
ON THE METRICAL THEOREMS OF CLUSTER
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1. Introduction. Recently the important contributions to the cluster sets

theory of the meromorphic functions in the unit-disc have been done by many

authors. For its recent development, we refer to K. Noshiro [10]. Roughly

speaking, these studies can be divided into two classes the first one is topo-

logical, and the second one is metrical. As far as the author knows, there

exist very few results on the metrical theorems on cluster sets of functions

meromophic in an arbitrary connected domain, except for the case that its

boundary is of logarithmic capacity zero. (K. Noshiro [10] pp. 5-31).

The object of this note is to supply this gap. Our method is based upon

the systematic use of both the hyperbolic distance and the normal family in

P. MonteΓs sense. In the case of the unit-disc, this method has been effecti-

vely employed by K. Noshiro [11], Lehto-Virtanen [7], [8], Bagemihl-Seidel [2],

[3], [15] and C. M. Faust [6] (K. Noshiro [10] pp. 86-87).
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2. Notations and definitions. In the sequel, we use the following notations.

(1) Let w=f(z) be uniform and meromorphic in the connected domain

D, whose boundary Γ has at least three points.

(2) Let S be the sequence of points {zn) (zn^D) tending to the fixed

boundary point z0.

(3) Since Γ has at least three points, we can introduce the element of
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length in the hyperbolic metricυ of D : daz (Z<ΞD) ([12] p. 49). Let d(zu z2)

be the hyperbolic distance between two points zt U = l, 2) in D:

d(zi, Z2) = min I dσz.

(4) C{a, r) is the hyperbolic circle with the centre a and hyperbolic radius r

C(a> r)=E{zl d(a> z)<r).

(5) We write D(S, r) for the union of the hyperbolic circles with centres

on the sequence S and hyperbolic radius r

zn, r).

(6) We define C(r) as follows:

C(r) = lim dszldσz,
jz +zo
\z&D(8,r)

where dsz is the spherical element of length at 2 e D , i.e.

and dΰz is the hyperbolic element of length at z e D. Now we introduce some

definitions.

DEFINITION 1. Since C(r) is the non-decreasing function of r, we can define

the normalcy radius r( S) along the sequence S as follows:

(i) ΓfC(r)< + °°2) for 0 < r < + oo, then we put r(S) = + <*>.

(ii) IfC(r)< + oo for 0 < r < r * ( < + ™), and C(r) = + °° forr*<r, then

we put r{S) = r*.

(iii) IfC(r) = + <*> for 0<r, ί^w w;̂  ,/>wί r(S) =0.

If r(S) = + oo or 0, £&£# ^^ cα// S f/z£ normal or singular sequence respectively.

As usual, we associate with zQ on Γ the following sets. ([10] pp. 1~2)

DEFINITION 2.

(1) 77*£ c/wster s^ί CD(f z0) is defined by

Cn(f *>)= ^

x> For the interesting applications of hyperbolic metric to the value-distribution
theory, we refer to C. Constantinescu [5].

2) It does not mean that C{r) is uniformly bounded.

https://doi.org/10.1017/S0027763000011375 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011375
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where 3 r is the set of values of w=f(z) in D Π (\z- zo\ < r ) , and 3 r is the

closure of J3r. We define the range of values RD(f, zo) as follows:

r>0

(2) Let Zo be an accessible boundary point of D. If f(z) -*a as z-* zo along

a path in D terminating at z0> then a is called the asymptotic value of w =f{z)

at zo. The asymptotic set AD(/, ZQ) is defined as the set of asymptotic values

at zo.

We classify {C(zn, r)} into following three classes.

DEFINITION 3.

(1) If f(z)->a as z-*zo, 2GD(S, r), then we call {C(zn, r)} the asymptotic

circles with the asymptotic value a.

(2) If RD(s,r)if, z0) contains the neighbourhood of a, then we call {C{zn, r)}

the covering circles upon a.

(3) // "€RD^,r) (/, Zo) consists of at most two points, then we call {Cizn, r)}

the filling circles.Z)

3. Cluster set in D(S, r). With these notations and definitions, we can

establish the following metrical theorem on cluster sets in D{S, r).

