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In this paper, we consider a semi-classical version of the nonhomogeneous heat
equation with singular time-dependent coefficients on the lattice �Z

n. We establish
the well-posedness of such Cauchy problems in the classical sense when regular
coefficients are considered, and analyse how the notion of very weak solution adapts
in such equations when distributional coefficients are regarded. We prove the
well-posedness of both the classical and the very weak solution in the weighted
spaces �2s(�Z

n), s ∈ R, which is enough to prove the well-posedness in the space of
tempered distributions S′(�Z

n). Notably, when s = 0, we show that for � → 0, the
classical (resp. very weak) solution of the heat equation in the Euclidean setting R

n

is recaptured by the classical (resp. very weak) solution of it in the semi-classical
setting �Z

n.
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1. Introduction

The solvability of the heat equation, as well as the inverse problem for the
heat equation where thermal coefficients are constant, time-dependent, or space-
dependent, has been studied extensively in many different settings.

For the case of the heat equation with singular potentials in the space variable, we
refer to papers [1, 6] for an overview of the known results in different settings. For
the case where the time-dependent coefficients are considered, we refer to papers
[7, 13–16] and [27], that apply in settings different from the lattice Z

n. In the
particular case of the lattice Z

n we have paper [10] where constant coefficients are
considered. In the aforesaid setting, the heat equation with constant coefficients
reads as the parabolic Anderson model, see e.g. [3] and references therein, and the
asymptotic analysis of its solution is a topic of wide interest in the field of stochastic
analysis.

The setting in the current paper is, for a (small) semi-classical parameter � > 0,
given by

�Z
n = {x ∈ R

n : x = �k, k ∈ Z
n},

and clearly includes the n-dimensional lattice Z
n as a special case. For α > 0, the

discrete fractional Laplacian on �Z
n denoted by (−L�)α is defined by

(−L�)α
u(k) :=

∑
j∈Zn

a
(α)
j u(k + j�), k ∈ �Z

n, (1.1)

where the expansion coefficient a(α)
j is given by

a
(α)
j :=

∫
[−(1/2),1/2]n

[
n∑

l=1

4 sin2 (πξl)

]α

e−2πij·ξ dξ. (1.2)

For more information on the discrete fractional Laplacian, see § 3.
For the space variable k ∈ �Z

n in this setting, we analyse the semi-classical
analogue of the heat equation in the Euclidean setting, which reads as follows:{
∂tu(t, k) + a(t)�−2α (−L�)α

u(t, k) + b(t)u(t, k) = f(t, k), (t, k) ∈ (0, T ] × �Z
n,

u(0, k) = u0(k), k ∈ �Z
n,

(1.3)
where a = a(t) � 0 is the thermal conductivity, b is a real-valued bounded potential
and f is the heat source.

The first aim of the current paper is to prove the well-posedness of the classical
solution of the heat equation as in (1.3) in the semi-classical setting �Z

n. Let us note
that in [8, 9] the authors examine the discrete wave equation with time-dependent
coefficients and the discrete Klein–Gordon equation with regular potential and
prove that they are well-posed in �2(�Z

n). In this paper, we are extending the
well-posedness results in [8, 9] for our consideration of the Cauchy problem by
allowing the initial data to grow polynomially. More precisely, we investigate the
well-posedness of the Cauchy problem (1.3) with regular/irregular coefficients as
well as the heat source and initial Cauchy data from the space of discrete tempered
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distributions S ′(�Z
n). A special feature in our approach in this article is that we

also allow the coefficients a, b to be distributions. Particularly, our analysis allows
a, b to have distributional irregularities; i.e. to have δ-type terms, while also Heav-
iside discontinuities e.g. we can take b(t) = δ +H(t). Taking into account that the
solution u(t, x) might as well have singularities in t, this consideration would lead
to foundational mathematical difficulties due to the problem of the impossibility of
multiplying distributions, see [25]. To overcome this problem we employ the theory
of very weak solution as introduced in [12] which allows us to recapture the clas-
sical/distributional solution to the Cauchy problem (1.3), provided that the latter
exists.

With the well-posedness of the classical (resp. very weak) solution to the Cauchy
problem (1.3) on the lattice �Z

n at our disposal, two natural questions arise:

(1) Can we recapture the classical solution to the heat equation (1.3) when the
space variable lies in the Euclidean space R

n by allowing � → 0?

(2) Can we recapture the very weak solution to (1.3) when the space variable lies
in the Euclidean space R

n by allowing � → 0?

We will see that both questions are answered in the affirmative, provided addi-
tional Sobolev regularity. In particular, we consider the semi-classical limits � → 0
for the following cases:

(A) regular coefficient and Sobolev initial data;

(B) distributional coefficient and Sobolev initial data,

and prove that in both cases we recover the (classical/very weak) solution in
the Euclidean setting. The idea of ensuring globally convergence for the solution
by adding Sobolev regularity, can be found in the semi-classical limit theorems
in [8, Theorem 1.2] and [9, Theorem 1.3].

Note that the Cauchy problem (1.3) is the discrete analogue of heat equation
with time-dependent coefficients in the Euclidean setting R

n given by:{
∂tu(t, x) + a(t)(−L)αu(t, x) + b(t)u(t, x) = f(t, x), (t, x) ∈ (0, T ] × R

n,

u(0, x) = u0(x), x ∈ R
n,

(1.4)
where (−L)α is the usual fractional Laplacian (−L)α on R

n defined as a pseudo-
differential operator with symbol |2πξ|2α = [

∑n
l=1(2πξl)

2]α, i.e.:

(−L)αu(x) =
∫

Rn

|2πξ|2α
û(ξ)e2πix·ξ dξ. (1.5)

Theorems 1.1 and 1.2 state the well-posedness results of the Cauchy problem
(1.4) for the above cases in the Euclidean setting R

n.
Before presenting the aforementioned results, let us note that, notation-wise, we

write a ∈ L∞
m ([0, T ]), if a ∈ L∞([0, T ]) is m-times weakly differentiable with ∂j

t a ∈
L∞([0, T ]), for all j = 1, . . . , m. Let us recall the usual Sobolev space Hm(Rn) and
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its dual L2
m(Rn) defined as:

f ∈ Hm(Rn) ⇐⇒ (I − L)m/2f ∈ L2(Rn),

and

g ∈ L2
m(Rn) ⇐⇒ (1 + |ξ|2)m/2g ∈ L2(Rn), (1.6)

respectively.
In the sequel, we will be writing A � B whenever there exists a constant C,

independent of the appearing parameters, such that A � CB.
For the well-posedness of the Cauchy problem (1.4) in case (A) we have the

following result:

Theorem 1.1. Let m ∈ R and f ∈ L2([0, T ];Hm(Rn)). Assume that a ∈
L∞

1 ([0, T ]) satisfies inft∈[0,T ] a(t) = a0 > 0 and b ∈ L∞([0, T ]). If the initial Cauchy
data u0 ∈ Hm(Rn), then the Cauchy problem (1.4) has a unique solution u ∈
C([0, T ];Hm(Rn)) which satisfies the estimate:

‖u(t, ·)‖2
Hm(Rn) � CT,a,b

(
‖u0‖2

Hm(Rn) + ‖f‖2
L2([0,T ];Hm(Rn)

)
, (1.7)

for all t ∈ [0, T ], where the positive constant CT,a,b is given by

CT,a,b = a−1
0 ‖a‖L∞ea−1

0 (‖at‖L∞+2‖a‖L∞‖b‖L∞+‖a‖L∞ )T . (1.8)

Similarly, for the well-posedness of the Cauchy problem (1.4) in case (B) we have:

Theorem 1.2. Let a and b be distributions with supports included in [0, T ] such
that a � a0 > 0 for some positive constant a0, and let the source term f(·, x) be
a distribution with support included in [0, T ], for all x ∈ R

n. Let m ∈ R and u0 ∈
Hm(Rn). Then, the Cauchy problem (1.4) has a unique very weak solution (uε)ε ∈
L2([0, T ];Hm(Rn))(0,1] of order m.

