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FINDING EISENSTEIN ELEMENTS IN
CYCLIC NUMBER FIELDS OF ODD PRIME DEGREE

VlNCENZO ACCIARO

Let L = Q[a] be a cyclic number field of odd prime degree q over the field Q of
rationals. In this paper we give an algorithm to compute the discriminant of £ / Q ,
which relies upon a fast method to find Eisenstein elements in L. The algorithm
accepts as input the minimal polynomial of a over Q and a complete factorisation
of the discriminant of a, and computes, in time polynomial in the size of the input,
a list consisting of all the ramified primes with corresponding Eisenstein elements.

1. INTRODUCTION

Let L be a normal extension of degree q over the rational field Q , where q is an

odd prime. Without loss of generality assume that L = Q[a], where a is an algebraic

integer which is given by its minimal polynomial ma(x) over Q. Clearly the Galois

group Gal(L/Q) of L over Q is cyclic.

In [1] we describe an algorithm to determine if a given a G Q is the norm of some

x in i . The algorithm requires one to know (i) the rational primes p ^ q which

ramify in i ; (ii) for each ramified prime p / ; a generator TT of the value group of

the (unique) valuation that extends the p-adic valuation from Q to i . Such a w is

sometimes called a prime element or a local uniformiser.

To find the ramified primes, we need the discriminant DL,Q of the extension
1/Q. The discriminant can be computed using a very general algorithm due to Pohst
and Zassenhaus [6, 9, 2, p.297]: this algorithm indeed computes an integral basis
B = {wi,... ,wq} for the extension i / Q , and the discriminant DL/Q •

We show in [1] that, if p is a ramified prime not equal to q, then a corresponding
local uniformiser 7r can be found in the set {TrL ;Q(WJ) — gu>; | i = 1 . . . ,q}, where
TTL,Q denotes the trace from I to Q.

In this paper we show that, if we do not need an integral basis for i / Q for other
reasons, then the full power of the Pohst-Zassenhaus' algorithm is not required. Indeed,
we give an algorithm which takes as input ma{x) and a complete factorisation of the
discriminant DL,Q(a) of a, and computes in time polynomial in the sise of the input
a list consisting of all the ramified primes p with corresponding local unifonnisers n.
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1.1 NOTATION.

Let V be a prime ideal of the ring of algebraic integers O of L, and let p be a
rational prime.

If a 6 I and a ^ 0, we shall denote by v-p(a) the order of a at V, that is, the
power of V in the factorisation of the fractional ideal aO. We define i*p(0) to be oo.

If a € Q and o ^ O , then vp(a) will denote the order of a at p, that is, the power
of the ideal pZ in the factorisation of the fractional ideal aZ. We define up(0) to be
oo.

Qp will denote the field of p-adic numbers, and L-p will denote the completion
of L with respect to the valuation determined by V. Then Zp will denote the ring of
p-adic integers, that is {x 6 Qp | vv(x) ^ 0}, and O-p the ring of 'P-adic integers, that
is {x £ L-p | v-p(x) > 0}.

Finally, Fj, will denote the finite field of p elements, and F* its multiplicative
group.

2. THE METHOD

Cyclic extension of the rationals of prime power degree have been intensively stud-
ied by B.M. Urazbaev. In [7] he proved the following:

LEMMA 1 . The discriminant DL,Q of a cyclic extension L/Q of odd prime de-
gree q has the form:

where the pi are distinct rational primes of the form nq + 1, and a = 0 or a = 2{q — 1).

Clearly, DL/q | DL/(^{a). Now, let

^/Q(«)=?° II Pi'
Pies

be a complete factorisation of D^.Q^a) into primes, with p; ^ pj for i ^ j , and a ^ 0.
For each pi € S we have to decide if p,- ramifies in L, that is, if p̂  | DL,Q .

Firstly, by Urazbaev's criterion, we can ignore those primes p,- £ S for which either
Pi ^ 1 (mod q) oi ki < q — 1.

Secondly, we take into account the fact that L/Q is Galois. This implies that
all the ideals of O lying above pZ (where p is a rational prime) are conjugate under
Gal(L/Q) and so they have the same ramification index e and the same inertial degree
/ . Let g be the number of distinct prime ideals lying above pZ. From the formula
efg = [L : Q] = q and the primality of q, it follows that, either p splits completely in
L (e = 1, / = 1 and g = q), or p is inert in L (e = 1, f = q and g = 1), or p
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is totally ramified in L (e = q, f — 1 and g = 1). In this section we show how to
recognise when p is inert.

By assumption a E O , and therefore the coefficients of ma(x) he in Z. The next
lemma relates the decomposition of a prime p in L to the factorisation of ma(x) over
F p .

