that
4
Rl = U fIi’
i=1

and we have just proved that
HNf(H)=fori=1,...,4.

This finishes the proof, since we know that
UR=M qed.
=1

Combining Theorem 1 and 2, we obtain

THEOREM 3. Let m,p,S and ¢ : S — S be as in Theorem 1. Then there exist
closed sets Uy, ..., Uy, =S with U™, U,=S and U, Ne(U,)=O for n=
1,...,4m.

3. Sectional category and Borsuk-Ulam and Ljusternik—Schnirelmann-
Borsuk theorems. Let us first recall the notion of sectional category (this term
is due to I. M. James [3]) or genus in the sense of A. S. Svarc [10, 11]:

DEerFINTION 1. Let 3, be the class of pairs (M, f), where M is a Hausdorft
space and f: M — M generates a free Z,-action on M. Let N,:={(M, f)e
%, | M normal}.

DEerFINITION 2. Let M be a Hausdorff space. We call a set Z<2™ an
admissible covering of M, if
a) 9 is an open covering of M,
b) there exists a family (tp)pcg Of continuous maps tp: M — [0, 1] such that
i) tp | mp=0,
ii) for every x € M there is a De % with tp(x)=1.
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Let # be the class of cardinal numbers and « an object not in #. Let
H':=H U{} with the ordering induced by the well-ordering of ¥ together
with a <<co for all a € #.

DEerINITION 3. Let p be a prime number and (M, f) € #,. Then the sectional
category or genus g(M, f) is defined by

Z(M, f) :=min{card U |U <2M is an admissible covering, for every U e U
there exist disjoint open sets U, ..., U,

p—1
with |J U;=U and [],~=ff(U0)f0rj:1,...,p—1},

i=0
if such a AU exists, and g(M, f) := otherwise.

In [8, 9], we used another genus g(M, f), for which one knows that g(M, f) <
g(M, f) and that it coincides with g(M, f), if M is normal. We prefer below
g(M, f) instead of g(M,f), because it is more suitable for Borsuk-Ulam
theorems. That does not matter for Ljusternik—Schnirelmann-Borsuk
theorems, since we can consider these only in normal spaces. We shall need
several elementary properties of the genus:

Lemma 1 (cf. [11, 8]). Let p be a prime number and (M, f,), (M,, f,) € ¥,
Let P : (M, f,) — (M., f>) be an equivariant map (i.e. P : M, — M, with P~ f, =
f2°P). Then we have g(M,, f)) <g(M,, f5).

DerFINITION 4. Let n€{0,1,2,...} and p a prime number. Let

3 lap<)

lz::{z :(Zl’ Zy, . .)GCN

with the usual Hilbert-space norm. We define

g, if n=0,
F L {Z:(Zh"'7Zn/2’0"")GIZIHZ":1}9 ifn€{2,4’63"'}3
e {z=(z1,. .., Ze2s 0, .. ) EL [lzl=1, Zen2 = | Zmane ’ e®P2 for

some ke{0,...,p—1}},if ne{l,3,5,...}
and ¢, : F,,,— F, .
¢, (2):=(e*™Pzy, 7™z, . ).
If n is even, F,, is a sphere $"'. In addition, (F,,, ¢,) €N,

Lemma 2 (cf. [10,11,8,7]). Let p be a prime number and (M,f)e ¥,. If
n:=g(M,f) is finite, then n is the minimal number such that there exists an
equivariant map P : (M, f) — (F,.,, @,).
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Due to Krasnosel’skii [4] is the following result:

Lemma 3. For any prime number p and any map f : S" — S™ with (S", f) e N,,
one has g(S", f)=n+1. Furthermore, g(F, ,, ¢,) =n.

LeMMA 4 (cf. [11,8]). Let ne{0,1,2,...} and p a prime number. Let (M, f) €
¥, with M nonempty and n-connected. Then there exists an equivariant map
P : (Fpi2,p @) = (M, f), in particular §(M, f)=n+2.

We obtain as a simple corollary:

LEMMA 5. Let m =2 be an integer and let p be a prime number. Let (S, ¢) be
as in Theorem 1 and (M, f)e ¥,. Then (M, f)=(m—1)(p—1) if and only if
there exists an equivariant map P : (M, f) — (S, ¢).

Proof. Let n:=g(M,f)=s(m—-1)(p—1). By Lemma 2, there exists an
equivariant map P; : (M, f) = (F,.,, ¢,). Let j : F,, ,— Fn_1)p—1), b€ the inclu-
sion map. S is an ((m—1)(p—1)—1)-dimensional sphere, hence ((m—1)Xx
(p—1)—2)-connected. It follows by Lemma 4 that there exists an equivariant
map P (Fin-ne-1.p @) = (S, ). Then P:=P,cjoP:(M,f)—(S, ¢) is
equivariant.

The other direction of the proof is obvious by Lemma 2 and 3. q.e.d.

