FINDING EISENSTEIN ELEMENTS IN CYCLIC NUMBER FIELDS OF ODD PRIME DEGREE

Vincenzo Acciaro

Let $L=\mathbf{Q}[\alpha]$ be a cyclic number field of odd prime degree q over the field \mathbf{Q} of rationals. In this paper we give an algorithm to compute the discriminant of L / \mathbf{Q}, which relies upon a fast method to find Eisenstein elements in L. The algorithm accepts as input the minimal polynomial of α over \mathbf{Q} and a complete factorisation of the discriminant of α, and computes, in time polynomial in the size of the input, a list consisting of all the ramified primes with corresponding Eisenstein elements.

1. Introduction

Let L be a normal extension of degree q over the rational field \mathbf{Q}, where q is an odd prime. Without loss of generality assume that $L=\mathbf{Q}[\alpha]$, where α is an algebraic integer which is given by its minimal polynomial $m_{\alpha}(x)$ over \mathbf{Q}. Clearly the Galois group $\operatorname{Gal}(L / \mathbf{Q})$ of L over \mathbf{Q} is cyclic.

In [1] we describe an algorithm to determine if a given $a \in \mathbf{Q}$ is the norm of some \boldsymbol{x} in L. The algorithm requires one to know (i) the rational primes $\boldsymbol{p} \neq \boldsymbol{q}$ which ramify in L; (ii) for each ramified prime $p \neq q$ a generator π of the value group of the (unique) valuation that extends the p-adic valuation from \mathbf{Q} to L. Such a π is sometimes called a prime element or a local uniformiser.

To find the ramified primes, we need the discriminant $D_{L / Q}$ of the extension L / \mathbf{Q}. The discriminant can be computed using a very general algorithm due to Pohst and Zassenhaus [6, 9, 2, p.297]: this algorithm indeed computes an integral basis $\mathcal{B}=\left\{\omega_{1}, \ldots, \omega_{q}\right\}$ for the extension L / \mathbf{Q}, and the discriminant $D_{L / \mathbf{Q}}$.

We show in [1] that, if p is a ramified prime not equal to q, then a corresponding local uniformiser π can be found in the set $\left\{T r_{L / Q}\left(\omega_{i}\right)-q \omega_{i} \mid i=1 \ldots, q\right\}$, where $T r_{L / \mathbf{Q}}$ denotes the trace from L to \mathbf{Q}.

In this paper we show that, if we do not need an integral basis for L / Q for other reasons, then the full power of the Pohst-Zassenhaus' algorithm is not required. Indeed, we give an algorithm which takes as input $m_{\alpha}(x)$ and a complete factorisation of the discriminant $D_{L / Q^{\prime}}(\alpha)$ of α, and computes in time polynomial in the sise of the input a list consisting of all the ramified primes p with corresponding local uniformisers π.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

1.1 Notation.

Let \mathcal{P} be a prime ideal of the ring of algebraic integers \mathcal{O} of L, and let p be a rational prime.

If $a \in L$ and $a \neq 0$, we shall denote by $\nu_{\mathcal{P}}(a)$ the order of a at \mathcal{P}, that is, the power of \mathcal{P} in the factorisation of the fractional ideal $a \mathcal{O}$. We define $\nu_{\mathcal{P}}(0)$ to be ∞.

If $a \in \mathbf{Q}$ and $a \neq 0$, then $\nu_{p}(a)$ will denote the order of a at p, that is, the power of the ideal $p \mathbf{Z}$ in the factorisation of the fractional ideal $a \mathbf{Z}$. We define $\nu_{p}(0)$ to be ∞.
Q_{p} will denote the field of p-adic numbers, and $L_{\mathcal{P}}$ will denote the completion of L with respect to the valuation determined by \mathcal{P}. Then Z_{p} will denote the ring of p-adic integers, that is $\left\{x \in \mathbf{Q}_{\boldsymbol{p}} \mid \nu_{p}(x) \geqslant 0\right\}$, and $\mathcal{O}_{\mathcal{P}}$ the ring of \mathcal{P}-adic integers, that is $\left\{x \in L_{\mathcal{P}} \mid \nu_{\mathcal{P}}(x) \geqslant 0\right\}$.

Finally, \mathbf{F}_{p} will denote the finite field of p elements, and \mathbf{F}_{p}^{*} its multiplicative group.