THEOREM 1. Under the notations in 2, if f(zn)-*a as zn-^zo, then for any

given positive e, following two propositions hold:

(1) {C(zn, r(S)+ε)} are the filling circles.

(2) {C(zny r(S) -ε)} are the asymptotic circles with the asymptotic value a

or the covering circles upon a.

Remark. If S is the normal sequence, i.e. r(S) = + oo, then for any positive

r, only proposition (2) holds with respect to {C(zn, r)). If S is the singular

sequence, i.e. r(S) = 0, then for any positive ε, only proposition (1) holds with

respect to {C(zn, ε)}.

To establish this theorem, we need some lemmas.

LEMMA 1. (F. Marty [9], [1] p. 169). A family % of meromorphic func-

tions is normal in a domain D if and only if for every compact set Δ in D

is the complement of E with respect to the whole w-plane.
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there exists a positive constant M(Δ) depending upon Δ such that

p(f(z)) <M(Δ) for all f(z) e g and 2 e J,

where ρ(f(z)) is the spherical derivative of f(z), i.e. \f(z)\/(l+\f(z)\2).

LEMMA 2. Under the notations as in 2, suppose that z = Tn(t) (n = 1,2, . . . )

is the function mapping \tI < 1 conformally onto the universal covering surface

of D such that zn = T»(0). Then, the family g : {/„(*)} = {f{Tn(t))} is normal

in \t\<Rt and not normal in \t\<R+ε for any positive ε, where R = tanh(r(S) ).4)

Proof. Since daz = \dt 1/(1 — Ul2), by the simple calculation we have

(3.1) p(

Suppose that 0<r(S)^ + oo. Then 0 < i ? ^ l . To the Euclidean circle: | * | ^

/?-ε, there corresponds the hyperbolic circle: C(zn, n) (w = 1, 2, . . . ) , where

n = tanh"1(/?-e)4). Since n<r(S) = tanh'H/?), by (3.1) and the definition of

r(S)9

p(/»(ί)X(C(fi) + e)/( l- ( # - e ) 2 ) < + oo for U I ^ Λ - e , n^N(ε),

N(e) being a sufficiently large integer. Hence, by Lemma 1, the family {/«(*)}

is normal in | ί | <R.

Suppose that {fn(t)} were normal in | ί | < / ? + e . Then, by Lemma 1, there

would exist a constant M(e) such that

+ oo for \

Hence, by (3.1)

dsz/dσz<M(ε)< + °̂  for z

where r2 = tanlΓ^tf-f- ε/2), so that C(r 2)^M(ε), which is evidently impossible

because of r2>r(S). Therefore {/«(*)} is not normal in \t\<R+ε. In the

case that r(S) =0, i.e. i? = 0, by the similar arguments as above, we can prove

that {fn(t)} is not normal in U|<ε. Thus our lemma is completely established.

LEMMA 3. Let {fn(t)} (n = 1, 2, . . . ) be the normal family of meromorphic

functions in | ί | < l . Suppose that lim / Λ f c ( ί 0 ) = β for U ( l ί o l < l ) and a sub-
k-*+ oo

4> tanhx=(eix-l)/(e2*-\-l), tanh~1x=l/2 .log
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sequence {nk) of {n\. Then there exists the subsequence {nk%) of {nki such that

(1) Urn fnk it) = a uniformly in every compact set in 11\ < 1

or

(2) any value in the neighborhood of a is taken infinitely many times by

the family {fnkίit)) (/= 1, 2, . . . ) in the neighborhood of t0.

Proof. Considering the family {l/fn(t)} instead of {fn(t)}, if necessary,

without any loss of generality, we can assume that a ^ =*>. By the normalcy

of {fn(t)}> we can select the subsequence {n^} of {m) such that fnki(t)->fit)

uniformly in every compact set in | ί | < l . Then two cases are possible-

(1) f(t)=a,

(2) f(t) is the meromorphic function not reducing to a such that f(to) = a.