For more details about the very weak solutions for the Cauchy problem (1.4) in
the Euclidean setting, we refer to § 6.

To give a synopsis of the topic of very weak solution, we refer to papers [17, 22]
on Cauchy problems with singular, time-dependent coefficients in the Euclidean
setting. The concept of very weak solution with space-dependent coefficients in the
general setting of graded Lie groups has been employed in papers [4–6, 23, 24] and
[11] in the Euclidean setting.

To summarize, we are able to: use the notion of very weak solution, as introduced
in [12] in the setting of hyperbolic Cauchy problems with distributional coefficients
in space; understand distributionally the Cauchy problem (1.3); and prove its well-
posedness. Precisely, the following facts will be presented in the sequel:

• The Cauchy problem (1.3) is well-posed in the weighted spaces �2s(�Z
n), for

all s ∈ R and admits a very weak solution even when distributional coefficients
a, b are considered.

• The very weak solution is unique in the sense of definition 2.5.
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• If the coefficients a, b are regular enough so that the Cauchy problem (1.3) has
a classical solution, then the very weak solution recaptures the classical one.
This fact indicates that the notion of very weak solution as adapted to our
setting is consistent with the classical one.

• We are able to approximate both the classical and the very weak solution to
the heat equation as in (1.3) in the Euclidean setting R

n, by the corresponding
solution in the semi-classical setting �Z

n.

The structure of the paper is as follows: in § 2 we present our main results. In § 3
we discuss the basics of the Fourier analysis in the case of the lattices Z

n and �Z
n

and of the torus T
n
�
. In addition to this, the functions of spaces and distributions

necessary for our analysis are recalled. In § 4 we provide the proofs of the results on
the existence and uniqueness of the very weak solution of the problem we consider,
as well as the consistency of it with the classical solution. In § 5 we prove the results
on the approximation of the (classical/very weak) solution on R

n, by the one on
�Z

n. Finally, in § 6, we make some remarks about the very weak solution in the
Euclidean setting.

2. Main results

In this section, we will present our main results for the well-posedness of the Cauchy
problem (1.3) with regular/irregular coefficients and the discrete tempered distri-
butional initial data. We will also present the semi-classical limit theorems for the
classical as well as very weak solution.

First, we consider the Cauchy problem (1.3) with discrete tempered distributional
initial Cauchy data and the regular coefficients a ∈ L∞

1 ([0, T ]) and b ∈ L∞([0, T ]).
In the light of relation (3.2), proving the well-posedness in the space of weighted
spaces �2s(�Z

n) is sufficient to prove the well-posedness in the space of discrete
tempered distributions S ′(�Z

n).
Let us start our exposition of results with the one on the well-posedness theorem

(in the classical sense) for the Cauchy problem (1.3):

Theorem 2.1 (Classical solution). Let s ∈ R and f ∈ L2([0, T ]; �2s(�Z
n)). Assume

that a ∈ L∞
1 ([0, T ]) satisfies inft∈[0,T ] a(t) = a0 > 0 and b ∈ L∞([0, T ]). If for the

initial Cauchy data we have u0 ∈ �2s(�Z
n), then the Cauchy problem (1.3) has a

unique solution u ∈ C([0, T ]; �2s(�Z
n)) satisfying the estimate:

‖u(t, ·)‖2
�2s(�Zn) � CT,a,b(‖u0‖2

�2s(�Zn) + ‖f‖2
L2([0,T ];�2s(�Zn))), (2.1)

for all t ∈ [0, T ] and � > 0, where the positive constant CT,a,b is given by

CT,a,b = a−1
0 ‖a‖L∞ea−1

0 (‖at‖L∞+2‖a‖L∞‖b‖L∞+‖a‖L∞ )T . (2.2)

Next, we are considering the Cauchy problem (1.3) with discrete tempered dis-
tributional initial Cauchy data and, also allowing the coefficients and the source
term to have singularities in the time variable. As we discussed earlier in § 1, in
order to deal with such equations where fundamental mathematical difficulties may
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arise when adapting the classical approach, we have to introduce the notion of a
very weak solution. To this end, let us quickly recall the important points for the
upcoming analysis.

Let a ∈ D′(R) be a distribution. Using the Friedrichs-mollifier, i.e. a function ψ ∈
C∞

0 (R), ψ � 0 and
∫

R
ψ = 1, we are able to construct families of smooth functions

(aε)ε by regularizing the distributional coefficient a as follows:

aε(t) :=
(
a ∗ ψω(ε)

)
(t) , ψω(ε)(t) =

1
ω(ε)

ψ

(
t

ω(ε)

)
, ε ∈ (0, 1], (2.3)

where ω(ε) > 0 and ω(ε) → 0 as ε→ 0. Let us note that since for the purposes of
this article, the distributions a and b, as in (1.3), are distributions with domain
[0, T ], it is enough to consider that supp(ψ) ⊆ K, with K = [0, T ] throughout this
article.

The notions of moderateness and the negligibility for a net of func-
tions/distributions as follows:

Definition 2.2.

(i) A net (aε)ε ∈ L∞
m (R)(0,1] is said to be L∞

m -moderate if for all K � R, there
exist N ∈ N0 and c > 0 such that∥∥∂kaε

∥∥
L∞(K)

� cε−N−k, for all k = 0, 1, . . . ,m,

for all ε ∈ (0, 1].

(ii) A net (aε)ε ∈ L∞
m (R)(0,1] is said to be L∞

m -negligible if for all K � R and
q ∈ N0, there exists c > 0 such that∥∥∂kaε

∥∥
L∞(K)

� cεq, for all k = 0, 1, . . . ,m,

for all ε ∈ (0, 1].

(iii) A net (uε)ε ∈ L2([0, T ]; �2s(�Z
n))(0,1] is said to be L2([0, T ]; �2s(�Z

n))-
moderate if there exist N ∈ N0 and c > 0 such that

‖uε‖L2([0,T ];�2s(�Zn)) � cε−N ,

for all ε ∈ (0, 1].

(iv) A net (uε)ε ∈ L2([0, T ]; �2s(�Z
n))(0,1] is said to be L2([0, T ]; �2s(�Z

n))-
negligible if for all q ∈ N0 there exists c > 0 such that

‖uε‖L2([0,T ];�2s(�Zn)) � cεq,

for all ε ∈ (0, 1].

We note that the moderateness requirements are natural in the sense that dis-
tributions are moderately regularized. Moreover, by the structure theorems for
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distributions, we have the following inclusion:

compactly supported distributions E ′(R) ⊂ {L2-moderate families
}
.

Therefore, it is possible that the Cauchy problem (1.3) may not have a solution in
the space of compactly supported distributions E ′(R) but it may exist in the space
of L2-moderate families in some suitable sense.