2. The method

Cyclic extension of the rationals of prime power degree have been intensively studied by B.M. Urazbaev. In [7] he proved the following:

Lemma 1. The discriminant $D_{L / Q}$ of a cyclic extension L / Q of odd prime degree q has the form:

$$
D_{L / \mathbf{Q}}=q^{a} \prod p_{i}^{q-1}
$$

where the p_{i} are distinct rational primes of the form $n q+1$, and $a=0$ or $a=2(q-1)$.
Clearly, $D_{L / \mathbf{Q}} \mid D_{L / \mathbf{Q}}{ }^{(\alpha)}$. Now, let

$$
D_{L / Q}(\alpha)=q^{a} \prod_{p_{i} \in S} p_{i}^{k_{i}}
$$

be a complete factorisation of $D_{L / Q}(\alpha)$ into primes, with $p_{i} \neq p_{j}$ for $i \neq j$, and $a \geqslant 0$. For each $p_{i} \in S$ we have to decide if p_{i} ramifies in L, that is, if $p_{i} \mid D_{L / Q}$.

Firstly, by Urazbaev's criterion, we can ignore those primes $p_{i} \in S$ for which either $p_{i} \not \equiv 1(\bmod q)$ or $k_{i}<q-1$.

Secondly, we take into account the fact that L / Q is Galois. This implies that all the ideals of \mathcal{O} lying above $p \mathbf{Z}$ (where p is a rational prime) are conjugate under $\operatorname{Gal}(L / Q)$ and so they have the same ramification index e and the same inertial degree f. Let g be the number of distinct prime ideals lying above $p Z$. From the formula efg $=[L: \mathbf{Q}]=q$ and the primality of q, it follows that, either p splits completely in $L \quad(e=1, f=1$ and $g=q)$, or p is inert in $L(e=1, f=q$ and $g=1)$, or p
is totally ramified in $L(e=q, f=1$ and $g=1)$. In this section we show how to recognise when p is inert.

By assumption $\alpha \in \mathcal{O}$, and therefore the coefficients of $m_{\alpha}(x)$ lie in Z. The next lemma relates the decomposition of a prime p in L to the factorisation of $m_{\alpha}(x)$ over $\mathbf{F}_{\boldsymbol{p}}$.

Lemma 2. Let L be a cyclic extension of \mathbf{Q}, of odd prime degree q. Let p be a rational prime, and α be an algebraic integer in $L \backslash Z$. If p ramifies in L, then the minimal polynomial $m_{\alpha}(x)$ of α over Q splits into the product of q identical linear factors over \mathbf{F}_{p}.

Proof: Let us assume that p ramifies in L. Then $m_{\alpha}(x)$ is irreducible over \mathbf{Q}_{p} (see [4, Theorem 5.1.5, p.75]), and therefore by Hensel's Lemma it is either irreducible or a $q^{t h}$ power over \mathbf{F}_{p}. However, it can be shown that if $m_{\alpha}(x)$ is irreducible over F_{p} then p must be inert (see [3, Proposition 5.11, p.102]). Hence $m_{\alpha}(x)$ must split into the product of q identical linear factors over $\mathbf{F}_{\boldsymbol{p}}$.

To apply Lemma 2, we compute $l(x)=G C D\left(x^{p}-x, m_{\alpha}(x)\right)$ over \mathbf{F}_{p}. Then $m_{\alpha}(x)$ is a $q^{t h}$ power over F_{p} precisely when $\operatorname{deg} l(x)=1$ and $l(x)^{q} \equiv m_{\alpha}(x)(\bmod p)$. In practice we compute $j(x)=x^{p} \bmod m_{\alpha}(x)$ in F_{p}, using the binary powering algorithm [2, p.8]. Then $l(x)$ is given by $G C D\left(j(x)-x, m_{\alpha}(x)\right)$.

Unfortunately, the previous lemma gives only a necessary condition for a prime p to ramify in L. In the next section we shall develop some some necessary and sufficient conditions.