For meN and p a prime number, we define:

q:(m, p):=max{ne{0,1,2,...}|For every (M, f) e #, with g(M, f)=n,
there exists an h : M — R™ with h(x) # h(f(x)) for all x € M},

g>(m, p):=max{ne€{0, 1,2, ...} | There exists an (M, f) € #, with g(M, f) =n,
such that there exists an h : M —R™ with
h(x) # h(f(x)) for all x e M},
ri(m, p):=max{ne{0, 1,2, .. .}| For every (M, f)e N, with §(M, f)=<n,
there exist closed sets U;, ..., U, with |J U, =M and
i=1
UNfU)= fori=1,...,m},
r,(m, p):=max{ne{0, 1,2, .. .}| There exists an (M, f) e N, with (M, f) =n,

such that there exist closed sets Uy, ..., U,, with |J U, = M and
i=1

UNfU)=G fori=1,...,m}.

For s eR, let

[sl:=max{neZ|n=s}.
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Now we can formulate the main result of this chapter:
THEOREM 4. Let meN and p=3 a prime number. Then

(m—-D(p-1)=q,(m p)=q(m,p)=(m—-1(p—-1)+1

and, if m=3,

1,ifp=3

([5]1)e-v=nm p=rm pr=m-3 252+ v

REMARK. In the case of m =2, one knows that (cf. [7], 7.13)

a:(2,p)=p—1<p=q.(2, p).

It is not known whether q; and q, differ for all p=3 and m =3.

Proof of Theorem 4. (m —1)(p—1)=gq,(m, p): Let (S, ¢) be as in Theorem 1
and let (M, f) e ¥, such that (M, f)=(m —1)(p—1). By Lemma 5, there exists
an equivariant map P : (M, f) — (S, ¢). From Theorem 1 we know that there
exists a continuous map h : S —R™ with h(e(y)) # h(y) for all y € S. It follows
for every xe M

(h ° P)(f(x)) = h((P > f)(x)) = h(@(P(x))) # h(P(x)) = (h ° P)(x).
q1(m, p) =q,(m, p) is obvious.

g>(m, p)=(m—1)(p—1)+1: See Schupp [7], 5.2 and 6.1.

([m/4]-1)(p—1)=r,(m, p): It suffices to consider m =4. Let (M, f) e N, with
(M, f)=([m/4]-1)(p—1), and let (S, ¢) be as in Theorem 1 with [m/4] instead
of m. By Lemma 5, there exists an equivariant map P : (M, f) = (S, ¢). From
Theorem 3, we know that S can be covered by 4[m/4]=m closed sets
Vi ooy Vg With ViN@(V)=@ for i=1,...,4[m/4]. Let U,:=P (V).
Then we have U, Nf(U;) =P (V) )NF(P~(V,)) =P {(V,)NP ' (e(V})) = D for
i=1,...,4[m/4] and afmia]

M= U U..

i=1
ri(m, p)=r,(m, p) is obvious.
p—1 {1, if p:3}
=(m-3)——+ :
ro(m, p)=(m—3) 5 2 if p>3
This has been shown in [9], Theorem 5. q.e.d.

4. The case p="7. In the last chapter, we obtained a lower estimate for the
Ljusternik—=Schnirelmann-Borsuk covering property, which is approximately
one half of the upper estimate proved in [9]. In this chapter, we want to show
that this lower estimate actually is not too bad. We improve the upper estimate
considerably in the special case of p=7.

https://doi.org/10.4153/CMB-1984-029-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1984-029-6

1984] THEOREMS OF BORSUK ET AL. 201

We start with some wellknown elementary facts and with some notations:

LemmA 6 (cf. [7]). Let p be a prime number and (M, f)e N,. Let Ao, ..., A, <
M be closed sets with J=AjcA,c---cA, =M, f(A)=A; and
g(Ai\Ai—l,f) finite fori=1,...,n. Then Q(M N=X', g(Ai\Ai—l»f)'

The proof of Lemma 6 is based on the fact that for k=1,...,n—1, there
exists an open neighborhood By of A, with f(B,) =B, and g(B,, f) = g(A, f).

In addition to this property, we will use below only the trivial fact that for
every free Z, -action f:S'— S', we have g(S', f)=2.

Let (M, f)eN,, and let M,,..., M, =M be closed sets with UjL; M;=M
and M, Nf(M,)= for i=1,..., m. We define for j=0,...,m

A={reMlte o, e U M)

Obviously we have (if p =3, which will be assumed in the sequel)
F=Ag=A=A,cAzc---CcA,=M,
and all A; are closed and f(A;) = A, for j=0,..., m. By Lemma 6, we have

m m

gM, f)= Zx gANA;_, )= 23 gANA; 1, ).
1= 1=

Our aim is to estimate g(A;\A;_q,f) by some s(p). Before, we need some

further notation.