The notion of a very weak solution to the Cauchy problem (1.3) can be viewed
as follows:

Definition 2.3. Let s ∈ R, f ∈ L2([0, T ]; �2s(�Z
n)), and u0 ∈ �2s(�Z

n). The net
(uε)ε ∈ L2([0, T ]; �2s(�Z

n))(0,1] is a very weak solution of order s of the Cauchy
problem (1.3) if there exist

(1) L∞
1 -moderate regularization aε of the coefficient a;

(2) L∞-moderate regularization bε of the coefficient b; and

(3) L2([0, T ]; �2s(�Z
n))-moderate regularization fε of the source term f ,

such that (uε)ε solves the regularized problem:{
∂tuε(t, k) + aε(t)�−2α (−L�)α

uε(t, k) + bε(t)uε(t, k) = fε(t, k), t ∈ (0, T ],

uε(0, k) = u0(k), k ∈ �Z
n,

(2.4)
for all ε ∈ (0, 1], and is L2([0, T ]; �2s(�Z

n))-moderate.

It should be noted that theorem 2.1 provides a unique solution to the regularized
Cauchy problem (1.3) that satisfies estimate (2.1).

A distribution a is said to be a positive distribution if 〈a, ψ〉 � 0 for all ψ ∈
C∞

0 (R) such that ψ � 0. Similarly, a distribution a is said to be a strictly positive
distribution if there exists a positive constant α such that a− α is a positive distri-
bution in the previous sense. In other words, a � α > 0 in the support of a, where
a � α, means that

〈a− α,ψ〉 � 0, for all ψ ∈ C∞
0 (R), ψ � 0. (2.5)

Now, we can state the existence theorem for the Cauchy problem (1.3) with
distributional coefficients as follows:

Theorem 2.4 (Existence). Let a and b be distributions with supports contained in
[0, T ] such that a � a0 > 0 for some positive constant a0, and let the source term
f(·, k) be a distribution with support contained in [0, T ], for all k ∈ �Z

n. For s ∈ R,
we assume that the initial Cauchy data u0 satisfies u0 ∈ �2s(�Z

n). Then, the Cauchy
problem (1.3) has a very weak solution (uε)ε ∈ L2([0, T ]; �2s(�Z

n))(0,1] of order s.

Next, we define the uniqueness of the very weak solution obtained in theorem
2.4 for the Cauchy problem (1.3). This should be regarded as if the family of
very weak solution is not ‘significantly’ affected by the negligible changes in the
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approximations of the coefficients a, b and of the source term f . This can be also
regarded as a ‘stability’ property.

Strictly speaking, the notion of the uniqueness of the very weak solution for the
Cauchy problem (1.3) is formulated as follows:

Definition 2.5. We say that the Cauchy problem (1.3) has a L2([0, T ]; �2s(�Z
n))-

unique very weak solution, if

(1) for all L∞
1 -moderate nets aε, ãε such that (aε − ãε)ε is L∞

1 -negligible;

(2) for all L∞-moderate nets bε, b̃ε such that (bε − b̃ε)ε are L∞-negligible; and

(3) for all L2([0, T ]; �2s(�Z
n))-moderate nets fε, f̃ε such that (fε − f̃ε)ε is

L2([0, T ]; �2s(�Z
n))-negligible,

the net (uε − ũε)ε is L2([0, T ]; �2s(�Z
n))-negligible, where (uε)ε and (ũε)ε are the

families of solution corresponding to the ε-parametrized problems:{
∂tuε(t, k) + aε(t)�−2α (−L�)α

uε(t, k) + bε(t)uε(t, k) = fε(t, k), t ∈ (0, T ],

uε(0, k) = u0(k), k ∈ �Z
n,

(2.6)
and{

∂tũε(t, k) + ãε(t)�−2α (−L�)α
ũε(t, k) + b̃ε(t)ũε(t, k) = f̃ε(t, k), t ∈ (0, T ],

ũε(0, k) = u0(k), k ∈ �Z
n,

(2.7)
respectively.

Remark 2.6. The Colombeau algebra G(R) defined as:

G(R) =
C∞-moderate nets
C∞-negligible nets

,

can also be used to formulate the uniqueness for the Cauchy problem (1.3). For
more details about the Colombeau algebra, we refer to [18]. The uniqueness of
very weak solution in the sense of Colombeau algebra was introduced by Garetto
and the third author in [12] and subsequently used in different settings, see
e.g. [21, 22].

The following theorem gives the uniqueness of the very weak solution to the
Cauchy problem (1.3) in the sense of definition 2.5.

Theorem 2.7 (Uniqueness). Let a and b be distributions with supports contained
in [0, T ] such that a � a0 > 0 for some positive constant a0, and let the source term
f(·, k) be a distribution with support contained in [0, T ], for all k ∈ �Z

n. For s ∈ R,
let also u0 ∈ �2s(�Z

n). Then, the very weak solution of the Cauchy problem (1.3) is
L2([0, T ]; �2s(�Z

n))-unique.
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In the following theorem, we prove the consistency results with the classical case:

Theorem 2.8 (Consistency). Let s ∈ R
n and f ∈ L2([0, T ], �2s(�Z

n)). Assume
that a ∈ L∞

1 ([0, T ]) satisfies inft∈[0,T ] a(t) = a0 > 0 and b ∈ L∞([0, T ]). Let also
u0 ∈ �2s(�Z

n) for any s ∈ R. Then, the regularized net uε converges, as ε→ 0, in
L2([0, T ]; �2s(�Z

n)) to the classical solution of the Cauchy problem (1.3).

The following theorem shows that the classical solution of (1.3) in the semi-
classical setting �Z

n obtained in theorem 2.1 for s = 0, recaptures the classical
solution in the Euclidean setting R

n as in theorem 1.1, provided the latter exists.

Theorem 2.9. Let α ∈ (0, 1] and s = 0. Let u and v be the classical solution of the
Cauchy problems (1.3) on �Z

n and (1.4) on R
n, respectively. Assume that for the

initial Cauchy data we have u0 ∈ Hm(Rn) for some m � 4α. Then, we have the
following uniform in t ∈ [0, T ] convergence:

‖v(t, ·) − u(t, ·)‖�2(�Zn) → 0, as � → 0 . (2.8)

Remark 2.10. Let us point out that the solution u, v as in theorem 2.9 are regarded
as solution to the Cauchy problems (1.3) and (1.4), respectively, with the same
Cauchy data u0, source term f and time-dependent coefficients a, b. The same
hypothesis holds true in theorem 2.11 on the convergence of the nets of the very
weak solution in the semi-classical and Euclidean settings of the corresponding
regularized heat equations.

The analogous to theorem 2.9 statement in the ‘very weak sense’ reads as follows:

Theorem 2.11. Let α ∈ (0, 1] and s = 0. Let (uε)ε and (vε)ε be the very weak
solution of the Cauchy problem (1.3) on �Z

n and (1.4) on R
n, respectively. Assume

that for the initial Cauchy data, we have u0 ∈ Hm(Rn) for some m � 4α. Then,
we have the following uniform in t ∈ [0, T ] convergence:

‖vε(t, ·) − uε(t, ·)‖�2(�Zn) → 0 as � → 0, (2.9)

and pointwise for ε ∈ (0, 1].

3. Preliminaries

The Fourier analysis related to the discrete lattice Z
n and the torus T

n has been
developed by Turunen and the third author in [20]. The pseudo-difference operators
and the related symbolic calculus on the weighted sequence space �ps(Z

n) have been
extensively studied in [2]. The aim of the section is to recall the preliminaries and
important tools related to the discrete lattice �Z

n and the torus T
n
�

that will be
necessary for the analysis that we will follow.