3. Eisenstein polynomials

Let us assume that p is totally ramified, and let \mathcal{P} be the unique prime ideal lying above $p \mathbf{Z}$. Since there is only one extension of the p-adic valuation from \mathbf{Q} to L, if $\theta \in L$ we must have [8, Corollary 2.5.8, p.68]

$$
\begin{equation*}
\nu_{\mathcal{P}}(\theta)=\nu_{p}\left(N_{L / \mathrm{Q}}(\theta)\right) \tag{1}
\end{equation*}
$$

We shall use this fact often in the following.
In particular, if $\theta \in \mathcal{P} \backslash \mathcal{P}^{2}$, then $\nu_{p}\left(N_{L / Q}{ }^{(\theta)}\right)=\nu_{\mathcal{P}}(\theta)=1$. This shows that if p is ramified, then \mathcal{O} contains elements whose norms have p-order equal to 1 . On the other hand

Lemma 3. If a rational prime p is inert in L then there is no $\theta \in \mathcal{O} \backslash \mathbf{Z}$ whose norm has p-order 1.

Proof: Assume that $\theta \in \mathcal{O} \backslash Z$ is an element whose norm has p-order 1. If $\theta_{1}, \theta_{2}, \ldots, \theta_{q}$ denote the conjugates of θ, with $\theta=\theta_{1}$ say, then $N_{L / Q}(\theta)=\theta_{1} \theta_{2} \cdots \theta_{q}$.

Since p is inert, $p \mathcal{O}$ is the only prime ideal of \mathcal{O} lying above $p Z$. By assumption $\theta_{1} \theta_{2} \cdots \theta_{q} \in p \mathbf{Z} \subset p \mathcal{O}$, and hence, since $p \mathcal{O}$ is a prime ideal, some conjugate of θ must lie in $p \mathcal{O}$. But then, since $p \mathcal{O}$ is σ-invariant, all the conjugates of θ must lie in $p \mathcal{O}$, and therefore $N_{L / \mathbf{Q}}{ }^{(\theta)} \in p^{q} \mathcal{O} \cap \mathbf{Z}=p^{q} \mathbf{Z}$, against our assumption.

Theorem 1. Let p be a rational prime. Assume that there is an element $\theta \in$ $\mathcal{O} \backslash \mathbf{Z}$ whose norm has p-order 1. Then p ramifies in L if and only if $m_{\theta}(x)$ is Eisenstein at p.

Proof: By Lemma 3, the existence of $\theta \in \mathcal{O} \backslash \mathbf{Z}$ whose norm has p-order 1 implies that p cannot be inert.

Assume first that $m_{\theta}(x)$ is Eisenstein at p. Then $m_{\theta}(x)$ is irreducible in $\mathbf{Q}_{p}[x]$, and θ generates a totally ramified extension of \mathbf{Q}_{p} of degree q, that is, p is totally ramified (see [5, Proposition 11, p.52]).

Conversely, assume that p ramifies in L. Then $\nu_{\mathcal{P}}(\theta)=\nu_{p}\left(N_{L / Q}(\theta)\right)=1$. Since $\operatorname{Gal}(L / \mathbf{Q})$ permutes the prime ideals lying above $p \mathbf{Z}$ transitively, and there is only one prime ideal \mathcal{P} above $p \mathbf{Z}$, it follows that $\nu_{p}(\sigma(\theta))=1$ for all $\sigma \in \operatorname{Gal}(L / \mathbf{Q})$. Let

$$
m_{\theta}(x)=x^{q}+b_{q-1} x^{q-1}+\ldots+b_{1} x+b_{0}
$$

Then each b_{i} lies in \mathbf{Z} and is an elementary symmetric function of the set $\{\theta, \sigma(\theta), \ldots$, $\left.\sigma^{q-1}(\theta)\right\}$, where σ is any generator of $\operatorname{Gal}(L / \mathbf{Q})$. Hence $b_{i} \in \mathcal{P} \cap \mathbf{Z}=p \mathbf{Z}$. Moreover

$$
\nu_{p}\left(b_{0}\right)=\nu_{p}\left(\theta \sigma(\theta) \cdots \sigma^{q-1}(\theta)\right)=1
$$

which shows that $m_{\theta}(x)$ is Eisenstein at p.
In order to apply Theorem 1, we need an efficient algorithm to solve the following problem: find an element of \mathcal{O} whose norm has p-order 1 . The next lemma shows that it is enough to find any algebraic integer whose norm has p-order not divisible by q.

Lemma 4. Let p be a ramified prime. Given $\gamma^{\prime} \in \mathcal{O}$ with $q \nmid \nu_{p}\left(N_{L / Q}\left(\gamma^{\prime}\right)\right)$, we can construct an element $\gamma \in \mathcal{O}$ with $\nu_{p}\left(N_{L / Q}(\gamma)\right)=1$.