In the case (1), fnkiit) -±a uniformly in every compact set in | ί | < l . In the

case (2), since fit) and {fnkίit)} inπ^N) are regular in the neighborhood of

t0, it is seen by well-known Hurwitz's theorem that t = to is the accumulation

point of {ti} such that fnk..(ti) = a. Hence, a is taken infinitely many times by

the family {fnkiit)} in the neighborhood of to.

Let b=fiti) be an arbitrary but fixed value in the neighborhood of a,

where ti is the suitable point in the neighborhood of U. By the entirely

similar arguments, b is taken infinitely many times by the family {fnkiit)} in

the neighborhood of ti. Hence every value in a neighborhood of a is taken

infinitely many times by the family {fnkίit)} in the neighborhood of tOi which

proves our lemma.

Now we are able to establish Theorem 1.

Proof of Theorem 1. Suppose that 0<r(S) < 4- °°. Then, by Lemma 2,

{fnit)) is not normal in U|<tanh (r(S) + ε), so that every value, except per-

haps two, is taken infinitely many times by the family {fnit)) in |f |<tanh(r(S)

-fε), which proves that {Cizn, r(S)-hε)} are the filling circles. Again, by

Lemma 2, {fn(t)} is normal in | ί |<tanh(r(S)) . If {/«(£)} tends uniformly

to a in U| ^tanh(r(S) - e), then C(zn, r ( S ) - ε ) are the asymptotic circles

with the asymptotic value a. On the contrary, if {fnit)) does not tend uniformly

to a in Ul^tanh (riS) — e), then there exist two sequences {m) and {t(m)}

such that \t(m) I ̂ tanh ir(S) - ε) and fnii.tim)) tends to b^a as #/-•* + <».
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Since {/«(*)"} is normal in \t| <tanh (r(S) - ε/2), and /Λί(O)-*0, it is verified

by Lemma 3 that there exists a subsequence {«&} of {nt} such that any value

in the neighborhood of a is taken infinitely many times by the family {fnki{t))

in the neighborhood of ί = 0, a fortiori in | ί | <tanh (r(S) - e), so that CU«>

r(S)-e) are the covering circles upon a.

If S is the normal or singular sequence i.e. r(S) = 4- oo or r(S) = 0, then

by the slight modification of the above arguments we can prove our theorem.

4* AD(f, *„). As the first application of Theorem 1, we can prove

THEOREM 2. By using the notations in 2, if following conditions are satis-

fied:

(1) «

(2) r(S)> ϊϊmdizn,
n->+oo

then a e AD(f, 20), provided that f(zn)~*a.

Remark. In the classical theorem on AB(/, 20) ([10] p. 14\ the conditions

on the boundary cluster sets are always necessary. It should be remarked

that in Theorem 2, any conditions on the boundary cluster sets are not assumed.

Since the condition (1) of (4.1) follows immediately from

a Φ RD(f Zo) or a^RD(f zQ) Π ̂ ~RD(f> zo),5)

we get

COROLLARY 1. I/following conditions are satisfied:

(1) a £ RD(f zo) or a^ RΌ(f, z0) Π JΓRD(f zQ),

(2) r(S)> timd(zn, Zn+i),

then a e AD(fy 20), provided that f(zn) -»a.

COROLLARY 2. If following conditions are satisfied:

(1) a$RD(f, 20),

(2) S: ί/zβ normal sequence {i.e. r(S) = 4- <» ),

(3) lίm J(2n, Ztt+i)< + 00,

5) We write ^E and 5?£ for the set of inner points of E and the frontier of E
respectively.
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CLUSTER SETS OF MEROMORPHIC FUNCTIONS 149

then a<= AD(/, Zo)f provided that /(zΛ) -> a.

Bagemihl-SeideΓs theorem ([2] p. 4, Theorem 1) is contained in Corollary

2. If three distinct values are omitted by to =/(z) in a neighborhood of zQi

in view of Lemma 2 we have easily HS) = + oo. Hence we have

COROLLARY 3. Suppose that f(z) is uniform and meromorphic in D, and

that three distinct values a, b, c are omitted by f{z) in the neighborhood of zo

on Γ. If f(zn)->a as zn->zo, zn^D and lim d(zn, Zn+i)< + °°, then « e
n-»+αo

ΛD(f zo).

