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ON TOPOLOGICAL CLASSIFICATION OF FINITE
CYCLIC ACTIONS ON BORDERED SURFACES

GRZEGORZ GROMADZKI, SUSUMU HIROSE

and B LAŻEJ SZEPIETOWSKI

Abstract. In Hirose (Tohoku Math. J. 62 (2010), 45–53), Susumu Hirose

showed that, except for a few cases, the order N of a cyclic group of self-

homeomorphisms of a closed orientable topological surface Sg of genus g > 2

determines the group up to a topological conjugation, provided that N > 3g.

Gromadzki et al. undertook in Bagiński et al. (Collect. Math. 67 (2016),

415–429) a more general problem of topological classification of such group

actions for N > 2(g − 1). In Gromadzki and Szepietowski (Rev. R. Acad. Cienc.

Exactas F́ıs. Nat. Ser. A Mat. RACSAM 110 (2016), 303–320), we considered

the analogous problem for closed nonorientable surfaces, and in Gromadzki

et al. (Pure Appl. Algebra 220 (2016), 465–481) – the problem of classification

of cyclic actions generated by an orientation-reversing self-homeomorphism.

The present paper, in which we deal with topological classification of actions

on bordered surfaces of finite cyclic groups of order N > p− 1, where p is the

algebraic genus of the surface, completes our project of topological classification

of “large” cyclic actions on compact surfaces. We apply obtained results to solve

the problem of uniqueness of the actions realizing the solutions of the so-called

minimum genus and maximum order problems for bordered surfaces found in

Bujalance et al. (Automorphisms Groups of Compact Bordered Klein Surfaces:

A Combinatorial Approach, Lecture Notes in Mathematics 1439, Springer,

1990).
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§1. Introduction

By an action of a group G on a surface S we understand an embedding

of G into the group Homeo(S) of homeomorphisms of S. Two such actions

are topologically conjugate, or of the same topological type, if the images of

G are conjugate in Homeo(S).

In [10], it was shown that, except for a few cases, the order N of the finite

cyclic group ZN acting on a closed orientable topological surface Sg of genus

g > 2 determines the topological type of the action, provided that N > 3g.

In [2], Grzegorz Gromadzki et al. undertook a more general problem of

topological classification of such actions forN > 2(g − 1). This is an essential

extension, because between 3g and 4g + 2 only 3g + 1, 3g + 2, 3g + 4 and

4g can stand as the period of a single self-homeomorphism of Sg, whereas

there are infinitely many rational values of a, b such that for N = ag + b we

have N > 2g − 2 and N is the period of a self-homeomorphisms of Sg for

infinitely many g. In [7], we considered analogous problem for cyclic actions

generated by an orientation-reversing self-homeomorphism, while in [6] – a

similar problem for closed nonorientable surfaces, obtaining a classification

of topological types of action of ZN on a surface S in function of a possible

type of the quotient orbifold S/ZN , provided that N is sufficiently big.

The present paper, in which we deal with topological classification of

actions of ZN on a bordered surface of algebraic genus p, where N > p− 1,

completes our project of topological classification of big cyclic actions on

compact surfaces. The lower bound p− 1 for the order of an action is

essential for two reasons. The first is that we again cover a quite large

class of actions, since there are infinitely many rational values of a, b, for

which there are infinitely many values of p, such that a bordered surface of

algebraic genus p admits a cyclic action of order N = ap+ b and N > p− 1.

The second reason for the bound N > p− 1 is that it is satisfied for all the

actions realizing the solutions of the so-called minimum genus and maximum
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order problems for bordered surfaces found in [4], and the question about

their topological rigidity partially motivated the present paper.

Our results can be seen as a topological classification of cyclic group

actions of order N on bordered surfaces of algebraic genus p6N . Another

problem, suggested by the referee of this paper, would be to obtain a similar

classification for surfaces of large genera that is p bigger than N . We remark

that there are many results in the literature about the spectrum of genera of

surfaces admitting a given finite group as a group of self-homeomorphisms.