Proof: Let $r=\nu_{p}\left(N_{L / Q}\left(\gamma^{\prime}\right)\right)$. Since $N_{L / Q}(p)=p^{q}$, and the norm elements form a multiplicative group, we can find an $s \in \mathbf{N}$ which acts as a multiplicative inverse of $r(\bmod q)$, that is, such that $r s=1+q l(l \in \mathbf{N})$. Let $\gamma=\left(\gamma^{\prime}\right)^{s} / p^{l}$. Clearly

$$
\nu_{p}\left(N_{L / \mathrm{Q}}(\gamma)\right)=s \nu_{p}\left(N_{L / \mathrm{Q}}\left(\gamma^{\prime}\right)\right)-l q \nu_{p}(p)=1
$$

and therefore $\nu_{\mathcal{P}}(\gamma)=1$. It is left to prove that $\gamma \in \mathcal{O}$. Clearly, $\left(\gamma^{\prime}\right)^{s} \in \mathcal{O}$. Let \mathcal{P} be the unique prime ideal of \mathcal{O} lying above $p Z$. Now, $\nu_{\mathcal{P}}\left(\left(\gamma^{\prime}\right)^{s} / p^{l}\right)=1$, and $\nu_{\mathcal{Q}}\left(\left(\gamma^{\prime}\right)^{s} / \boldsymbol{p}^{l}\right)=\nu_{\mathcal{Q}}\left(\left(\gamma^{\prime}\right)^{s}\right) \geqslant 0$ for any prime ideal \mathcal{Q} of \mathcal{O} not equal to \mathcal{P}. Therefore $\left(\gamma^{\prime}\right)^{s} / \boldsymbol{p}^{l} \in \mathcal{O}$ (see $[8$, Corollary 4.1 .8, p.125]).

4. Finding Eisenstein elements

We shall continue to assume that p is ramified. The inertia group $I_{\mathcal{P}}$ of \mathcal{P} has order $e=q$ (see [4, Corollary 5.4.5, p.83]), and so it must be equal to $\operatorname{Gal}(L / Q)$. Thus, if $\sigma \in \operatorname{Gal}(L / Q)$ and $\beta \in \mathcal{O}$, we must have $\sigma(\beta)-\beta \in \mathcal{P}$. We shall use this fact often, in the following.

Let us consider the embedding $\mathcal{O} \hookrightarrow \mathcal{O}_{\mathcal{P}}$. For this purpose, we fix, once for all, an element $\pi \in \mathcal{P} \backslash \mathcal{P}^{2}$, and we take $R=\{0,1, \ldots, p-1\}$ to be a set of representatives of $\mathcal{O} / \mathcal{P}$ in \mathcal{O}. Every $\beta \in \mathcal{O}_{\mathcal{P}}$ can be written as a convergent series (in the \mathcal{P}-adic metric)

$$
\beta=\sum_{i=0}^{\infty} \sum_{j=0}^{q-1} a_{i, j} p^{i} \pi^{j} \quad\left(a_{i, j} \in R\right)
$$

where the coefficients $a_{i, j}$ are uniquely determined by β.
Moreover, if $\beta \in \mathcal{O} \backslash \mathbf{Z}$, then for some $h, k \in \mathbf{N}$, with $0<k<q$ we must have
(i) $a_{h, k} \neq 0$; and
(ii) $a_{i, j}=0$ whenever $(i<h$ and $0<j<q)$ or $(i=h$ and $0<j<k)$.
for otherwise, using the fact that $e f=\left[L_{\mathcal{P}}: \mathbf{Q}_{p}\right]=q=[L: \mathbf{Q}]$, the element β would be a p-adic integer in \mathcal{O}, and therefore an element of \mathbf{Z}.

We define now a function $\Lambda: \mathcal{O} \rightarrow \mathcal{O}$ as follows: if β, h, k are as above, then

$$
\Lambda(\beta)=\sum_{j=k}^{q-1} a_{h, j} p^{h} \pi^{j}+\sum_{i=h+1}^{\infty} \sum_{j=0}^{q-1} a_{i, j} p^{i} \pi^{j}
$$

Since σ fixes p and any element of R, clearly we have
Lemma 5. Let $\beta \in \mathcal{O}$. If $\sigma \in \operatorname{Gal}(L / \mathbf{Q})$ then $\sigma(\beta)-\beta=\sigma(\Lambda(\beta))-\Lambda(\beta)$.