It contains W. SeideΓs theorem ([14] p. 169, Corollary 4).

Proof of Theorem 2. In view of Theorem 1 and α $ j/Rvif, z0), for r =

r(S) — e> lim d(zn, z«+i), {C(zn> r)) are the asymptotic circles with the asymp-

totic value a. Since r> ϊπnd(zn, zn+i), C(zn, r) Π C(zΛ+i, r) is not empty
n-*+ oo

for n^N, where N is a sufficiently large integer. Hence we can connect {zn)

by the Jordan arc contained in ZXS, r) and terminating at zo&Γ, so that βG

AD(f, zo), which proves our theorem.

If we replace (2) of (4.1) by lim rf(z«, z«+i) =0, then without (1) of (4.1)

we can establish

THEOREM 3. Under the notations in 2, if lim d(zn, zn+i) =0, then for any

ε>0, {C(zn, el are the filling circles or β e AD(f, z0), provided that f(zn)-*a.

To prove this theorem, we need the following lemma.

LEMMA 4. Let S be not the singular sequence, i.e. r(S)>0. If f(zn)-*a

and there exists another sequence S' of points {zn} (zn^D) tending to zQ^Γ

such that lim d(zn, z'n) =0, then we have also
?(-*+00

lim/(*;,) = *.
n-*+oo

Remark. This lemma was proved by Bagemihl-Seidel ([2] p. 10, Lemma 1)

in the special case that D is the unit disc and r{S) = -f oo. Our proof is

entirely different from theirs.

Proof We write X(a, b) for the chordal distance between a and b:

https://doi.org/10.1017/S0027763000011375 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011375


150 CHUJI TANAKA

We have easily

(4.2)

for any integration path, where wn=f(zn), Wn=f(z'n) and dsz is the spherical

element of length at z<=D, i.e. dsz = \f(z) |/(1 -f \f(z)\2)-\dz\. Since r(S)>0

and lim d(zn, 2«) = 0, we can choose r(0<r<r(S)) such that zn^D(S, r) for
n-*+ oo

n^N, and lim dsz/dσz = C(r)< -f oo. Then, taking account of (4.2), we
S, r)

see that for any e>0, there exists Λr(e) such that

dσz for n^N(ε).

If we choose a suitable integration path, we can put

\ dσz = d(zn, zn).

Hence X(wn, w'n) ^ (C(r) + ε)d(zn, z'n) for n^N(ε), from which

lim Z(tt>n, «;{,)= 0.
n->+co

By the inequality 7(M;«, a) ^l\wn, a)+7Λtont w'n), our lemma is completely

established.

of Theorem 3. Suppose first that r(S) = 0. Then, by Theorem 1,

for any e>0, {C(zn* ε)} are the filling circles. Next suppose that r(S)>0.

If we choose r such that 0 < r < r ( S ) , then by lim d(zn, zn+i) =0, we can con-

nect Zn and 2«+i by the hyperbolic segment ln contained in C(zn> r) U C(zn+u r).

By putting /= U/», / is a Jordan arc contained in D(S, r) and terminating
n

at zo Let Sf be an arbitrary sequence of points {zn} such that 2«G/Λ. Then,

by the inequality d(zn, z'n) ^-d(zn, zn+i) and Lemma 4, we have

lim f(z'n) = α.
W->+00

Since S' is arbitrary, we have lim/(z) =flas2-»2o along /. Hence a e i4p(/, 20).

Thus, our theorem is completely established.

As its immediate corollary, we obtain

COROLLARY 4. Under the notations in 2, */ r(S)>0 and lim <iU«, z«+i)
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= 0, then a<=AD(f, z0), provided that f(zn)-*a.

Bagemihl-SeideΓs theorem ([2] p. 10, Theorem 2) is contained in this corol-

lary.