3.1. Spaces of functions and distributions on the lattice �Z
n

The Schwartz space S(�Z
n) on the lattice �Z

n is the space of rapidly decreasing
functions ϕ : �Z

n → C; that is, we write ϕ ∈ S(�Z
n) if for any M <∞ there exists
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a constant Cϕ,M such that

|ϕ(k)| � Cϕ,M (1 + |k|)−M , for all k ∈ �Z
n,

where |k| stands for the Euclidean norm of k ∈ �Z
n; i.e. for k = �(k1, . . . , kn), we

have |k| = �(
∑n

l=1 k
2
l )1/2. The topology on S(�Z

n) is given by the semi-norms pj ,
defined as:

pj(ϕ) := sup
k∈�Zn

(1 + |k|)j |ϕ(k)|, ϕ ∈ S(�Z
n) and j ∈ N0.

The topological dual of S(�Z
n) is the space of tempered distributions defined as:

S ′(�Z
n) := L (S(�Z

n),C) ,

i.e. S ′(�Z
n) is the space of all linear continuous functionals on S(�Z

n) of the form

ϕ → (u, ϕ) :=
∑

k∈�Zn

u(k)ϕ(k), ϕ ∈ S(�Z
n).

We note that, in contrast to S ′(Rn), the tempered distributions in S ′(�Z
n) in the

semi-classical setting are pointwise well-defined functions on �Z
n. Furthermore, a

tempered distribution u : �Z
n → C has polynomial growth at infinity, i.e. there

exist positive constants M and Cu,M such that

|u(k)| � Cu,M (1 + |k|)M , k ∈ �Z
n.

For s ∈ R, one can extend the usual space �2(�Z
n) to the weighted space �2s(�Z

n)
of order s as follows: for f : �Z

n → C we write f ∈ �2s(�Z
n) whenever the following

norm is finite:

‖f‖�2s(�Zn) :=

( ∑
k∈�Zn

(1 + |k|)2s|f(k)|2
)1/2

.

Clearly, the weighted �2-spaces also include �2(�Z
n) as a special case when s = 0.

Observe that the weighted space �2s(�Z
n) is a Hilbert space when endowed with

the natural inner product:

(u, v)�2s(�Zn) :=
∑

k∈�Zn

(1 + |k|)2su(k)v(k) , (3.1)

where v(k) stands for the complex conjugate of v(k).
Let us point out that the structure of the space of tempered distributions S ′(�Z

n),
as well as this of the Schwartz space S(�Z

n), are closely related to the weighted
�2-spaces. In particular, we have the following useful relations:

S(�Z
n) =

⋂
s∈R

�2s(�Z
n) and S ′(�Z

n) =
⋃
s∈R

�2s(�Z
n). (3.2)
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3.2. Space of periodic functions and distributions on the torus T
n
�

Let us now introduce the torus denoted by T
n
�

that will be useful for the subse-
quent analysis, especially when the semi-classical limit � → 0 is taken. The torus
T

n
�

can be realized via the identification

T
n
�

=
[
− 1

2�
,

1
2�

]n

, � > 0.

Consequently, the space Ck(Tn
�
) consists of functions that are 1/�-periodic and k-

times continuously differentiable functions on torus T
n
�
. The space C∞(Tn

�
) of test

functions on the torus T
n
�

can then be defined as:

C∞(Tn
�
) :=

∞⋂
k=1

Ck(Tn
�
).

The Fréchet topology on the space of smooth functions C∞(Tn
�
) is given by the

semi-norms pj defined as:

pj(ψ) := max{‖∂αψ‖C(Tn
�
) : |α| � j}, j ∈ N0, α ∈ N

n
0 .

The topological dual of C∞(Tn
�
) is the space of periodic distributions defined as:

D′(Tn
�
) := L (C∞(Tn

�
),C) ,

i.e. it is the space of all linear continuous functionals on C∞(Tn
�
) of the form

ϕ →
∫

Tn
�

ϕ(ξ)ψ(ξ) dξ, ψ ∈ C∞(Tn
�
).

3.3. Related semi-classical Fourier analysis

The Fourier transform operator:

F�Zn : S(�Z
n) → C∞(Tn

�
)

is defined as:

F�Znu(ξ) := �
n/2

∑
k∈�Zn

u(k)e−2πik·ξ, ξ ∈ T
n
�
.

For the inverse Fourier transform operator

F−1
�Zn : C∞(Tn

�
) → S(�Z

n)

we have

F−1
�Znv(k) := �

n/2

∫
Tn

�

v(ξ)e2πik·ξ dξ, k ∈ �Z
n ,

implying that the Fourier inversion formula is given by

u(k) = �
n/2

∫
Tn

�

û(ξ)e2πik·ξ dξ, k ∈ �Z
n. (3.3)
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The Fourier transform F�Zn can be uniquely extended to the space of tempered
distributions S ′(�Z

n) when realized via the distributional duality:

(F�Znu, ψ) := (u, ι ◦ F−1
�Znψ), (3.4)

where u ∈ S ′(�Z
n), ψ ∈ C∞(Tn

�
), and (ι ◦ f)(x) = f(−x).

Hence, for the operator F�Zn we can write in more generality F�Zn : S ′(�Z
n) →

D′(Tn
�
), and consequently we can define the inverse operator F−1

�Zn : D′(Tn
�
) →

S ′(�Z
n). With the use of the latter, we can define the periodic Sobolev spaces

Hs(Tn
�
), for s ∈ R as follows:

Hs(Tn
�
) :=

⎧⎨⎩u ∈ D′(Tn
�
) : ‖u‖Hs(Tn

�
) :=

( ∑
k∈�Zn

(1 + |k|)2s
∣∣F−1

�Znu(k)
∣∣2)1/2

<∞
⎫⎬⎭ .

For any s ∈ R the periodic Sobolev space Hs(Tn
�
) is a Hilbert space endowed with

the inner product given by

(u, v)Hs(Tn
�) :=

∑
k∈�Zn

(1 + |k|)2sF−1
�Znu(k)F−1

�Znv(k). (3.5)

Clearly, the periodic Sobolev space also includes L2(Tn
�
) as a special case when

s = 0.
We have the following relation between the space of test functions C∞(Tn

�
) and

the space of periodic distributions D′(Tn
�
) and the periodic Sobolev spaces Hs(Tn

�
):

C∞(Tn
�
) =

⋂
s∈R

Hs(Tn
�
) and D′(Tn

�
) =

⋃
s∈R

Hs(Tn
�
).

