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Abstract. We find a class of C°° maps of an interval with zero topological entropy
and chaotic in the sense of Li and Yorke.

1. Introduction
Throughout this paper/: I-* I will be a continuous map of a compact real interval
/ into itself.

The notion of chaos has been introduced by Li and Yorke [5]. The following
equivalent definition is given in [9] (cf. also [3]):

/ is chaotic if there is some e > 0 and a non-empty perfect set S c / such that for
any x, y e S, x # y, and any periodic point p of f,

| e , (1)

0, (2)
n-*oo

limsup|/n(x)-/"(p)|>e, (3)
n-»oo

where/" denotes the nth iterate off. The set S is called an e-scrambled set for /
It turns out that the chaos in the sense of Li and Yorke is a weaker property than

positive topological entropy (and is equivalent to the property that the map has a
trajectory which is not approximable by cycles, cf. [3, 9]). An example showing this
is given in [9].

The main aim of the present paper is to give simple examples of chaotic maps
with zero entropy.

2. Preliminary constructions
We recall that the <o-limit set of x e I, denoted by w/(x), is the set of limit points
of the sequence (fn(x))~=0.

The following theorem will be useful in the sequel:

T H E O R E M 1. If there is a point xel such that the set wf{x) is infinite and f is not

injective on cof(x) then f is chaotic in the sense of Li and Yorke.

Proof. Choose a, be iof(x) such that a # b,f(a) =f(b). Then any periodic neighbour-
hoods Ja, Jb of a, b, respectively, must have a point in common. By [3], this implies
that / is chaotic. •
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Remark 1. The condition of Theorem 1 is not necessary, an example is given in [9].

Recall that a continuous map/ : / -> / , where I = [a,b], is called unimodal (cf.
[2]) if there exists ce(a, b) such that / is strictly increasing on [a, c] and strictly
decreasing on [c, b]. We shall call / weakly unimodal if there exists ce{a, b) such
that / is non-decreasing on [a, c] and non-increasing on [c, b].

Let / be weakly unimodal. We shall say that x, y e I are equivalent (denoted by
x~y) if there exists « > 1 such that / " i s constant on [x,y]. Clearly, ~ is an
equivalence relation. Let 1 = 1/— be the factor space obtained by identifying to a
point each equivalence class. These classes are closed intervals (possibly degenerated
to a point) and thus / is a closed interval (also possibly degenerated). The natural
projection IT : I -» / is continuous and non-decreasing. Since / is continuous, x ~ y
implies f(x) ~f(y). Therefore there exists a unique map / : 7-* I such that

the diagram \v | TT commutes. (4)

This / is continuous and either monotone or unimodal.
By the period of a periodic point (orbit) we shall understand its smallest period.

LEMMA 1. (a) Ifx el is a periodic point off of period k then v(x) is a periodic point
off of period k.

(b) If y e I is a periodic point off of period k then there exists a unique periodic
point x e I of f for which -rr(x) = y. The period of x is k.

Proof, (b) Let v~i(y) = [a, b]. Then (4) and the equality fk(y) = y imply that
fk([a, *>])c [a, b]. Since / is continuous, there is some x e [a, b] with fk(x) = x.
Clearly TT(X) = y. The point x cannot have a period i < k because then by (4), y
would have period i.

Let z e [a, b]. Since z ~ x, there is some r such that/rfc(z) =frk(x) = x. This shows
that x is the unique periodic point of/ in [a, b].

(a) From (4) it follows that fk(v(x)) = n(x). The period of n(x) cannot be i < k
because then, by (b), the period of x would be also /. •

Let 9 be the class of all weakly unimodal maps / for which

the set Jf = {xe I;f(x) s:f(y) for all y e /} consists

of more than one point, (5)

for each n > 0, / has a periodic orbit of period 2", (6)

/ has no periodic orbits of other periods. (7)

LEMMA 2. / / / e 3F then f is unimodal and satisfies (6) and (7).

Proof. By Lemma 1, the sets of periods of periodic orbits of/ and / are equal.
Therefore, if / e & then / satisfies (6) and (7). Then, since / has periodic points of
period larger than 2, it cannot be monotone. Consequently, it is unimodal. •
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3. Main results

First we prove the following

THEOREM 2. Any mapping fe 9 has topological entropy zero and is chaotic in the
sense of Li and Yorke.