As the second application of Theorem 1, we can prove

THEOREM 4. Let f(z) be uniform and meromorphic in D. Suppose that

there exist a value a and two sequences of points {zn}, {zn) (zn, Zn^D) tending

to ZQ on Γ such that

(1)

(2) nUm7(f(z'n)f a)>0,6)

(4.3)
(3) a*#RD{f, 2o),

(4) Γim d(zn, Zn) = r < + <».

Under these conditions, for any e > 0 , {Cizny r + ε)} are the filling circles.

Proof. We have

(4.4)

where S is the sequence of points {z«}. On the contrary, we can choose e( >0)

such that r + β < r ( S ) . In view of Theorem 1 and (1), (3) of (4.3), {C(z«,

r+ e)} are the asymptotic circles with the asymptotic value a, which is contrary

to (2) of (4.3). Hence (4.4) is proved. Agagin by Theorem 1 and (4.4),

{C(zn, r+ε)} are the filling circles, which is to be proved.

5. Theorems of P. Montel type [I] . Let L be the Jordan arc lying in D

and terminating at the accessible boundary point zo e Γ. We represent L para-

metrically by

z = z(x) ( 0 ^ # < - f ° ° ) , lim

Similary as in 2, we use the following notations:

D(L,r)= U C(z(x),r),

C*(r) = Πm dszldσz.
\L, r)

6) X(a, b) is the chordal distance between a and b.
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In Definition 1, using C*(r) instead of C(r), we can define the normalcy

radius r(L) along L. With these notations and definition, we can establish

THEOREM 5. Suppose that f(z) is uniform and meromorphic in D, and that

it has the asymptotic value a along L. Then following propositions hold:

(1) For 0<r<r(L), f(z)-+a uniformly as z->z0 inside D(L, r).

(2) For r(L)<r, ctoRΌ(L,r)(f, ZQ) consists of at most two points.

Remark. (1) If riL) =0, the case (1) does not occur, and if r(L) = + °c,

the case (2) doeo not happen.

(2) W. SeideΓs theorem I [14] p. 170, Corollary 5) is contained in this

theorem.

(3) Theorem 5 is also a generalization of Lehto-Virtanen's theorem. ([7]

pp. 49-50, Theorem 1 p. 53, Theorem 2, K. Noshiro [10] p. 86)

To prove this theorem, we need the following lemma.

LEMMA 5. Let z=Txit) ( 0 ^ # < 4 - °°) be the function mapping | ί | < l

conformally onto the universal covering surface of D such that z{x) = TX(Q).

Then, the family g : ifx{t)} = if(Tx(t))} is normal in \t\<R, but not normal

in 11\ <i?-f ε for any positive ε, where i? = tanh (r(D) and r(L) is the normalcy

radius along L.

Its proof is entirely similar to that of Lemma 2, so that we omit its proof.

Proof of Theorem 5. Contrary to the assertion, suppose that f(z) does

not tend uniformly to a as z-*z0 inside D(L, r) for 0<r<r(L). Then there

exists a sequence of points {zn} such that

(i) zn-*zo, Zn^ D{L, r),

(ii) fizn) does not tend to a.

We may suppose that there exist a positive ε and a sequence {xn) {Xι<Xz<

- <*«-> + °° ) such that

zn<ΞC{z(Xn), r+e) , r+ε<r(L).

Since {fx(t)} is normal in \t\ <R = tanh (r(D) by Lemma 5, we can select the

subsequence {fXtli(t)} which tends uniformly to the meromorphic function Fit)

in \tI ^tanh(r + ε ) < £ By the inverse transformation t = Γ^UKO = T^ίzix))),

the image of the part of L contained in C(z(xni), r+ ε) is mapped on the curve
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passing through t - 0, and contained in\t\ ^ tanh (r + e) < R, which accumulates

to the continuum γ passing through 0. On r, we have easily F( t) = <z, so that

F(t) =a, which is contrary to (ii) of (5.1). Thus, the part (1) is proved.

On account of Lemma 5, there exists at least one not-normal point h on

111 = R. Hence the family {/*(£)} takes every value, except at most two values,

infinitely many times in |ί —ίi |<e for any e>0. Therefore, tfRm^^if, zo)

consists of at most two points for r = • tanh "Hi? 4- e). Since e is arbitrary, the

part (2) is proved.