$4.1 p$ is totally and tamely ramified.

In this section we assume that p is ramified and $p \neq q$, and we let \mathcal{P} denote the unique ideal of \mathcal{O} above $p \mathrm{Z}$.

Lemma 6. Let σ be a generator of $\operatorname{Gal}(L / \mathrm{Q})$. Then $\nu_{\mathcal{P}}(\sigma(\pi)-\pi)=1$.
Proof: Since $\left\{1, \pi, \ldots, \pi^{q-1}\right\}$ is a local basis at p, we must have (see $[8$, Proposition 4.8.18, p.164])

$$
\nu_{p}\left(D_{L / \mathbf{Q}}(\pi)\right)=\nu_{\mathcal{p}}\left(D_{L / \mathbf{Q}}\right)=q-1
$$

But $D_{L / Q}(\pi)=N_{L / Q}\left(m_{\pi}^{\prime}(\pi)\right)$, and

$$
\nu_{p}\left(N_{L / Q}\left(m_{\pi}^{\prime}(\pi)\right)\right)=\nu_{\mathcal{P}}\left(m_{\pi}^{\prime}(\pi)\right)=\nu_{\mathcal{P}}\left((\sigma(\pi)-\pi) \cdots\left(\sigma^{q-1}(\pi)-\pi\right)\right)
$$

Each factor on the right hand side has \mathcal{P}-order greater than zero, there are $q-1$ factors, and so by the pigeon hole principle $\nu_{\mathcal{P}}(\sigma(\pi)-\pi)$ must be 1 .

Lemma 7. Let σ be a generator of $\operatorname{Gal}(L / Q)$. If $0<r<q$ then $\nu_{\mathcal{P}}\left(\sigma\left(\pi^{r}\right)-\pi^{r}\right)$ $=r$.

Proof: Since \mathcal{P} and all its powers are σ-invariant, it follows that $\sigma(\pi) \equiv a \pi$ $\left(\bmod \mathcal{P}^{2}\right)$, with $0<a<p$. Then $\sigma^{2}(\pi) \equiv a \sigma(\pi)\left(\bmod \mathcal{P}^{2}\right)$, that is, $\sigma^{2}(\pi) \equiv a^{2} \pi$ $\left(\bmod \mathcal{P}^{2}\right)$, and more generally $\sigma^{i}(\pi) \equiv a^{i} \pi\left(\bmod \mathcal{P}^{2}\right)$. But $\sigma^{q}(\pi)=\pi$, and so $a^{q} \equiv 1$ $(\bmod p)$. Therefore the order of a in F_{p}^{*} must divide q. Since q is prime and $a \not \equiv 1$ $(\bmod p)$ by Lemma 6 , the order of a in \mathbf{F}_{p}^{*} must be equal to q. If $0<r<q$, then

$$
\sigma\left(\pi^{r}\right)-\pi^{r}=\sigma(\pi)^{r}-\pi^{r} \equiv a^{r} \pi^{r}-\pi^{r} \quad\left(\bmod \mathcal{P}^{r+1}\right)
$$

with $a^{r} \not \equiv 1(\bmod p)$, which proves the assertion.
Corollary 1. Let σ be a generator of $\operatorname{Gal}(L / \mathbf{Q})$. If $\beta \in \mathcal{O} \backslash \mathbf{Z}$, then

$$
\nu_{\mathcal{P}}(\sigma(\Lambda(\beta))-\Lambda(\beta))=\nu_{\mathcal{P}}(\Lambda(\beta))
$$

In particular, $q \nmid \nu_{\mathcal{P}}(\sigma(\Lambda(\beta))-\Lambda(\beta))$.
Proof: Define a function $F: L \rightarrow L$ by $F(x)=\sigma(x)-x$. Since F is Z-linear, we have

$$
\begin{aligned}
F(\Lambda(\beta)) & =F\left(\sum_{j=k}^{q-1} a_{h, j} p^{h} \pi^{j}+\sum_{i=h+1}^{\infty} \sum_{j=0}^{q-1} a_{i, j} p^{i} \pi^{j}\right) \\
& =\sum_{j=k}^{q-1} F\left(a_{h, j} p^{h} \pi^{j}\right)+F\left(\sum_{i=h+1}^{\infty} \sum_{j=0}^{q-1} a_{i, j} p^{i} \pi^{j}\right) \\
& =\sum_{j=k}^{q-1} F\left(a_{h, j} p^{h} \pi^{j}\right)+F(t)
\end{aligned}
$$