As an example of such results in the case of closed orientable surfaces let

us mention the important paper [14] by Kulkarni. While we believe that

it should not be difficult to obtain similar results for bordered surfaces, it

seems that it would be a rather difficult problem to classify topologically

actions of order N < p. The main reason is that the orbit spaces which

occur in the case N < p may have much bigger and much more complicated

mapping class groups (see Section 5 for a definition) than for p6N , and in

such a case our method, based on a good understanding of these mapping

class groups, is not effective.

There are two more interesting features of the actions considered in this

paper. The first is that finite group actions on compact surfaces of negative

Euler characteristic may be realized by analytic actions on Riemann

surfaces, or dianalytic actions on Klein surfaces, due to the Hurwitz–Nielsen,

Kerkjarto and Alling–Greenleaf geometrizations mentioned in Section 3.1.

The loci in the moduli spaces of Klein surfaces composed of the points

classifying the surfaces dianalytically realizing the actions considered here

have dimensions 1, 2 or 3 (this follows from Lemma 4.3, formula (4) and

classical formula of Fricke and Klein for dimension of Teichmüller spaces

of Fuchsian groups cf. [4, Theorem 0.3.2]). This is similar as in the case

of actions on unbordered nonorientable Klein surfaces [6], or orientation-

reversing automorphisms of classical Riemann surfaces [7], but in contrast

to the classical case of orientation-preserving cyclic actions of order >2g − 2

described in [2], where the loci of such structures in the moduli space

are 0-dimensional, which means, in particular, that the topological type

of an action of an orientation-preserving self-homeomorphism of such order

usually uniquely determines the conformal type of a Riemann surface on

which it acts as an automorphism. Finally, observe that our results can

be stated in terms of birational actions on real algebraic curves due to

the functorial equivalence between bordered Klein surfaces and such curves

described in [1].
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This paper is organized as follows. In Section 2, we state our main results.

Section 3 contains necessary preliminaries concerning finite topological

actions on bordered surfaces from the combinatorial point of view. In

particular, we review non-Euclidean crystallographic groups. In Section 4,

we determine the possible topological types of the orbit space (orbifold) of a

cyclic action of order N on a bordered surface of algebraic genus p < N + 1.

We obtain ten different topological types here, all of which are either a disc

or an annulus or a Möbius band, with some cone points in the interior and

some corner points on the boundary. In Section 5, we review the relationship

between the groups of automorphisms of non-Euclidean crystallographic

groups and mapping class groups. We also compute the mapping class

groups of three surfaces: once-punctured annulus, once-punctured Möbius

band and twice-punctured disc, which are needed for Section 6, where we

prove our main results. Finally, in Section 7, we apply our results to study

topological rigidity of the solutions of the so-called minimum genus and

maximum order problems for cyclic actions on bordered surfaces, solved

over 30 years ago in [4].

§2. Statement of the main results

Suppose that a cyclic group of order N acts on a bordered surface S of

algebraic genus p, where N > p− 1. We show in Section 4 that the orbit

space S/ZN is one of the following orbifolds:

(1) disc with 6 corner points;

(2) annulus with 2 corner points;

(3) Möbius band with 2 corner points;

(4) 1-punctured disc with 2 corner points;

(5) 1-punctured disc with 4 corner points;

(6) 1-punctured Möbius band;

(7) 2-punctured disc;

(8) 1-punctured annulus;

(9) 3-punctured disc;

(10) 2-punctured disc with 2 corner points.

Our classification of cyclic actions of big order is split into ten cases and the

results are presented in ten consecutive subsections. Their proofs are given

in Section 6 which is also divided in ten subsections with the same titles

for the reader’s convenience. Throughout the whole paper ϕ will denote the

Euler totient function. We also need similar function ψ defined in [2] as
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ψ(1) = 1 and given a prime factorization C = pα1
1 · · · pαr

r > 1

ψ(C) =
r∏
i=1

(pi − 2)pαi−1
i .

Observe the analogy with the Euler function ϕ which is defined for such C

as

ϕ(C) =

r∏
i=1

(pi − 1)pαi−1
i .