We shall now study the case that there exists the sequence S : {zn} on L

such that f(zn)-*a as Zn-*zQ.

THEOREM 6. Suppose that f(z) is uniform and meromorphic in D, and that

there exists the sequence S : {zn) on L such that

(i) f(zn)->a as zn-*zQt

(5.4) (ii) l(zn, zn+i) <M< + oo (n = 1, 2, . . . ) ,

where l(zn, zn+ι) is the hyperbolic arc-length between zn and zn+i 7)

If <ze$R(f, ZQ), then following propositions hold:

(1) For any r satisfying r(L)>r, f(z) tends uniformly to a as z-*z0 inside

D(L, r).

(2) For any r>r(L), "€RΏ{Ltr)(f> z0) consists of at most two points.

Similar remarks as in Theorem 5 should also be mentioned here. As its

immediate consequence of Theorem 6, we get

COROLLARY 5. Under the same conditions as in Theorem 6, if

aΈRif, ZQ) or atΞ R(f, zo) Π ^R( f, z0),

then fiz) tends uniformly to a as z->zo inside D(L, r) for any r satisfying

r(L)>r>0.

This corollary contains C. M. Faust's theorem ([6] p. 96).

Proof of Theorem 6. We assume first that r(L) >0. Since we have easily

r(S)^r{L), we get r(S)>r>0 for any r satisfying 0<r<riL). Hence, by

Ί) l(zu, Zn+ι) = \~* dσ.
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Theorem 1 and tfϋj//?(/, zϋ), {C(zn, r)} are the asymptotic circles with the

asymptotic value a. On the arc 2nz«+i we select z(n] such that zln^C(zn, r).

Denoting by S(1) the sequence {zn*}, we can see r(S(1)) ^r(L) , so that we have

also r{S{1))>r>0. By the similar arguments as above, {C(zn\ r)} are the

asymptotic circles with the asymptotic value a. On the arc Zn] zn+1, we select

z»} such that z{n e C(z{n\ r). Then as above {Cizn\ r)} are the asymptotic

circles with the asymptotic value a. By (ii) of (5.4), after finite &-steρs, we

have

(i) ^ e C t ί 1 , r)

(ii) C(z{n\ r) the asymptotic circles with the asymptotic value a.

Hence, L is the asymptotic path with the asymptotic value a, so that, by

(1) of Theorem 5, the part (1) is proved.

By Lemma 5, {/*(*)} is not normal in | ί | < t a n h ( r ) for r>r(L). Hence

every value, except for two values, is taken infinitely many times by the family

{/*(*)} in U!<tanh(r) (r>r(L))9 so that part (2) is proved.

Next suppose that r(L) = 0. Then the same argument as above proves

the part (2).

6. Theorems of P. Montel type [II]. In this section, we shall study the

case that/U) tends to a as Z-*ZQ along the general point set E contained in D.

For this purpose, we shall introduce some definitions.

DEFINITION 4. Let e be the point set completely contained in D. In the

definition of Carathέodory's linear measure ([14] p. 53), using the hyperbolic

distance instead of the Euclidean distancey we can define the hyperbolic Cara-

thέodor/s linear measure of e, which we denote by Λhie).

DEFINITION 5. We write E for the point set in D, whose closure contains

the accessible boundary point ZQ e Γ. Let L be the Jordan arc lying in D, and

terminating at z0. We define the mean hyperbolic linear mesure of E with

respect to D(L> r) as follows:

M(E, L, r) = Urn AH(EΠC(Z9 r)).
fz-+z0

Now we can state our theorem.
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THEOREM 7. Suppose that f(z) is uniform and meromorphic in D, and that

f(z) tends to a as z tends to the accessible boundary point zo along E, where E

is the point set in D, whose closure contains ZQ. Let L be the Jordan arc lying

in Dt and terminating at z0. If r(L)>0, and M(E, L, n ) > 0 for fixed n

satisfying 0<n<r(L)f then f(z) tends to a uniformly as z->Zo inside D(L, r)

for any r<r(L).