LEMMA 2 . Let L be a cyclic extension of Q, of odd prime degree q. Let p be
a rational prime, and a be an algebraic integer in L\Z. If p ramifies in L, then the
minimal polynomial ma{x) of a over Q splits into the product of q identical linear
factors over F p .

PROOF: Let us assume that p ramifies in L. Then mQ(x) is irreducible over Qp

(see [4, Theorem 5.1.5, p.75]), and therefore by Hensel's Lemma it is either irreducible
or a qth power over F p . However, it can be shown that if ma(z) is irreducible over F p

then p must be inert (see [3, Proposition 5.11, p.102]). Hence ma(x) must split into
the product of q identical linear factors over F p . U

To apply Lemma 2, we compute l(x) — GCD(xp — x,ma(x)) over F p . Then
ma(x) is a qth power over F p precisely when degZ(as) = 1 and l(x)q = ma(x) (mod p).
In practice we compute j(x) = xp mod ma(x) in F p , using the binary powering algo-
rithm [2, p.8]. Then l(x) is given by GCD(j(x) - x,ma(x)).

Unfortunately, the previous lemma gives only a necessary condition for a prime p
to ramify in L. In the next section we shall develop some some necessary and sufficient
conditions.

3. EISENSTEIN POLYNOMIALS

Let us assume that p is totally ramified, and let V be the unique prime ideal lying
above pZ. Since there is only one extension of the p-adic valuation from Q to L, if
9 £ L we must have [8, Corollary 2.5.8, p.68]

(1)

We shall use this fact often in the following.

In particular, if 9 G V\V2, then VP(NL/Q(6)\ - vv{6) = 1. This shows that if
p is ramified, then O contains elements whose norms have p-order equal to 1. On the
other hand

LEMMA 3 . If a rational prime p is inert in L then there is no 9 £ O\Z whose
norm has p-order 1.

PROOF: Assume that 0 £ O\Z is an element whose norm has p-order 1. If
#i,82, • • • ,9q denote the conjugates of 6, with 9 = 6\ say, then N^iO(9) — O162 • • • 9q.
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Since p is inert, pO is the only prime ideal of O lying above pZ. By assumption
0102 ••• 6g £ pZ C pO, and hence, since pO is a prime ideal, some conjugate of 8 must
lie in pO. But then, since pO is <r-invariant, all the conjugates of 0 must he in pO,

and therefore NL.Q(6) £ PqO HZ = p 'Z , against our assumption. D

THEOREM 1. Let p be a rational prime. Assume that there is an element 0 £

O\Z whose norm has p-order 1. Then p ramifies in L if and only if mg(x) is Eisenstein

at p.

PROOF: By Lemma 3, the existence of 0 £ 0\Z whose norm has p-order 1 implies
that p cannot be inert.

Assume first that mg{x) is Eisenstein at p. Then mg(x) is irreducible in Qp[a;],
and 0 generates a totally ramified extension of Qp of degree q, that is, p is totally
ramified (see [5, Proposition 11, p.52]).

Conversely, assume that p ramifies in L. Then u-p(0) = VP\NL,Q\(0)\ = 1. Since

Gal(L/Q) permutes the prime ideals lying above pZ transitively, and there is only one

prime ideal V above pZ, it follows that vp(<r{0)) = 1 for all <r £ Gal(L/Q). Let

mg(x) = x9 + 6,-ia;'"1 + . . . + hx + b0.

Then each 6,- lies in Z and is an elementary symmetric function of the set {0,a(8),... ,

aq~1{0)}, where <r is any generator of Gal(L/Q). Hence &,- £ V fl Z = pZ. Moreover

vp{bo) = Vp(0<r{B)- ••<T"-1(0))=1,

which shows that mg(x) is Eisenstein at p. D

In order to apply Theorem 1, we need an efficient algorithm to solve the following
problem: find an element of O whose norm has p-order 1. The next lemma shows that
it is enough to find any algebraic integer whose norm has p-order not divisible by q.

LEMMA 4 . Let p be a ramified prime. Given j ' £ O with q /

we can construct an eiement j £ O with Vp[NLiQ("f)) — 1.