with $t=\sum_{i=h+1}^{\infty} \sum_{j=0}^{q-1} a_{i, j} p^{i} \pi^{j}$. Now, $\nu_{\mathcal{P}}(t) \geqslant(h+1) q$, and so $\nu_{\mathcal{P}}(F(t)) \geqslant(h+1) q$.
Note that $\nu_{\mathcal{P}}\left(F\left(a_{h, j} p^{h} \pi^{j}\right)\right)=q h+j(j=k, \ldots, q-1)$ if $0<a_{h, j}<p$, and $\nu_{\mathcal{P}}\left(F\left(a_{h, j} p^{h} \pi^{j}\right)\right)=\infty$ if $a_{h, j}=0$. Clearly $0<a_{h, k}<p$, by the definition of the function Λ, and so $\nu_{\mathcal{P}}\left(\sum_{j=k}^{q-1} F\left(a_{h, j} p^{h} \pi^{j}\right)\right)=h q+k$. Therefore $\nu_{\mathcal{P}}(F(\Lambda(\beta)))=h q+k=$ $\nu_{\mathcal{P}}(\Lambda(\beta))$.

Theorem 2. If $\beta \in \mathcal{O} \backslash Z$ then $q \backslash \nu \mathcal{P}\left(m_{\beta}^{\prime}(\beta)\right)$.
Proof: By Lemma 5, if σ denotes a generator of $\operatorname{Gal}(L / \mathbf{Q})$, we have

$$
\begin{aligned}
m_{\beta}^{\prime}(\beta) & =(\sigma(\beta)-\beta) \cdots\left(\sigma^{q-1}(\beta)-\beta\right) \\
& =(\sigma(\Lambda(\beta))-\Lambda(\beta)) \cdots\left(\sigma^{q-1}(\Lambda(\beta))-\Lambda(\beta)\right)
\end{aligned}
$$

By Corollary 1, then $\nu_{\mathcal{P}}\left(m_{\beta}^{\prime}(\beta)\right)=(q-1) \nu_{\mathcal{P}}(\Lambda(\beta))$. Since $q \Lambda \nu_{\mathcal{P}}(\Lambda(\beta))$, it follows that $q \nmid \nu_{\mathcal{P}}\left(m_{\beta}^{\prime}(\beta)\right)$.

$4.2 p$ IS TOTALLY and wildiy Ramified.

In this section we assume that p is ramified and $p=q$, and we let \mathcal{P} denote the unique ideal of \mathcal{O} above $q Z$. Define a function $G: L \rightarrow L$ by $G(x)=T r_{L / Q}(x)-q x$. Clearly, G is Z-linear and it vanishes on \mathbf{Q}.

Lemma 8. Let $0<r<q$. Then $G\left(\pi^{r}\right) \equiv a q-q \pi^{r}\left(\bmod \mathcal{P}^{2 q}\right)$, with $0 \leqslant a<q$.
Proof: Since $\operatorname{Tr}_{L / \mathbf{Q}}{ }^{\left(\pi^{r}\right)} \in q \mathbf{Z}$, we can write $\operatorname{Tr}_{L / \mathbf{Q}}\left(\pi^{r}\right) \equiv a q\left(\bmod q^{2}\right)$, with $0 \leqslant a<\boldsymbol{q}$. This proves the assertion.

Theorem 3. If $\beta \in \mathcal{O} \backslash Z$, then $G(\beta)=G(\Lambda(\beta))$ and

$$
G(\beta) \equiv b q^{h+1}-c q^{h+1} \pi^{k} \quad\left(\bmod \mathcal{P}^{(h+1) q+k+1}\right)
$$

with $0 \leqslant b<q$ and $0<c<q$.
Proof: Since the function G is Z-linear, and it vanishes on \mathbf{Q}, we have