Combining the inner product (3.1) and (3.5) with the Fourier transform, we obtain
the following Plancherel formula:

‖f‖�2s(�Zn) = ‖(1 + | · |)sf(·)‖�2(�Zn) = ‖f̂‖Hs(Tn
�
), f ∈ �2s(�Z

n). (3.6)

3.4. The discrete fractional Laplacian

The discrete fractional Laplacian on the lattice �Z
n can be defined by restricting

the usual fractional centred difference operators in the Euclidean setting R
n, see

[19, Section 5.4]. For more details about the fractional difference operators on R
n,

we refer to [26].
Rigorously, for a positive α > 0 and for u being a complex-valued grid function

on �Z
n, the discrete fractional Laplacian (−L�)α is defined by

(−L�)α
u(k) :=

∑
j∈Zn

a
(α)
j u(k + j�), α > 0, (3.7)

where the generating function a(α)
j is given by

a
(α)
j :=

∫
[−(1/2),1/2]n

[
n∑

l=1

4 sin2 (πξl)

]α

e−2πij·ξ dξ.
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The Fourier transform and the Fourier inversion formula, allow to verify that

∑
j∈Zn

a
(α)
j e2πij·ξ =

[
n∑

l=1

4 sin2 (πξl)

]α

, ξ ∈ T
n
�
. (3.8)

Further, using relation (3.8) and the shifting property of the Fourier transform,
we can compute the Fourier transform of the discrete fractional Laplacian (−L�)α

as follows:

(F�Zn (−L�)α
u) (ξ) =

∑
k∈�Zn

(−L�)α
u(k)e−2πik·ξ

=
∑

k∈�Zn

⎛⎝∑
j∈Zn

a
(α)
j u(k + j�)

⎞⎠ e−2πik·ξ

=

⎛⎝∑
j∈Zn

a
(α)
j e2πij�·ξ

⎞⎠ û(ξ)

=

[
n∑

l=1

4 sin2 (π�ξl)

]α

û(ξ), (3.9)

for all ξ ∈ T
n
�
, and consequently the Fourier transform of fractional Laplacian is

(F�Zn (−L)α
u) (ξ) =

(
(−L)α

u, e2πik·ξ)
=
(
u, (−L)α e2πik·ξ)

=
(
u, |2πξ|2αe2πik·ξ)

= |2πξ|2αû(ξ), (3.10)

for all ξ ∈ T
n
�
. For more details about the construction and other properties of

discrete fractional Laplacian on �Z
n, see [9].

The consistency of formula 3.7 for the discrete fractional Laplacian (−L�)α with
the usual discrete Laplacian introduced in the monograph [8], can be understood by
explicitly computing the expansion coefficients a(α)

j , for α = 1 and j ∈ Z
n. Indeed,

it is easy to check that

a
(1)
0 = 2n, a

(1)
±vl

= −1, and a
(1)
j = 0, for all j �= 0,±vl,

where vl is the lth basis vector in Z
n, having all zeros except for 1 at the lth

component. This gives

(−L�)1u(k) = 2nu(k) −
∑

j=±vl

u(k + j�)

= 2nu(k) −
n∑

l=1

(u(k + vl�) + u(k − vl�)) ,

which is usual discrete Laplacian on �Z
n.
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4. Proof of the main results

In this section, we give the proofs of all the results presented above in § 2. Before
moving on to proving our first result, let us note that the proof of theorem 1.1 in
the Euclidean setting R

n follows the same arguments as the ones that are used in
the proof of theorem 2.1 in the setting �Z

n except for using the inner product of
L2

m(Rn) instead of Hs(Tn
�
). Therefore, we just prove theorem 2.1 and the proof of

theorem 1.1 should be considered verbatim.

Proof of theorem 2.1. Taking the Fourier transform of the Cauchy problem (1.3)
with respect to k ∈ �Z

n and using (3.9), we obtain:{
∂tû(t, ξ) + a(t)ν2(ξ)û(t, ξ) + b(t)û(t, ξ) = f̂(t, ξ), with (t, ξ) ∈ [0, T ] × T

n
�
,

û(0, ξ) = û0(ξ), ξ ∈ T
n
�
,

(4.1)
where

ν2(ξ) = �
−2α

[
n∑

l=1

4 sin2 (π�ξl)

]α

� 0. (4.2)

Define the energy functional for the Cauchy problem (4.1) by

E(t, ξ) := (a(t)û(t, ξ), û(t, ξ)), (t, ξ) ∈ [0, T ] × T
n
�
, (4.3)

where (·, ·) is the inner product in the Sobolev space Hs(Tn
�
) given by (3.5). It is

easy to check that

inf
t∈[0,T ]

{a(t)}(û(t, ξ), û(t, ξ)) � (a(t)û(t, ξ), û(t, ξ)) � sup
t∈[0,T ]

{a(t)}(û(t, ξ), û(t, ξ)).
(4.4)

Since a ∈ L∞
1 ([0, T ]), there exist two positive constants a0 and a1 such that

inf
t∈[0,T ]

{a(t)} = a0 and sup
t∈[0,T ]

{a(t)} = a1. (4.5)

Combining equations (4.3) and (4.5) together with inequality (4.4), we obtain the
following bounds for the energy functional:

a0‖û(t, ·)‖2
Hs � E(t, ξ) � a1‖û(t, ·)‖2

Hs , (t, ξ) ∈ [0, T ] × T
n
�
. (4.6)

Differentiating the energy functional E(t, ξ) and using (4.1), we obtain:

∂tE(t, ξ) = (at(t)û(t, ξ), û(t, ξ)) + (a(t)ût(t, ξ), û(t, ξ)) + (a(t)û(t, ξ), ût(t, ξ))

= (at(t)û(t, ξ), û(t, ξ)) − (a2(t)ν2(ξ)û(t, ξ), û(t, ξ))

− (a(t)b(t)û(t, ξ), û(t, ξ)) + (a(t)f̂(t, ξ), û(t, ξ))

− (a(t)û(t, ξ), a(t)ν2(ξ)û(t, ξ)) − (a(t)û(t, ξ), b(t)û(t, ξ))

+ (a(t)û(t, ξ), f̂(t, ξ))
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= at(t)(û(t, ξ), û(t, ξ)) − 2a2(t)(ν(ξ)û(t, ξ), ν(ξ)û(t, ξ))

− 2a(t)b(t)(û(t, ξ), û(t, ξ)) + a(t)(f̂(t, ξ), û(t, ξ))

+ a(t)(û(t, ξ), f̂(t, ξ))

� (|at(t)| + 2|a(t)||b(t)|) ‖û(t, ·)‖2
Hs + 2|a(t)||Re(f̂(t, ξ), û(t, ξ))|.

Using the hypothesis that a ∈ L∞
1 ([0, T ]) and b ∈ L∞([0, T ]), we obtain:

∂tE(t, ξ) � (‖at‖L∞ + 2‖a‖L∞‖b‖L∞) ‖û(t, ·)‖2
Hs + 2‖a‖L∞‖f̂(t, ·)‖Hs‖û(t, ·)‖Hs

� (‖at‖L∞ + 2‖a‖L∞‖b‖L∞ + ‖a‖L∞) ‖û(t, ·)‖2
Hs + ‖a‖L∞‖f̂(t, ·)‖2

Hs .
(4.7)

If we set κ1 = ‖at‖L∞ + 2‖a‖L∞‖b‖L∞ + ‖a‖L∞ and κ2 = ‖a‖L∞ , then putting
together (4.6) and (4.7), we obtain:

∂tE(t, ξ) � a−1
0 κ1E(t, ξ) + κ2‖f̂(t, ·)‖2

Hs . (4.8)

Applying the Gronwall’s lemma to inequality (4.8), we get:

E(t, ξ) � e
∫ t
0 a−1

0 κ1 dτ

(
E(0, ξ) +

∫ t

0

κ2‖f̂(τ, ·)‖2
Hs dτ

)
, (4.9)

for all (t, ξ) ∈ [0, T ] × T
n
�
. Again combining estimates (4.6) and (4.9), we obtain:

a0‖û(t, ·)‖2
Hs � E(t, ξ) � e

∫ t
0 a−1

0 κ1 dτ

(
E(0, ξ) +

∫ t

0

κ2‖f̂(τ, ·)‖2
Hs dτ

)

� ea−1
0 κ1T

(
a1‖û(0, ·)‖2

Hs + κ2

∫ T

0

‖f̂(τ, ·)‖2
Hs dτ

)
.

