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Abstract. We find a class of C™ maps of an interval with zero topological entropy
and chaotic in the sense of Li and Yorke.

1. Introduction
Throughout this paper f: I - I will be a continuous map of a compact real interval
I into itself.

The notion of chaos has been introduced by Li and Yorke [5]. The following
equivalent definition is given in [9] (cf. also [3]):

[ is chaotic if there is some £ >0 and a non-empty perfect set S < I such that for
any x, y€ S, x # y, and any periodic point p of f,

lim*il)lp ") =f"l=ze, (1)
lim inf|£"(x) —f"(y)| =0, (2
lim sup If"(x)=f"(p)|=e, (3)

where f" denotes the nth iterate of f. The set S is called an e-scrambled set for f.
It turns out that the chaos in the sense of Li and Yorke is a weaker property than
positive topological entropy (and is equivalent to the property that the map has a
trajectory which is not approximable by cycles, cf. [3, 9]). An example showing this
is given in [9].
The main aim of the present paper is to give simple examples of chaotic maps
with zero entropy.

2. Preliminary constructions
We recall that the w-limit set of x € I, denoted by w/(x), is the set of limit points
of the sequence (f"(x))n—o-

The following theorem will be useful in the sequel:

THEOREM 1. If there is a point x € I such that the set w;(x) is infinite and f is not
injective on ws(x) then f is chaotic in the sense of Li and Yorke.

Proof. Choose a, b € ws(x) suchthat a # b, f(a) = f(b). Then any periodic neighbour-
hoods J,, J, of a, b, respectively, must have a point in common. By [3], this implies
that f is chaotic. O
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Remark 1. The condition of Theorem 1 is not necessary, an example is given in [9].

Recall that a continuous map f:I- I, where I =[a, b], is called unimodal (cf.
[2]) if there exists c € (a, b) such that f is strictly increasing on [aq, c¢] and strictly
decreasing on [¢, b]. We shall call f weakly unimodal if there exists c € (a, b) such
that f is non-decreasing on [a, ¢} and non-increasing on {c, b}.

Let f be weakly unimodal. We shall say that x, y € I are equivalent (denoted by
x~y) if there exists n=1 such that f" is constant on [x, y]. Clearly, ~ is an
equivalence relation. Let I =1/~ be the factor space obtained by identifying to a
point each equivalence class. These classes are closed intervals (possibly degenerated
to a point) and thus I is a closed interval (also possibly degenerated). The natural
projection 7:I~»> I is continuous and non-decreasing. Since f is continuous, x ~y
implies f(x)~ f(y). Therefore there exists a unique map f:I-T such that

_—

!
T commutes. (4)

e

I
the diagram 117
s 7
I —— I
This f is continuous and either monotone or unimodal.
By the period of a periodic point (orbit) we shall understand its smallest period.

LemMma 1. (a) If x € I is a periodic point of f of period k then w(x) is a periodic point
of f of period k.

(b) If ye I is a periodic point of f of period k then there exists a unique periodic
point x € I of f for which w(x)=y. The period of x is k.

Proof. (b) Let = '(y)=[a, b]. Then (4) and the equality fk(y) =y imply that
f*([a, b])<=[a, b]. Since f is continuous, there is some x €[a, b] with f*(x)=x.
Clearly 7(x)=y. The point x cannot have a period i < k because then by (4), y
would have period i.

Let z€[a, b]. Since z ~ x, there is some r such that f™(z) =f™(x) = x. This shows
that x is the unique periodic point of f in [a, b].

(a) From (4) it follows that f"(w(x)) = 7r(x). The period of 7(x) cannot be i <k
because then, by (b), the period of x would be also i. (]

Let # be the class of all weakly unimodal maps f, for which
the set J,={xeI; f(x)=f(y) for all ye I} consists

of more than one point, (5)
for each n=0, f has a periodic orbit of period 2", (6)
f has no periodic orbits of other periods. (7

LemMmAa 2. If fe F then f is unimodal and satisfies (6) and (7).

Proof. By Lemma 1, the sets of periods of periodic orbits of f and f are equal.
Therefore, if f€ & then f satisfies (6) and (7). Then, since f has periodic points of
period larger than 2, it cannot be monotone. Consequently, it is unimodal. O
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3. Main results
First we prove the following

THEOREM 2. Any mapping f€ ¥ has topological entropy zero and is chaotic in the
sense of Li and Yorke.