Remark. Generalizations of P. MonteΓs theorem such as Theorem 7 are

discussed by M. L. Cartwright [4] and Ohtsuka [13].

To prove this theorem, we prepare the following lemma.

LEMMA 6. Suppose that the family {fn(t)} of the meromorphic functions

is normal in UI<1. Let {En) be the sequence of point sets such that

(1) En is contained in \t\^l-δ(O<δ<l) (n = 1, 2, . . . ) ,

(6.1) (2) Λh(En)>d>0 (Λ = 1, 2, . . . ) ,

(3) lim fn(En)=a.8)

Then fnit) tends uniformly to a in the wider sense in Ul<l. δ )

Proof. Considering fn(t) - α (if β= <», l/fn(t)) instead of fn(t), if neces-

sary, we can assume without any loss of generality that a = 0.

Assume that {fn(t)} does not tend uniformly to 0 in the wider sense in

l f | < l . Then we can select out a subsequence {fruit)} such that {fni(t)}

tends uniformly to the non-constant meromorphic function in the wider sense

in | f | < l . Let {tι(m)} be a seuqence of points such that ti(m)^Eni. If

necessary, selecting a suitable subsequence of {tι(m)}t we can assume that

{ti(m)} tends to U ( | f i |^ l- f l ) . Since Λh(Eni)> d>d/2 (ί = l, 2, . . . ) , there

exists a sequence of points {̂ (w*)} such that

(i) t2(m) is outside of C(tu d/22),

(ii)

Then we can assume that {hind} tends to t2 distinct from ft. Since Λh(Eni)

>d>d/2 + d/22, we can find a sequence {U(m)} such that

(i) U(m) is outside of C(th d/22)ΌC(t2, d/2z),

(ii)

8) The convergence is spherical one.
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Then we can assume that {ts(ni)} tends to U distinct from h and f2. Repeating

the similar arguments as above, we can find the sequence of points {tn}(ti^tj

for i*j) such that

(i) {tn) tends to a point U (Uol ̂  1 - δ),

(ii) tm is the limiting point of {tm(m)} such that tm(ni)&Ent.

Now we shall prove that

(6.3) \im fmitm) = 0 for any fixed m {m = 1, 2, . . . ) .

I-H- oo

By (3) of (6.1)

(6.4) lim/Λi(Mw, ) )=0.
t-»+oo

It is well-known t h a t {/„(£)} is equi-continuous in \t\^l-δ, provided t h a t

{Mt)} is normal in | f | < l . Hence, by (ii) of (6.2)

fni(tm) - fnAtmim)) -> 0

as ι-» + co, so that, by the inequality

\U(tm)\ ^ \fni{tm(ni))\ + l/^ίίm) -/«ί(tm(wI )) |

and (6.4),

\imfHi(tm)=0,

which proves (6.3), Therefore, by (i) of (6.2), (6.3) and Vitali's theorem,

{fni(t)} tends uniformly to zero in the wider sense in UI<1, which is contrary

to the assumption. Thus our lemma is completely established.

Now we can prove Theorem 7.

Proof of Theorem 7. Let L be defined by

0 ^ * < + °°), lim z(x) = z0.
X-* h oo

By Lemma 5, {/*(£)} is normal in | ί| <ϋ? = tanh (r(D). Let us denote by Ex

the image of EΠC(z(x), n) by t=Tϊι(z) (0=TϊHziχ))). Then Ex is contained

in If I ̂  tanh (r0) <R. Since hyperbolic metric is conformally invariant, we

have

(6.5) Ah(Eχ)> p/2>0 for x?^x< •+ oo,
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where M{E, L, n) = p>0 and x? is a constant depending upon p. Because f(z)

-> a as 2->2o along £, we have

(6.6) limfx{Ex)=a.

Hence, by (6.5), (6.6) and Lemma 6, fx(t) tends uniformly to a in the wider

sense in \t\<R, which proves that f(z)-+a uniformly as 2-»20 inside D(L, r)

for r<r{L). Thus our theorem is established.
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