Proof. Let fe SF. By (7) and [8], / has topological entropy zero.
By Lemma 2, / is unimodal and satisfies (6) and (7). Therefore it has the same

kneading invariant as the Feigenbaum map 4> (see e.g. [4 Proposition 4.6] for the
uniqueness of this kneading invariant, and [2] for the description of the Feigenbaum
map). Hence the relative positions of the turning point, its images and the periodic
points are the same for <& and / Since TT is non-decreasing, by Lemma 1 it is the
same also for / However, for 4> this relative position is well-known. Let c be the
critical point of <1> and let an be the periodic point of 4> of period 2" with the largest
image under <t>. Then from the known properties of <1> we immediately get

<J>2'(c) < a, < <J>23(c) < a 3 < • • • < < : < • • • < a 4 < <J>24(c)

< a2 < ®2\c) <ao< <&2°(c).

Therefore if bn is the periodic point of/ of period 2" with the largest image under
/ and d e Jf (see (5)) then

f\d) < bx <f2\d) <b3<-<d<-< b4<f2\d)

<b2<f2\d)<bo<f2\d). (8)

Let dx = lim^oo bzn+u d2 = limn^co b2n. Since

we have also

f(b0) <f(b1) <f{b2) </(b3) < • • • <f(d)

and therefore

lim f(bi)=f(dl)=f(d2)<f(d). (9)
rt-»oo

Since

lim 4>(an) = lim 3>2"+1(c) = <J>(c)
n-»oc n-»oo

and c is not periodic for <J>, the /-itineraries of all points

are the same (in fact, from the result of [6] applied to a slightly modified map / it
follows that the above interval is degenerated to a point; however, we do not need
to use it). By (9), this means that we can replace in (8) d by d,, i = 1,2. Consequently

d,ea>,{f(dt)) for/ = 1,2. (10)

By the definition of dx and by (8), dx is not periodic. Hence w/(/(di)), which by
(10) contains the whole trajectory of dx, is infinite. The point d in (8) is an arbitrary
element of / / and hence //<=[</,, d2]. Therefore by (5), dx<d2. By (9) f(dx) =f(d2),
and hence by Theorem 1, / is chaotic. D
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THEOREM 3. 9 contains a C°° map.

Proof. There exists a C°° map g of [0,1] onto [0,1] which is weakly unimodal,
satisfies (5) and g(0) = g(l) = 0. Set gA(x) = Ag(x) for all A, x e [0,1]. The map gA

is of class C°° for each A. By [7], the set A = {A; gA satisfies (6)} is closed. Clearly,
gi satisfies (6) but g0 does not. Therefore if fi = inf A then /J, > 0 and gM satisfies (6).

Suppose that g^ does not satisfy (7). Then by [1], if A is sufficiently close to /u
then gA satisfies (6), a contradiction. Clearly, gM satisfies also (5). •

Remark 3. Let e be the length of Jg. Then gM has a non-empty e-scrambled set 5
(cf. [9]). Clearly e can be made arbitrarily close to 1, but less than 1. This result
cannot be improved, since if/: [0,1] -»[0,1] is a continuous map with zero topologi-
cal entropy satisfying (1) and (2) for some x, y e [0,1] then e < 1. To see it note
that in this case at least one of the sets (of(x), wf{y), say iof{x), must be infinite.
Let IQ,I\ be disjoint closed periodic intervals covering ojy(x) and such that Ion
(of(x) 5̂  0 5̂  7X n <Of(x) (cf. e.g. [9]). By (2) there exists some z € tuy(x) n wf(y) and
this z cannot be periodic (cf. [9]). Consequently, w / (^)c / o u7 , and since
dist{70,7,}>0, (2) implies that for some m, fm(x), fm(y)elo. Hence for every
n>m, f(x), f"(y) belong to the same interval 7j(n), where i(n)e{0,1}. But then

limsup |/"(x)-/"(_y)|<max{diam 70,diam 7,}< 1.

Remark 4. Let h be the tent map (h{x) = l - | 2 x - l | ) and let /iA(x) = min (A,/i(x))
for A, x e [0,1]. For each n g 0 let An e [0,1] be the minimal number with the property
that [0, An] contains a periodic orbit of h of period 2". Clearly Ao< At < • • •. Put
v = lim^co An (=0.8249080...). Then hv e 9. In such a way we obtain another simple
example of chaotic map with zero topological entropy.
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