Further, using the Plancherel formula (3.6), we obtain the required estimate:

‖u(t, ·)‖2
�2s(�Zn) � CT,a,b

(
‖u0‖2

�2s(�Zn) + ‖f‖2
L2([0,T ];�2s(�Zn))

)
, for all t ∈ [0, T ],

where the constant CT,a,b is given by

CT,a,b = a−1
0 ‖a‖L∞ea−1

0 (‖at‖L∞+2‖a‖L∞‖b‖L∞+‖a‖L∞ )T .

The uniqueness of the solution follows immediately from the above estimate. This
completes the proof. �

Thus, we have obtained the well-posedness for the Cauchy problem (1.3) in the
weighted spaces �2s(�Z

n) for all s ∈ R and consequently we have distributional
well-posedness for the Cauchy problem (1.3) in the space of tempered distribu-
tion S ′(�Z

n). We will now prove the existence of the very weak solution to the
Cauchy problem (1.3) in the case of distributional coefficients.
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Proof of theorem 2.4. Consider the regularized Cauchy problem:{
∂tuε(t, k) + aε(t)�−2α (−L�)α

uε(t, k) + bε(t)uε(t, k) = fε(t, k), t ∈ (0, T ],

uε(0, k) = u0(k), k ∈ �Z
n,

(4.10)
where the coefficient aε is L∞

1 -moderate, bε is L∞-moderate, and the source term fε

is L2([0, T ]; �2s(�Z
n))-moderate regularization of the coefficients a, b and the source

term f , respectively. Taking the Fourier transform with respect to k ∈ �Z
n, we

obtain:{
∂tûε(t, ξ) + aε(t)ν2(ξ)ûε(t, ξ) + bε(t)ûε(t, ξ) = f̂ε(t, ξ), (t, ξ) ∈ (0, T ] × T

n
�
,

ûε(0, ξ) = û0(ξ), k ∈ T
n
�
,

where ν2(ξ) is given by (4.2). Define the energy functional for the Cauchy problem
(4.10) by

Eε(t, ξ) := (aε(t)ûε(t, ξ), ûε(t, ξ)), (t, ξ) ∈ [0, T ] × T
n
�
, (4.11)

where (·, ·) is the inner product in the Sobolev space Hs(Tn
�
). It is easy to check

that

inf
t∈[0,T ]

{aε(t)}(ûε(t, ξ), ûε(t, ξ)) � (aε(t)ûε(t, ξ), ûε(t, ξ))

� sup
t∈[0,T ]

{aε(t)}(ûε(t, ξ), ûε(t, ξ)).

Since a and b are distributions, by the structure theorem for compactly supported
distributions, there exist L1, L2 ∈ N and c1, c2 > 0 such that∣∣∂k

t aε(t)
∣∣ � c1ω(ε)−L1−k and

∣∣∂k
t bε(t)

∣∣ � c2ω(ε)−L2−k, k ∈ N0, (4.12)

for all t ∈ [0, T ], where ω(ε) is given by (2.3). Since a � a0 > 0, we can write:

aε(t) =
(
a ∗ ψω(ε)

)
(t) = 〈a, τtψ̃ω(ε)〉 � ã0 > 0, (4.13)

where ψ̃(x) = ψ(−x), x ∈ R and τtψ(ξ) = ψ(ξ − t), ξ ∈ R.
Now, applying theorem 2.1 to the Cauchy problem (4.10), we have the following

estimate:

‖uε(t, ·)‖2
�2s(�Zn) � CT,aε,bε

(
‖u0‖2

�2s(�Zn) + ‖fε‖2
L2([0,T ];�2s(�Zn))

)
, for all t ∈ [0, T ],

(4.14)
where the constant CT,aε, bε

is given by

CT,aε,bε
= ã−1

0 ‖aε‖L∞eã−1
0 (‖∂taε‖L∞+2‖aε‖L∞‖bε‖L∞+‖aε‖L∞ )T

� ã−1
0 e‖aε‖L∞+ã−1

0 (‖∂taε‖L∞+2‖aε‖L∞‖bε‖L∞+‖aε‖L∞ )T

� ã−1
0 eKT max{‖aε‖L∞ ,‖∂taε‖L∞ ,‖aε‖L∞‖bε‖L∞}, (4.15)

where KT = max{1, ã−1
0 4T}. Combining estimates (4.12) and (4.14) with (4.15) we

get:

‖uε(t, ·)‖2
�2s(�Zn) � ã−1

0 ecKT ω(ε)−3L1−L2−1
(
‖u0‖2

�2s(�Zn) + ‖fε‖2
L2([0,T ];�2s(�Zn))

)
,
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for some c > 0. Putting (ω(ε))−3L1−L2−1 = log(ε−1), we obtain:

‖uε(t, ·)‖2
�2s(�Zn) � ε−cKT

(
‖u0‖2

�2s(�Zn) + ‖fε‖2
L2([0,T ];�2s(�Zn))

)
, (4.16)

for all t ∈ [0, T ] and ε ∈ (0, 1].
Since (fε)ε is L2([0, T ]; �2s(�Z

n))-moderate regularization of f , there exists a
positive constants L3 such that

‖fε‖L2([0,T ];�2s(�Zn)) � ε−L3 . (4.17)

Now, by integrating estimate (4.16) with respect to t ∈ [0, T ] and then using (4.17),
we obtain:

‖uε‖L2([0,T ];�2s(�Zn)) � ε−cKT −L3 . (4.18)

Thus, we conclude that (uε)ε is L2([0, T ]; �2s(�Z
n))-moderate. This completes the

proof. �

Therefore, we have established the existence of very weak solution for the Cauchy
problem (1.3) with irregular coefficients. We will now prove the uniqueness of the
very weak solution of it in the sense of definition 2.5.

Proof of theorem 2.7. Let (uε)ε and (ũε)ε be the families of solution corresponding
to the Cauchy problems (2.6) and (2.7), respectively. Denoting wε := uε − ũε, we
get:{

∂twε(t, k) + aε(t)�−2α (−L�)α
wε(t, k) + bε(t)wε(t, k) = gε(t, k), t ∈ (0, T ],

wε(0, k) = 0, k ∈ �Z
n,

(4.19)
where

gε(t, k) := (ãε − aε)(t)�−2α (−L�)α
ũε(t, k) + (b̃ε − bε)(t)ũε(t, k) + (fε − f̃ε)(t, k).

(4.20)
Since the nets (ãε − aε)ε, (b̃ε − bε)ε, and (fε − f̃ε)ε are L∞

1 -negligible, L∞-
negligible, and L2([0, T ]; �2s(�Z

n))-negligible, respectively, it follows that gε is
L2([0, T ]; �2s(�Z

n))-negligible.
Taking the Fourier transform of the Cauchy problem (4.19) with respect to k ∈

�Z
n, we obtain:{
∂tŵε(t, ξ) + aε(t)ν2(ξ)ŵε(t, ξ) + bε(t)ŵε(t, ξ) = ĝε(t, ξ), (t, ξ) ∈ (0, T ] × T

n
�
,

ŵε(0, ξ) = 0, ξ ∈ T
n
�
,

(4.21)
where ν2(ξ) is given by (4.2). The energy functional for the Cauchy problem (4.21)
is given by

Eε(t, ξ) := (aε(t)ŵε(t, ξ), ŵε(t, ξ)), (t, ξ) ∈ [0, T ] × T
n
�
, (4.22)

where (·, ·) is the inner product in the Sobolev space Hs(Tn
�
). Then, using (4.12),

we have the following energy bounds:

ã0‖ŵε(t, ·)‖2
Hs � Eε(t, ξ) � c1ω(ε)−L1‖ŵε(t, ·)‖2

Hs , (t, ξ) ∈ [0, T ] × T
n
�
. (4.23)
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Further, we can calculate:

∂tEε(t, ξ) � (|a′ε(t)| + 2|aε(t)||bε(t)| + |aε(t)|) ‖ŵε(t, ·)‖2
Hs + |aε(t)|‖ĝε(t, ·)‖2

Hs

� (‖a′ε‖L∞ +2‖aε‖L∞‖bε‖L∞ +‖aε‖L∞) ‖ŵε(t, ·)‖2
Hs +‖aε‖L∞‖ĝε(t, ·)‖2

Hs .