2.1 Actions with a disc with 6 corner points as the quotient

orbifold

Theorem 2.1. There is an action of a cyclic group of order N on a

bordered surface S with a disc having 6 corner points as the quotient orbifold

if and only if N = 2 and S is a 3-holed sphere. Furthermore, such action is

unique up to topological conjugation.

2.2 Actions with annulus with 2 corner points as the quotient

orbifold

Theorem 2.2. There is an action of a cyclic group of order N on a

bordered surface S with an annulus having two corner points as the quotient

orbifold if and only if N is even and S is one of the following surfaces:

• N/2-holed Klein bottle;

• N/2-holed torus, where N/2 is odd;

• (N/2 + 1)-holed projective plane;

• (N/2 + 2)-holed sphere, where N/2 is odd.

Furthermore, such action is unique up to topological conjugation for each of

these surfaces.

2.3 Actions with Möbius band with 2 corner points as the

quotient orbifold

Theorem 2.3. There is an action of a cyclic group of order N on a

bordered surface S having a Möbius band with 2 corner points as the quotient

orbifold if and only if N is even and S is either N/2-holed Klein bottle or

N/2-holed torus, the latter being possible only for odd N/2. Furthermore, in

both cases the action is unique up to topological conjugation.

https://doi.org/10.1017/nmj.2017.5 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.5


PERIODIC SELF-HOMEOMORPHISMS OF BORDERED SURFACES 107

2.4 Actions with a 1-punctured disc with 2 corner points as the

quotient orbifold

Theorem 2.4. There is an action of a cyclic group of order N on a

bordered surface S with a disc having one cone point of order m and 2

corner points as the quotient orbifold if and only if either

• m is even, N =m and S is N/2-holed projective plane; or

• m is odd, N = 2m and S is N/2-holed sphere.

Furthermore in both cases the action is unique up to topological conjugation.

2.5 Actions with a 1-punctured disc with 4 corner points as the

quotient orbifold

Theorem 2.5. There is an action of a cyclic group of order N on a

bordered surface with a disc having one cone point of order m and 4 corner

points as the quotient orbifold if and only if either

• m is even, N =m and S is N -holed projective plane; or

• m is odd, N = 2m and S is N -holed sphere.

Furthermore, in both cases the action is unique up to topological conju-

gation.

2.6 Actions with 1-punctured Möbius band as the quotient

orbifold

We consider the actions on orientable and nonorientable surfaces sepa-

rately.

Theorem 2.6. There is an action of a cyclic group of order N on a

bordered orientable surface with k boundary components, with a Möbius band

having 1 cone point of order m as the quotient orbifold, if and only if k

divides N , N = 2lcm(m, N/k), and either t= (m, N/k) is odd, or N/2t is

even. Furthermore, in such case the algebraic genus of the surface is equal to

1 + (m− 1)N/m and there are dϕ(t)/2e conjugacy classes of such actions.

Theorem 2.7. There is an action of a cyclic group of order N on a

bordered nonorientable surface with k boundary components, with a Möbius

band having 1 cone point of order m as the quotient orbifold, if and

only if k divides N , N = lcm(m, N/k), and for t= (m, N/k), N/t is odd.

Furthermore, in such case the algebraic genus of the surface is equal to

1 + (m− 1)N/m and the number of topological conjugacy classes of such

actions is ϕ(t) or dϕ(t)/2e if N is even or odd, respectively.
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2.7 Actions with a 2-punctured disc as the quotient orbifold

Theorem 2.8. There exists an action of a cyclic group of order N on

a bordered surface S with k boundary components, having a disc with two

cone points of orders m and n as the quotient orbifold if and only if S is

orientable and

• N = lcm(m, n);

• k divides t/(t, N/t), where t= (m, n);

• if N is even and N/t is odd, then k is even.

In such case the algebraic genus of S is equal to 1 +N(1− 1/m− 1/n) and

if C denotes the biggest divisor of t/k coprime to Nk/t, then the number of

equivalence classes of such actions is

• ϕ(t/kC)ψ(C) if n 6=m;

• ϕ(n/kC)ψ(C)/2 + 1 if n=m and n/kC = 2z, where z > 1;

• dϕ(n/kC)ψ(C)/2e otherwise.