PROOF: Let r = ^pi^L/Qil')) • Since NL,Q(J>) = pq, and the norm elements

form a multiplicative group, we can find an s £ N which acts as a multiplicative inverse

of r (mod q), that is, such that rs = 1 + ql (I £ N). Let 7 = (7')*/p'. Clearly

and therefore 1/̂ (7) = 1. It is left to prove that 7 £ O. Clearly, (7')* £ O. Let

V be the unique prime ideal of O lying above pZ. Now, "•p((7')Vp') = 1> a n ^

VQ{(T(')'IP1) ~ v<z{WY) ^ ° for m y prime ideal Q of O not equal to V. Therefore

{t'Y/p1 G O (see [8, Corollary 4.1.8, p.125]). D
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4. FINDING EISENSTEIN ELEMENTS

We shall continue to assume that p is ramified. The inertia group I-p of V has
order e = q (see [4, Corollary 5.4.5, p.83]), and so it must be equal to Go/ (£ /Q) .
Thus, if a- G Gal(L/Q) and /? G O, we must have o-(/3) - / 3 G "P. We shall use this fact
often, in the following.

Let us consider the embedding O •—> O-p. For this purpose, we fix, once for all, an
element it G V\V2, and we take R = { 0 , 1 , . . . ,p — 1} to be a set of representatives of
O/V in O. Every /3 G O-p can be written as a convergent series (in the "P-adic metric)

oo q—l

i=0 j-0

where the coefficients atj are uniquely determined by /3.
Moreover, if /? G O\Z, then for some h, k G N, with 0 < k < q we must have

(i) afc.fc 7̂  0; and
(ii) a.itj = 0 whenever (i < h and 0 < j < q) or (i = h and 0 < j < k).

for otherwise, using the fact that ef = [L-p : Qp] = q = [L : Q], the element /? would
be a p-adic integer in O, and therefore an element of Z.

We define now a function A : O —» O as follows: if /?, h, k are as above, then

A(/?) = ;r;aMPv+ f; $ > . ; P V -
j=Jb i=h+l j=0

Since a fixes p and any element of R, clearly we have

LEMMA 5 . Let 0 G O. If a G Gal(L/Q) then a((3) - 0 = cr{A(/3)) - A(/3).

4 . 1 p IS TOTALLY AND TAMELY RAMIFIED.

In this section we assume that p is ramified and p ̂  q, and we let V denote the
unique ideal of O above pZ.

LEMMA 6 . Let a be a generator of Gal(L/Q). Then v-p{a{ir) - n) = 1.

PROOF: Since {1,JT, . . . ,TT'~1} is a local basis at p, we must have (see [8, Propo-
sition 4.8.18, p.164])

But DL /Q(TT) = JVL/Q(ra;(ir)), and

(*•)) = " P ( ( * ( T ) - a - ) " " ( ^ ( T T ) - TT)).
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Each factor on the right hand side has P-order greater than zero, there are q — 1 factors,
and so by the pigeon hole principle i/p(o-(7r) — TT) must be 1. D

LEMMA 7 . Let a be a. generator of Gal(LfQ). If 0 < r < q then v-p{a{-nT) - ?rr)
= T .

PROOF: Since V and all its powers are cr-invariant, it follows that CT{TT) = an

(mod V2) , with 0 < a < p. Then O-2(TT) = aa(n) (mod V2) , that is, O-2(TT) = a2n

(mod V2) , and more generally tr*(7r) = al7r (mod V2) . But <Tq(ir) = IT, and so a9 = 1
(mod p). Therefore the order of a in F* must divide q. Since q is prime and a ^ 1
(mod p) by Lemma 6, the order of a in F* must be equal to q. If 0 < r < q, then

o-(7rr) - 7rr = <r(n)r - 7rr = aTnT - %r (mod 7>r+1)

with ar ^ 1 (mod p) , which proves the assertion. 0

COROLLARY 1 . Let a be a generator of Gal(L/Q). If /3 e O\Z, then

In particular, q }(vv{*{h{P)) - A(/?)).

PROOF: Define a function F : L —» L by F(z) = <r(a;) - x. Since .F is Z-hnear,
we have

g-1

j=k

oo 9-1

with t = E E a-ijp'ir' • Now, vv(t) ^{h + l)g, and so vT{F[t)) Z(h + l)q.

Note that vp(F(ahijp
hir>)) = qh + j (j = k,... ,q - 1) if 0 < ah<j < p, and

y — co if a^- = 0. Clearly 0 < a^j, < p , by the definition of the

= hq+k =

D

function A, and so vv I E F(a-h jPhnj) ) = hq+k. Therefore
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THEOREM 2 . If/3eO\Z then qJ!v

PROOF: By Lemma 5, if a denotes a generator of Gal(L/Q), we have

By Corollary 1, then vv(m'0(0)\ = (q - l)i/P(A(/3)). Since q /f i/-p(A(/?)), it follows

D
4 . 2 p IS TOTALLY AND WILDLY RAMIFIED.

In this section we assume that p is ramified and p = q, and we let V denote the
unique ideal of O above qZ. Define a function G : L —» L by G(x) = TTL.Q(X) — qx.
Clearly, G is Z-linear and it vanishes on Q.