Combining the above estimate with (4.23), we obtain:

∂tEε(t, ξ) � ã−1
0 (‖a′ε‖L∞ + 2‖aε‖L∞‖bε‖L∞

+ ‖aε‖L∞)Eε(t, ξ) + ‖aε‖L∞‖ĝε(t, ·)‖2
Hs . (4.24)

Applying the Gronwall’s lemma to inequality (4.24), we obtain:

Eε(t, ξ) � e
∫ t
0 ã−1

0 (‖a′
ε‖L∞+2‖aε‖L∞‖bε‖L∞+‖aε‖L∞) dτ(

Eε(0, ξ) + ‖aε‖L∞

∫ t

0

‖ĝε(τ, ·)‖2
Hs dτ

)
. (4.25)

Putting together (4.23) and (4.25), and then using the fact that ŵε(0, ξ) ≡ 0 for
all ε ∈ (0, 1], we get:

‖ŵε(t, ·)‖2 � ã−1
0 ‖aε‖L∞eã−1

0 (‖a′
ε‖L∞+2‖aε‖L∞‖bε‖L∞+‖aε‖L∞)T

∫ T

0

‖ĝε(τ, ·)‖2
Hs dτ

� ã−1
0 e‖aε‖L∞+ã−1

0 (‖∂taε‖L∞+2‖aε‖L∞‖bε‖L∞+‖aε‖L∞ )T

∫ T

0

‖ĝε(τ, ·)‖2
Hs dτ

� ã−1
0 eκT max{‖aε‖L∞ ,‖∂taε‖L∞ ,‖aε‖L∞‖bε‖L∞}

∫ T

0

‖ĝε(τ, ·)‖2
Hs dτ,

where κT = max{1, ã−1
0 4T}. Combining the above estimate with (4.12), we obtain:

‖ŵε(t, ·)‖2 � ã−1
0 ecκT ω(ε)−3L1−L2−1

∫ T

0

‖ĝε(τ, ·)‖2
Hs dτ,

for some c > 0. Putting (ω(ε))−3L1−L2−1 = log(ε−1) and using the Plancherel
formula (3.6), we obtain:

‖wε(t, ·)‖2
�2s(�Zn) � ε−cκT ‖gε‖2

L2([0,T ];�2s(�Zn)),

for all t ∈ [0, T ]. Since gε is L2([0, T ]; �2s(�Z
n))-negligible, we obtain:

‖wε(t, ·)‖2
�2s(�Zn) � ε−cκT εcκT +q = εq, for all q ∈ N0,

for all t ∈ [0, T ]. Now, by integrating the above estimate with respect to t ∈ [0, T ],
we get:

‖wε‖L2([0,T ];�2s(�Zn)) � εq, for all q ∈ N0.

Thus, (uε − ũε)ε is L2([0, T ]; �2s(�Z
n))-negligible. This completes the proof. �

Next, we prove that the very weak solution obtained in theorem 2.4 is consistent
with the classical solution obtained in theorem 2.1.
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Proof of theorem 2.8. Let ũ be the classical solution given by theorem 2.1, that is,
ũ satisfies the Cauchy problem:{
∂tũ(t, k) + a(t)�−2α (−L�)α

ũ(t, k) + b(t)ũ(t, k) = f(t, k), (t, k) ∈ (0, T ] × �Z
n,

ũ(0, k) = u0(k), k ∈ �Z
n,

(4.26)
and let (uε)ε be the very weak solution obtained by theorem 2.4, that is, (uε)ε

satisfies the regularized Cauchy problem:{
∂tuε(t, k) + aε(t)�−2α (−L�)α

uε(t, k) + bε(t)uε(t, k) = fε(t, k), t ∈ (0, T ],

uε(0, k) = u0(k), k ∈ �Z
n.

(4.27)
Note that by the hypothesis the nets (aε − a)ε, (bε − b)ε, and (fε − f)ε are
converging to 0 uniformly. Using (4.26) and (4.27), we have{
∂tũ(t, k)+aε(t)�−2α (−L�)α

ũ(t, k)+bε(t)ũ(t, k)=fε(t, k) + gε(t, k), t ∈ (0, T ],

ũ(0, k) = u0(k), k ∈ �Z
n,

(4.28)
where

gε(t, k) := (aε − a) (t)�−2α (−L�)α
ũ(t, k) + (bε − b) (t)ũ(t, k) + (f − fε) (t, k),

gε ∈ L2([0, T ]; �2s(�Z
n)) and gε → 0 in L2([0, T ]; �2s(�Z

n)) as ε→ 0.
Combining the Cauchy problem (4.27) and (4.28), we deduce that the net wε :=

(ũ− uε) solves the Cauchy problem:{
∂twε(t, k) + aε(t)�−2α (−L�)α

wε(t, k) + bε(t)wε(t, k) = gε(t, k), t ∈ (0, T ],

wε(0, k) = 0, k ∈ �Z
n.

(4.29)
Taking the Fourier transform of the Cauchy problem (4.29) with respect to k ∈ �Z

n,
we obtain:{

∂tŵε(t, ξ) + aε(t)ν2(ξ)ŵε(t, ξ) + bε(t)ŵε(t, ξ) = ĝε(t, ξ), (t, ξ) ∈ (0, T ] × T
n
�
,

ŵε(0, ξ) = 0, ξ ∈ T
n
�
,

(4.30)
where ν2(ξ) is given by (4.2). Define the energy functional for the Cauchy problem
(4.30) by

Eε(t, ξ) := (aε(t)ŵε(t, ξ), ŵε(t, ξ)), (t, ξ) ∈ [0, T ] × T
n
�
,

where (·, ·) is the inner product in the Sobolev space Hs(Tn
�
).

Since the coefficients are sufficiently regular, following the lines of theorem 2.1,
the next energy estimate holds true:

∂tEε(t, ξ) � κ1Eε(t, ξ) + κ2 |ĝε(t, ξ)|2 ,
for some positive constants κ1 and κ2. Then, using the Gronwall’s lemma and the
energy bounds similar to (4.6) along with the Plancherel formula (3.6), we obtain

https://doi.org/10.1017/prm.2023.84 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.84


20 M. Chatzakou, A. Dasgupta, M. Ruzhansky and A. Tushir

the following estimate:

‖wε(t, ·)‖2
�2s(�Zn) � ‖wε(0, ·)‖2

�2s(�Zn) + ‖gε‖2
L2([0,T ];�2s(�Zn)),

+ for all t ∈ [0, T ]. Now, by integrating the above estimate with respect to t ∈ [0, T ]
and using the fact that wε(0, k) ≡ 0 for all ε ∈ (0, 1], we get:

‖wε‖2
L2([0,T ];�2s(�Zn)) � ‖gε‖2

L2([0,T ];�2s(�Zn)).

