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1. Perhaps the simplest elementary proof of the prime number theorem, see
Erdos (2) and Selberg (5), is Wright's modification (8), (3, p. 362) of Selberg's
original proof (5). Another variant is due to V. Nevanlinna (4). Wright's
proof uses Selberg's idea of smoothing the weighting process which occurs in
the Selberg inequality, (1.2) below, by iterating this inequality. Here it will be
shown that the proof requires less ingenuity if use is made of a further smoothing
operation, namely first integrating the Selberg inequality itself. Integration has
been used on a related inequality by Breusch (1) to obtain a remainder term.
This method also makes proof by contradiction unnecessary.

Recall that by definition A(«) = \ogp for n = pJ, p a prime number and j a
positive integer, and A(n) = 0 otherwise. As customary let

£ x) = O, x<2).
n ^ x

The prime number theorem is equivalent [3, p. 345] to

lim IKX)/JC = 1. (1.1)
x-*co

The Selberg inequality [3, p. 359] is

tKx) log x + EA(»# (-) = 2x log x + O(x) (1.2)

for large x, where the summation is finite since i//(x) = 0 for x < 2. The simplest
proof of (1.2) is probably that of Tatuzawa and Iseki (7), see also Shapiro (6).
Since the terms in the sum in (1.2) are non-negative, deleting the sum leads to an
inequality that implies

0 ^ lim suptK*)/x^2. (1.3)
x->oo

If/(r) has a continuous derivative and if cn, n ^ 1, are constants then partial
summation leads readily [3, p. 346] to

) - [X

J ,
X cj{n) = C(x)/(x)- [ C(t)f'(t)dt; C(t) = £ cn. (1.4)

n S x J , n g (
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142 N. LEVINSON

With cn = A(n), (1.4) and (1.3) yield

£ A(«) log H = <KX) log x + O(x). (1.5)
n S x

Also

fV (1.6)
\J/ j ^x kZx/j jkgx

Thus, if
A2(«) = A(/i)logn+ £ A(j)A(A:), (1.7)

Jfc = n

then (1.5) and (1.6) in (1.2) yield

as an equivalent to (1.2). Using (1.4) with cn = 1

£ log« = xlogx + 0(x). (1.8)
n ^ x

Combining the above two inequalities

Q(n)= Z (A2(fc)-21ogfc) = O(n). (1.9)
k S n

The basic property of A(«) is £ A(d) = log n. Summing this for n ̂  x
d | n

and using (1.8) yields the well known

£ ^ ^ log*+ 0(1), (1.10)
n 5 x It

which by (1.4) is equivalent to

log x +0(1). (1.11)l l ^ d t =

2. If 7?(x) = iA(x)-x, x ̂  2; i?(x) = 0, x<2, then, from (1.2) and (1.10),

fl(x) log x + EA(«)R I - 1 = O(x). (2.1)

From (1.3)
lim sup | R(x)|/x ^ 1 (2.2)

X—* 00

so that there exists c < oo such that

I R(x)\ g c | x |. (2.3)

Let S0>) = 0, j ^ 2, and for ^ > 2 let

— } ^ - (2-4)

Then except at y = p], where /?(j) is discontinuous, S'(y) = R(y)ly and so by
(2.3),

\S\y)\^c, y±p>. (2.5)
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Hence first, for yt and y2 in an interval not containing any p} in its interior,

\S(j2)-S(yl)\^c\y2-yl\ (2.6)

which however then implies the above for all yl and y2 since S is continuous.
But (2.6) implies

IISG^I-ISC,)!! ^c\y2-yi\. (2.7)

Replacing n byj in (2.1), dividing by x, and integrating gives

2 x J2 \jj x

Integrating the first term by parts and using (2.3) this becomes

S(y) log y + IA(j)S U-\ = O(y).