LEMMA 8 . L e t 0 < r < q . T h e n G[wT) = aq - q n r ( m o d V2q), w i t h 0^a<q.

PROOF: Since TTL,Q{TZT) £ qZ, we can write TrL,Q(irr) = aq (mod q2) , with

0 Sj a < q. This proves the assertion. U

THEOREM 3 . If 0 e O\Z, then G(/3) = G(A(/3)) and

G(fi) = bqh+1 - cqh+17Tk (mod p(^+D?+*+l)

with 0 ^ b < q and 0 < c < q.

PROOF: Since the function G is Z-linear, and it vanishes on Q, we have

f; 5>,,-
t=k+l i=0

E
\ i=o

9-1 « - l

j=k j=0

oo g—1
w i t h t = J2 £ O i . j q ^ ' • N o w , 1 / ^ ( 0 ^ (A + 2 ) ? , a n d s o f p ( G ( < ) ) ^ { h + 2 ) q . A l s o ,

t=fc+2i=0
by Lemma 8, vp{G{ah+ltjq

h+l^)) > q(h + 2) (j = 0, . . . ,q - 1), and

= bkq
h+1 - ckq

h+1nk (mod
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with cjt ^ 0 (mod q), since a/,.,k ^ 0 (mod q) by the definition of the function A.
Moreover, if a^ , ^ 0 (mod q) (s = k + 1 , . . . , q — 1) then

G(ah,3q
hn') = b,qh+1 - c.g*+V (mod

This shows that

G(/3) = g
A + 1 / ^ 6 , ) - qh+1ck*

k (mod) ( )
\t=fc /

9-1

with cjt ŷ  0 (mod q). To prove our assertion, let b = £] &i mod g, and c — Ck- U

We show next how Theorem 3 can be used to obtain an algebraic integer whose

norm has q-order not divisible by q. Let w = t/q\NL,Q(G(/3)))/q.

If w <£ Z then 6 = 0 (mod q), and G(/3) is the desired element.
Otherwise, w = h + 1, and G(P)/qw = b - CTT* (mod 7?*+1) . Note that G(0)/qw

£ O, since vv(G(/3)/qw) = 0 and VQ(G((3)/qw) = J/2(G(/3)) > 0, when Q is any prime
ideal of O not equal to "P (use again [8, Corollary 4.1.8, p.125]). Let p = G{/3)/qw. It
is easily seen that, if

rnG(^)(a;) — xq + bq-1x
g~1 + ..: + bix + b0

then
mp(x) = x*+ (bg-Jq^x*-1 + ...+ (h/q^-^x + (bo/q

w<1)

Since q is assumed to be ramified, mp(x) = {x — s)9 (mod q). Let s be a representative
of the residue class of 3\ Then p — s — —cirk (mod 77*"1"1) , and so p — s is the desired
element.

The pseudo code for the algorithm is sketched in Figures 1 and 2. The algorithm
EISENSTEIN takes as input ma(x) and returns a list consisting of the ramified primes
and corresponding local uniformisers. If the factorisation of DL,Q(O) is given as part
the input, the entire algorithm runs in polynomial time.

procedure C0NSTRUCT(7,p):
let r = up{NL/q{n));
find 1,3 e N such that rs = 1 + ql;
let e = fry If;
if me(x) is Eisenstein at p then return(e); endif;
return(O);

Figure 1: Pseudo Code for the Algorithm CONSTRUCT.
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procedure EISENSTEIN(ma(x)):
let List = 0;
let DL/Q(a) = qa U pf;

pies
for all the p e S do

if (pi = 1 (mod q) and ki > q — 1
and ma(x) is a qth power over Fp) then
let 7 = m'a(a);
let TT = C0NSTRUCT(7,p);
if TT ̂  0 then add {p, •*} to List; endif;

endif;
endfor;
if a < 2(g - 1) then return(Zisf); endif;
if ma(x) is not a qth power over Fg then return(iisi); endif;
let S = TrL/Q{a) - qa;
let w = uq(NL/Q(S))/q;
if w ^ Z then

let -y = S;

else
let p = 6/qw, and compute m p ( i ) ;
if m,p(x) g Z[x] then return(iist); endif;
compute c(x) = GCD(xq - x,mp(x)) over F,.
if c(x) £ x — s then return(iisf); endif;
let 7 = /» — s;
if g | " 9 ( ^ I , / Q ( 7 ) ) then return(iist); endif;

endif;
let7r = CONSTRUCT(7,g);
if 7T 5̂  0 then add {g,x} to List, endif;
return(iist);

Figure 2: Pseudo Code for the Algorithm EISENSTEIN.
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