Since gε → 0 in L2([0, T ]; �2s(�Z
n)), we have

wε → 0 in L2([0, T ]; �2s(�Z
n)), ε→ 0,

implying also that

uε → ũ in L2([0, T ]; �2s(�Z
n)), ε→ 0.

Furthermore, the limit is the same for every representation of u, since they will differ
from (uε)ε by a L2([0, T ]; �2s(�Z

n))-negligible net. This completes the proof. �

5. Semi-classical limit � → 0

In this section, we will prove the semi-classical limit theorems for the classical
solution as well as for the very weak solution.

Proof of theorem 2.9. Consider two Cauchy problems:{
∂tu(t, k) + a(t)�−2α(−L�)αu(t, k) + b(t)u(t, k) = f(t, k), (t, k) ∈ (0, T ] × �Z

n,

u(0, k) = u0(k), k ∈ �Z
n,

(5.1)
and{

∂tv(t, x) + a(t)(−L)αv(t, x) + b(t)v(t, x) = f(t, x), (t, x) ∈ (0, T ] × R
n,

v(0, x) = u0(x), x ∈ R
n,

(5.2)
where (−L)α is the usual fractional Laplacian on R

n given by (1.5). We have
assumed that f and u0 in (5.1) are the restrictions in �Z

n of the corresponding
ones in (5.2) defined on R

n. From equations (5.1) and (5.2), denoting w := u− v,
we get: ⎧⎪⎨⎪⎩

∂tw(t, k) + a(t)�−2α(−L�)αw(t, k) + b(t)w(t, k)
= a(t)

(
(−L)α − �

−2α(−L�)α
)
v(t, k),

w(0, k) = 0, k ∈ �Z
n.

(5.3)

Since w0 = 0, applying theorem 2.1 with s = 0 for the Cauchy problem (5.3) and
using estimate (2.1), we obtain:

‖w(t, ·)‖2
�2(�Zn) � CT,a,b

∥∥a ((−L)α − �
−2α(−L�)α

)
v
∥∥2

L2([0,T ];�2(�Zn))

� CT,a,b ‖a‖2
L∞([0,T ])

∥∥((−L)α − �
−2α(−L�)α

)
v
∥∥2

L2([0,T ];�2(�Zn))
,

(5.4)
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for all t ∈ [0, T ], where the constant CT,a,b is given by

CT,a,b = a−1
0 ‖a‖L∞ea−1

0 (‖at‖L∞+2‖a‖L∞‖b‖L∞+‖a‖L∞ )T .

Now, we will estimate the term
∥∥((−L)α − �

−2α(−L�)α)v
∥∥2

L2([0, T ];�2(�Zn))
. Using

the Plancherel formula (3.6) for s = 0, (3.9) and (3.10), we have∥∥((−L)α − �
−2α(−L�)α

)
v(t, ·)∥∥

�2(�Zn)

=

∥∥∥∥∥
([

n∑
l=1

(2πξl)2
]α

− �
−2α

[
n∑

l=1

4 sin2 (π�ξl)

]α)
v̂(t, ·)

∥∥∥∥∥
L2(Tn

�
)

. (5.5)

Since | · |α : R → R is α-Hölder continuous for 0 < α � 1, we have the following
inequality: ∣∣|x|2α − |y|2α

∣∣ � ∣∣|x|2 − |y|2∣∣α , x, y ∈ R
n,

and |x| =
√
x2

1 + · · · + x2
n. Now, using the above inequality and the Taylor expan-

sion for sin2(π�ξl), we get:∣∣∣∣∣
[

n∑
l=1

(2πξl)2
]α

− �
−2α

[
n∑

l=1

4 sin2 (π�ξl)

]α∣∣∣∣∣
�
∣∣∣∣∣

n∑
l=1

4π2ξ2l − �
−2

n∑
l=1

4 sin2(π�ξl)

∣∣∣∣∣
α

=

∣∣∣∣∣
n∑

l=1

[
4π2ξ2l − �

−24
(
π2

�
2ξ2l − π4

3
�

4ξ4l cos (2θl)
)]∣∣∣∣∣

α

=
(

4π4
�

2

3

)α
∣∣∣∣∣

n∑
l=1

ξ4l cos(2θl)

∣∣∣∣∣
α

� �
2α

[
n∑

l=1

ξ4l

]α

� �
2α|ξ|4α, (5.6)

where |ξ|4α = [
∑n

l=1 ξ
2
l ]2α and θl ∈ (0, π�ξl) or (π�ξl, 0) depending on the sign of

ξl. Now, combining estimate (5.6) with (5.5), we get:∥∥((−L)α − �
−2α(−L�)α

)
v(t, ·)∥∥

�2(�Zn)
� �

2α‖(1 + | · |2)2αv̂(t, ·)‖L2(Tn
�
)

� �
2α‖(1 + | · |2)m/2v̂(t, ·)‖L2(Tn

�
), (5.7)

whenever m � 4α. Since u0 ∈ Hm(Rn) with m � 4α, using theorem 1.1, we have
v ∈ Hm(Rn) with m � 4α. Therefore, using (5.4) and (5.7), we deduce that
‖w(t, ·)‖�2(�Zn) → 0 as � → 0. Hence, we have

‖v(t, ·) − u(t, ·)‖�2(�Zn) → 0 as � → 0, for all t ∈ [0, T ].

This finishes the proof of theorem 2.9. �
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Proof of theorem 2.11. Without making any significant changes to the proof of
theorem 2.9, we can prove theorem 2.11. �

6. Remarks

We conclude the paper with a few remarks related to the very weak solution for
the Cauchy problem (1.4) in the Euclidean setting:

(1) For a net uε = uε(t, x), where x ∈ R
n is a variable in the Euclidean space,

the definitions of moderateness and negligibility are adapted accordingly from
definition (2.2); i.e. the net (uε)ε ∈ L2([0, T ];Hm(Rn)) is L2([0, T ];Hm(Rn))-
moderate if there exist N ∈ N0 and c > 0 such that

‖uε‖L2([0,T ];Hm(Rn)) � cε−N ,

for all ε ∈ (0, 1] and is L2([0, T ];Hm(Rn))-negligible if for all q ∈ N0 there
exists c > 0 such that

‖uε‖L2([0,T ];Hm(Rn)) � cεq,

for all ε ∈ (0, 1].

(2) The notion of a very weak solution for the Cauchy problem (1.4) can be
adapted from definition 2.3 by simply replacing the L2([0, T ]; �2s(�Z

n))-
moderate regularization by the L2([0, T ];Hm(Rn))-moderate regularization
for the source term f and the net (uε)ε.

(3) The proof of theorem 1.2 will be similar to the proof of theorem 2.4 except
for using the inner product of L2

m(Rn) instead of Hs(Tn
�
) in (4.11).

(4) The notion of the uniqueness of very weak solution for the Cauchy problem
(1.4) can also be formulated by making similar modifications to definition 2.5.

(5) If the coefficients a, b are regular, the very weak solution obtained in theorem
1.2 recaptures the classical solution obtained in theorem 1.1 in the limit
L2([0, T ];Hm(Rn)) as ε→ 0. More precisely, we have the consistency result
similar to theorem 2.8 with the same modifications as above.
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