Replacing y by y/k in (2.8), multiplying by A(k) and summing for k g y

(2.8)

+I.J:\(k)MJ)s(
k \jk

Using log yjk = log y—log k and replacing this k by m,

k

log yL\{k)S U\ - IS (l\ (A(m) log m - £ A(;)A(fc)) = O(y log y).
\kj \m/ jk = m

Replacing the first sum by use of (2.8) and using (1.7) the above implies

log2 y | SC)| ^ 2 | S (A | A2(m) + Kiy\ogy (2.9)

for some constant Kt.
Consider the identity

£ S(A\ log m + J(y), (2.10)

where, recalling the definition of Q(n) in (1.9),

= £ (Q(m)-Q(m-l))

Using (1.9) and (2.7) there is a K2 such that

2 s m s m m + lj
(2.11)
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Returning to the terms in the sum in (2.10)

log in S i H
m s r- du.

By (2.7)

m
\Og

cy log (m +1)
m{m +1)

Using log (m+ 1) ^ m,

log cy (2-12)

Using (2.11) and (2.12) in (2.10) there follows from (2.9) the key inequality

log2 y | S(y)\ :§ 2 f'log u sU du + K3y log y. (2.13)

3. From -x and (1.11)

From this and (2.3) it can be easily verified that

-— du =

J 2 «
2

easily verifie

C* S(t) ,

J 2 ^ ' =

0(1).

Let . By (2.2) and (2.4)

a = lim sup | T(x)\ ^ 1.

By (2.5), if k = 2c,

\T\x)\ ^k, x^jlogp,

and by the argument following (2.5) this implies

By (3.1)

V T(u)du = 0(1),
Jlog 2

which shows there is a constant M such that

|J-n.)*
and one can assume M so large that Mk "§. 1.

(3.1)

(3.2>

(3.3)

(3.4)
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The key inequality (2.13) with x = log y, s = log y/u (noting that T{x) = 0
for x<log 2) becomes

or, equivalently,

| T(x)| g - 2 fX vdv (-!"\ T(s)\ ds) + ^-3. (3.5>
* Jo V^Jo / *

From the definition of a in (3.2),

1 fxy = lim sup - | T(s)\ ds ^ a.
x-oo X J O

But (3.5) shows that <x g y so that indeed a = y. Next (3.3), (3.4) and a = y
will be used to show that a = 0, which leads easily to (1.1).

From (3.2), given /?>oc, there exists x^ such that

I T(x)\ ^ P for x 2L xf. (3.6)

If T(x) has no zeros for large x, (3.4) shows that y = 0 and hence that a = 0.
Suppose then that T(x) has arbitrarily large zeros. Let a and b be successive
zeros of T{x) for x>x^.

Gwe 1. b-a ^ 20/A:. In this case it follows from (3.3) that if the graph of
I T{x)\ rises as rapidly as possible going right from x = a and left from x = b,
it cannot lie above a triangle with altitude k(b-a)/2 g P, so that

f
Case 2. 2fl/k<b—a ^ 2M/p. Reasoning much as in Case 1 for a distance
from each end point, and otherwise using (3.6),

(3.8)
IK)

3. b-a>2M/p. By (3.4), since J(x) # 0 for a<x<b,

(3.9)f
J aSince Afyfc ^ 1 and a ^ 1, (3.8) is also valid where (3.7) and (3.9) hold. If

*! is the first zero of T(x) to the right of xp and ic the largest zero to the left
ofx, (3.8) and (3.4) imply

https://doi.org/10.1017/S0013091500011470 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500011470
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Hence letting x-> oo above and using x ^ x and y = a,

Since this holds for every P> a, it holds for /? = a and so a3 ^ 0. Thus a = 0
and so S(x)/x-yO as x-»co. Hence, given a small e>0, if x is large enough,

| S(X)\ ^ i£2X,
50 that

5(x(l + e)) - S(x) ^ ie2(x+x(l + e)) <E2X,
or, r ; £

2 x .
u

Since R{u) = \j){u) — u and \j/ is non-decreasing,

so that, for large enough x,
^(x)/x^

Similarly S(x) — S(x(l — e)) ^ — £2x for large enough x leads to
.Kx)/x^( l -£) 2 ,

which proves that i]/(x)/x->l as x->oo.
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