$$
\begin{aligned}
G(\beta) & =G(\Lambda(\beta)) \\
& =G\left(\sum_{j=k}^{q-1} a_{h, j} q^{h} \pi^{j}+\sum_{i=h+1}^{\infty} \sum_{j=0}^{q-1} a_{i, j} q^{i} \pi^{j}\right) \\
& =\sum_{j=k}^{q-1} G\left(a_{h, j} q^{h} \pi^{j}\right)+G\left(\sum_{i=h+1}^{\infty} \sum_{j=0}^{q-1} a_{i, j} q^{i} \pi^{j}\right) \\
& =\sum_{j=k}^{q-1} G\left(a_{h, j} q^{h} \pi^{j}\right)+\sum_{j=0}^{q-1} G\left(a_{h+1, j} q^{h+1} \pi^{j}\right)+G(t)
\end{aligned}
$$

with $t=\sum_{i=h+2}^{\infty} \sum_{j=0}^{q-1} a_{i, j} q^{i} \pi^{j}$. Now, $\nu_{\mathcal{P}}(t) \geqslant(h+2) q$, and so $\nu_{\mathcal{P}}(G(t)) \geqslant(h+2) q$. Also, by Lemma $8, \nu_{\mathcal{P}}\left(G\left(a_{h+1, j} q^{h+1} \pi^{j}\right)\right) \geqslant q(h+2)(j=0, \ldots, q-1)$, and

$$
G\left(a_{h, k} q^{h} \pi^{k}\right) \equiv b_{k} q^{h+1}-c_{k} q^{h+1} \pi^{k} \quad\left(\bmod \mathcal{P}^{(h+2) q}\right)
$$

with $c_{k} \not \equiv 0(\bmod q)$, since $a_{h, k} \not \equiv 0(\bmod q)$ by the definition of the function Λ. Moreover, if $a_{h, s} \not \equiv 0(\bmod q) \quad(s=k+1, \ldots, q-1)$ then

$$
G\left(a_{h, a} q^{h} \pi^{s}\right) \equiv b_{s} q^{h+1}-c_{s} q^{h+1} \pi^{s} \quad\left(\bmod \mathcal{P}^{(h+2) q}\right) .
$$

This shows that

$$
G(\beta) \equiv q^{h+1}\left(\sum_{i=k}^{q-1} b_{i}\right)-q^{h+1} c_{k} \pi^{k} \quad\left(\bmod \mathcal{P}^{(h+1) q+k+1}\right)
$$

with $c_{k} \not \equiv 0(\bmod q)$. To prove our assertion, let $b=\sum_{i=k}^{q-1} b_{i} \bmod q$, and $c=c_{k}$.
We show next how Theorem 3 can be used to obtain an algebraic integer whose norm has q-order not divisible by q. Let $w=\nu_{q}\left(N_{L / \mathbf{Q}}(G(\beta))\right) / q$.

If $w \notin \mathbf{Z}$ then $b \equiv 0(\bmod q)$, and $G(\beta)$ is the desired element.
Otherwise, $w=h+1$, and $G(\beta) / q^{w} \equiv b-c \pi^{k}\left(\bmod \mathcal{P}^{k+1}\right)$. Note that $G(\beta) / q^{w}$ $\in \mathcal{O}$, since $\nu_{\mathcal{P}}\left(G(\beta) / q^{w}\right)=0$ and $\nu_{\mathcal{Q}}\left(G(\beta) / q^{w}\right)=\nu_{\mathcal{Q}}(G(\beta)) \geqslant 0$, when \mathcal{Q} is any prime ideal of \mathcal{O} not equal to \mathcal{P} (use again [8, Corollary 4.1.8, p.125]). Let $\rho=G(\beta) / q^{w}$. It is easily seen that, if

$$
m_{G(\beta)}(x)=x^{q}+b_{q-1} x^{q-1}+\ldots+b_{1} x+b_{0}
$$

then

$$
m_{\rho}(x)=x^{q}+\left(b_{q-1} / q^{w}\right) x^{q-1}+\ldots+\left(b_{1} / q^{w(q-1)}\right) x+\left(b_{0} / q^{w q}\right)
$$

Since q is assumed to be ramified, $m_{\rho}(x) \equiv(x-\widehat{s})^{q}(\bmod q)$. Let s be a representative of the residue class of \widehat{s}. Then $\rho-s \equiv-c \pi^{k}\left(\bmod \mathcal{P}^{k+1}\right)$, and so $\rho-s$ is the desired element.