Proof. Let fe %. By (7) and [8], f has topological entropy zero.

By Lemma 2, f is unimodal and satisfies (6) and (7). Therefore it has the same
kneading invariant as the Feigenbaum map ® (see e.g. [4 Proposition 4.6] for the
uniqueness of this kneading invariant, and [2] for the description of the Feigenbaum
map). Hence the relative positions of the turning point, its images and the periodic
points are the same for ¢ and f Since 7 is non-decreasing, by Lemma 1 it is the
same also for £ However, for @ this relative position is well-known. Let ¢ be the
critical point of ® and let a, be the periodic point of ® of period 2" with the largest
image under ®. Then from the known properties of ® we immediately get

P (c)<a,<DPP(c)<a;<-- <c<:-<a,<d¥(c)
< a,<®¥(c) < ag< d*(c).
Therefore if b, is the periodic point of f of period 2" with the largest image under
f and d € J; (see (5)) then
FAAy<b <fPd)<by<- -<d<---<b,<f*(d)
<b,<f¥(d)<bo<f*(d). (8)
Let d,=1lim,, by,41, d> =1lim,, ., b,,. Since
®(ao) <P(a,) <P(ay) <P(a;) <---<P(c),
we have also
S(bo) < f(by) <f(by) <f(b3) < -<f(d)
and therefore

lim f(b;) = f(d\) =f(d) =f(d). (%)

Since
lim ®(a,) = lim ®*"*'(c) = ®(c)

and c is not periodic for ®, the f -itineraries of all points

yellim f(a(b)), f(w(d)]

are the same (in fact, from the result of [6] applied to a slightly modified map f it
follows that the above interval is degenerated to a point; however, we do not need
to use it). By (9), this means that we can replace in (8) d by d;, i =1, 2. Consequently

d; e w/(f(d})) fori=1,2. (10)
By the definition of 4, and by (8), 4, is not periodic. Hence w/(f(d,)), which by
(10) contains the whole trajectory of d,, is infinite. The point d in (8) is an arbitrary
element of J; and hence J; = [d,, d,]. Therefore by (5), d, <d,. By (9) f(d,)=f(d,),
and hence by Theorem 1, f is chaotic. O
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THEOREM 3. % contains a C™ map.

Proof. There exists a C* map g of [0, 1] onto [0, 1] which is weakly unimodal,
satisfies (5) and g(0) = g(1) =0. Set g,(x)=Ag(x) for all A, x€[0, 1]. The map g,
is of class C™ for each A. By [7], the set A={A; g, satisfies (6)} is closed. Clearly,
g, satisfies (6) but g, does not. Therefore if u = inf A then u > 0 and g, satisfies (6).

Suppose that g, does not satisfy (7). Then by [1], if A is sufficiently close to u
then g, satisfies (6), a contradiction. Clearly, g, satisfies also (5). O

Remark 3. Let ¢ be the length of J,. Then g, has a non-empty e-scrambled set S
(cf. [9]). Clearly € can be made arbitrarily close to 1, but less than 1. This result
cannot be improved, since if £:[0, 1] [0, 1] is a continuous map with zero topologi-
cal entropy satisfying (1) and (2) for some x, y€[0, 1] then £ <1. To see it note
that in this case at least one of the sets w/(x), w/(y), say w,(x), must be infinite.
Let I,, I, be disjoint closed periodic intervals covering w/(x) and such that I,n
wr(x)# T # I, N wi(x) (cf. e.g. [9]). By (2) there exists some z € w,(x) N w,(y) and
this z cannot be periodic (cf. [9]). Consequently, w/(y)<=I,ul, and since
dist {I,, I,}>0, (2) implies that for some m, f™(x), f™(y)e I,. Hence for every
n=m, f"(x), f"(y) belong to the same interval I,,,, where i(n) € {0, 1}. But then

lim sup | f"(x) ~f"(y)| < max {diam I,, diam I,} < 1.

Remark 4. Let h be the tent map (h(x)=1—|2x —1|) and let h,(x)=min (A, h(x))
for A, x€[0,1]). Foreach n=0let A, € [0, 1] be the minimal number with the property
that [0, A,,] contains a periodic orbit of h of period 2". Clearly Aq<A,;<---. Put
v=1im, . A, (=0.8249080. . .). Then h, € & In such a way we obtain another simple
example of chaotic map with zero topological entropy.
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