We fix j and define a special subdivision of A;\ A;_;. It is obvious from the
definition that for any x € A;\ A;_, {x, f(x), ..., P 'x)}NM;# &.Letp : Z—
Z, be the canonical homomorphism. We shall use the notation a:=p(a) for
acZ. For any N<Z,, we define

(NY:={xe A\\A, | f*(x)eM,&aeN}.

Some elementary remarks:
a) M;Nf(M;) = implies that

(NY+P=>a+1¢NforallaeN.

In particular (N)= J, if card N=(p +1)/2.
b) From the continuity of f and the closedness of M, we obtain for all
NcZ, that

V)

Ncvez,
is closed.
For a,, ..., a €Z, we write {a,, ..., a) instead of {{a,, ..., a}).
We consider now the case of p=7:

THEOREM 5. If p=17, then g(A;\A;_1,)=2 forj=3,...,m.
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Proof. We define an equivariant map P:(A;\A, ,,f)— (S, ¢), where
¢: Sl — Sl, (P(Z):: ze(4/7)2-rri.
It is easy to see that

ANA; = U (L 1+2, 1+ 4y UL T+ 2) Ul T+ 4y udl)y)

=(1,3,5U(2,4,6)U---U(7,2,4U1,3)U- - -U(T,2)
ud,su---ud@, Hudu---ud).

We define for [=0,...,6
P(f'({1, 3, 5)U(1, 5))) : = {e' 7?1,
In particular, we have
P({1,3,5U(1,5) ={e%
and
P((6,1,3)U(6, 3)) ={e®7?m} = {1/},
By the Tietze-Urysohn theorem, we can extend P continuously to
@3 U f(T.3.500,5),

such that
T 2 d2mi 1
P(1,3))c1e IOSdS:/
(cf. Remark b). We then extend P to an equivariant map on

R:= U £4(1.3.3) U, 3y U, 3y).

=0

A similar argument allows us to extend P to (1)UR such that
T d2mmi 2
P(1)cie [05(155 )

Again, P can be extended to an equivariant map on A;\A;_;. q.e.d.
We obtain
THEOREM 6. ry(m,7)<2(m —2) for all m=2.

For the next prime number p =11, it is not difficult to prove g(As\ A,, f)=2
(cf. [9]) and g(A;\A;_1,f)=4 for j=4,...,m, and hence r(m,11)=
4(m—3)+2 for m=3, whereas it seems to be impossible to show that
ZANA, ., H=3.
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5. An application to asymptotic fixed point theory. In [8], we developed the
following strategy to prove the ‘“asymptotic conjecture” (cf. the introduction):

One assumes that f(x)#x for all xe E. Then, for all prime numbers
p, (F[f*], f)e N,. In [8], Satz 14, we proved that

(T, f)>£;p—2-

We would get a contradiction, if we could prove that
g(ZFI[f"1, f)=o(p).
We tried to derive this only from the fact that

U Flfrl=f“E),

p prime

where f*(E) is a compact set. But this is not sufficient. We will give an example
of a compact subset K of a normed space and a continuous map ¢ : K— K
with Fleo]= and Z(F[e"], ¢) increases linearly with p (p prime):

Let A, :=co{E,,..., E,} be the standard (m — 1)-simplex spanned by the
points E; eR™ with the components (E;), := 8. Let

Amfl;i:: CO({ED ] Em}\{Et})
be the (m —2)-dimensional face of A,,_;, which is opposite to E;, and let 9A,,_;
be the boundary of A,,_;, i.e.

aAm*l = U Am*l;i'
i=1

In addition, we need X,,_,.;, which is the union of all simplices o of the first
barycentric subdivision of 9A,,_; with dNA,, ;= . Let

£

lz(R"'):={(xn)e([R'")N 1|x,,|2<oo}

n=

with the usual l,-norm and let

1 1
L:= {(xl, 'ixZ, 5 X3, .. .)6 lz(Rm) ‘ Xn €6Am_1

and (X, €A, 1> Xpn11€2m-1.) forallneN},
K:=L and ¢:K—K,

(bt Jm(otote )
‘Px1,2x2>3x3,--- T\*25 3,3x4,----

Obviously, ¢(x)#x for all x€K, and in addition, there is a canonical
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equivariant map h : (L. p, ©mp) — (FLe"], @), where (cf. [9])

Lpp:={(x1, ..., %,)e@A, )" [If ,ke{l,...,p}
with k=j+1(modp) and x;€A,_;; then x, €3, .}

and Pmp: Lm.p_> Lm,p’

Cump(X1, ooy %) =X, . .., X, Xy).

By Theorem 2 in [9] and by Theorem 4, we know that

EFe") €)= E Ly o) = rslm ) =(|2] -1 )0 -1

This example shows that one would have to use additional properties of f to
prove the asymptotic conjecture. But moreover, it is a strong hint that the
conjecture is wrong.
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