The pseudo code for the algorithm is sketched in Figures 1 and 2. The algorithm EISENSTEIN takes as input $m_{\alpha}(x)$ and returns a list consisting of the ramified primes and corresponding local uniformisers. If the factorisation of $D_{L / Q}(\alpha)$ is given as part the input, the entire algorithm runs in polynomial time.

```
procedure CONSTRUCT( }\gamma,p)\mathrm{ :
    let r= \nup}(\mp@subsup{N}{L/Q}{\prime}(\gamma))
    find l,s\in\mathbf{N}\mathrm{ such that rs = 1+ql;}
    let \epsilon=(\gamma)s/p}\mp@subsup{|}{}{\prime}\mathrm{ ;
    if me(x) is Eisenstein at p then return(\epsilon); endif;
    return(0);
```

Figure 1: Pseudo Code for the Algorithm CONSTRUCT.

```
procedure \(\operatorname{EISENSTEIN}\left(m_{\alpha}(x)\right)\) :
    let List \(=0\);
    let \(D_{L / Q}(\alpha)=q^{\mathbf{a}} \prod_{p_{i} \in S} p_{i}^{k_{i}} ;\)
    for all the \(p \in S\) do
        if \(\left(p_{i} \equiv 1(\bmod q)\right.\) and \(k_{i} \geq q-1\)
            and \(m_{\alpha}(x)\) is a \(q^{\text {th }}\) power over \(\mathrm{F}_{p}\) ) then
            let \(\gamma=m_{\alpha}^{\prime}(\alpha)\);
            let \(\pi=\operatorname{CONSTRUCT}(\gamma, p)\);
            if \(\pi \neq 0\) then add \(\{p, \pi\}\) to List; endif;
        endif;
    endfor;
    if \(a<2(q-1)\) then return (List); endif;
    if \(m_{\alpha}(x)\) is not a \(q^{t h}\) power over \(\mathbf{F}_{q}\) then return(List); endif;
    let \(\delta=\operatorname{Tr}_{L / \mathbf{Q}}(\alpha)-q \alpha\);
    let \(w=\nu_{\mathbf{q}}\left(N_{L / \mathbf{Q}}(\delta)\right) / q\);
    if \(w \notin \mathbf{Z}\) then
        let \(\gamma=\delta\);
    else
        let \(\rho=\delta / q^{w}\), and compute \(m_{\rho}(x)\);
        if \(m_{\rho}(x) \notin \mathbf{Z}[x]\) then return \((\) List \()\); endif;
        compute \(c(x)=G C D\left(x^{q}-x, m_{\rho}(x)\right)\) over \(\mathbf{F}_{q}\).
        if \(c(x) \neq x-s\) then return(List); endif;
        let \(\gamma=\rho-s\);
        if \(q \mid \nu_{q}\left(N_{L / Q}(\gamma)\right)\) then return \((\) List \()\); endif;
    endif;
    let \(\pi=\operatorname{CONSTRUCT}(\gamma, q)\);
    if \(\pi \neq 0\) then add \(\{q, \pi\}\) to List; endif;
    return(List);
```

Figure 2: Pseudo Code for the Algorithm EISENSTEIN.

References

[1] V. Acciaro, 'Solvability of norm equations over Abelian number fields of prime degree", (manuscript, 1994).
[2] H. Cohen, A course in computational algebraic number theory (Springer-Verlag, Berlin, Heidelberg, New York, 1993).
[3] D.A. Cox, Primes of the form $x^{2}+n y^{2}$ (John Wiley and Sons, New York, 1989).
[4] L.J. Goldstein, Analytic number theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).
[5] S. Lang, Algebraic number theory (Addison-Wesley, Reading, Massachusetts, 1970).
[6] M.E. Pohst, 'Three principal tasks of computational algebraic number theory', in Number
theory and applications, Proc. NATO Advanced Study Inst. (Kluwer Academic Publisher, 1989), pp. 123-133.
[7] B.M. Urazbaev, 'On the discriminant of a cyclic field of prime degree', Izv. Akad. Nauk Kazah. SSR Math. Meh. 4 (1950), 19-32.
[8] E. Weiss, Algebraic number theory (McGraw-Hill, New York, 1963).
[9] H. Zassenhaus, 'Ein Algorithmus zur Berechnung einer Minimalbasis über gegebener Ordnung', Funktsional Anal. (1967), 90-103.

School of Computer Science
Carleton University
Ottawa, Ont, K1S 5B6
Canada

[^0]: Received 5th January, 1995
 The author wishes to thank Prof. J.D. Dixon for his invaluable advice and extremely helpful comments, and Prof. V.L. Plantamura for his constant support.