2.8 Actions with a 1-punctured annulus as the quotient orbifold

First we deal with the actions on nonorientable surfaces.

Theorem 2.9. There exists an action of a cyclic group ZN on a

nonorientable surface S with k boundary components, with an annulus

having one cone point of order m as the quotient orbifold, if and only if

k divides Nand N = lcm(m, N/k). Furthermore, in such case the algebraic

genus of the surface is equal to 1 +N(m− 1)/m and there are ϕ(t) different

topological types of such action, where t= (m, N/k).

The case of orientable S considered in the next theorem is much more

involved. It has two parts. The first describes the necessary and sufficient

conditions for existence of the actions, whereas the second has quantitative

character and provides the numbers of equivalence classes of such actions.

These numbers are expressed in terms of BSK-maps and therefore a reader

less familiar with the study of periodic actions on compact surfaces from a

combinatorial point of view should postpone the reading of (ii)–(iv) until

Section 3, where these maps are introduced.

Theorem 2.10.

(i) There exists an action of a cyclic group ZN on an orientable surface S

with k boundary components, with an annulus having one cone point of

order m as the quotient orbifold if and only if either
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(1) k divides N , N = 2lcm(m, N/k) and N/2 is odd; or

(2) m divides N and there exits an integer n, 1 6 n < k, such that:

(a) n and k − n divide m;

(b) N/m, n and k − n are pairwise relatively prime;

(c) if N is even then one of N/m, n, k − n is even.

In such case the algebraic genus of the surface is equal to

1 +N(m− 1)/m.

(ii) Suppose that N, m, k satisfy (1) and t= (m, N/k). Then there are ϕ(t)

equivalence classes of BSK-maps θ1 : Λ→ ZN such that θ1(c1) 6= θ1(c2).

(iii) Suppose that N, m, k satisfy (2). Then the number of equivalence

classes of BSK-maps θ2 : Λ→ ZN such that θ2(c1) = θ2(c2) = 0, and

θ2(e1) and θ2(e2) have orders N/n and N/(k − n) is

• ϕ(m/Cn(k − n))ψ(C) if k 6= 2;

• ϕ(m/C)ψ(C)/2 + 1 if k = 2 and m/C = 2z, where z > 1;

• dϕ(m/C)ψ(C)/2e otherwise;

where C is the biggest divisor of m/n(k − n) coprime to Nn(k − n)/m.

(iv) Every BSK-map corresponding to a ZN -action on S is equivalent either

to some θ1 from the assertion (ii), or to some θ2 from the assertion (iii).

2.9 Actions with a 3-punctured disc as the quotient orbifold

The orders of the three cone points are either 2, 2, m, m> 2, or 2, 3, m,

where m ∈ {3, 4, 5}. We consider these two cases separately.

Theorem 2.11. There is an action of a cyclic group of order N on a

bordered surface S with a disc having 3 cone points of orders 2, 2, m as the

quotient orbifold if and only if N = lcm(2, m). In such case S is orientable, it

has N/m boundary components, its genus is equal to g = 1 + (m− 2)N/2m

and such an action is unique up to topological conjugation.

Theorem 2.12. There is an action of a cyclic group of order N on a

bordered surface S with a disc having 3 cone points of orders 2, 3, m, where

m ∈ {3, 4, 5}, as the quotient orbifold if and only if N = lcm(2, 3, m) and S

is an orientable surface of topological genus g with k boundary components,

where

• if m= 3 then (g, k) = (3, 1) or (2, 3);

• if m= 4 then (g, k) = (6, 1);
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• if m= 5 then (g, k) = (15, 1).

In each case the action is unique up to topological conjugation.

2.10 Actions with a 2-punctured disc with two corners as the

quotient orbifold

The orders of the cone points are either 2, m, m> 2, or 3, m, where

m ∈ {3, 4, 5}. We consider these two cases separately.

Theorem 2.13. There is an action of a cyclic group of order N on

a bordered surface S with a disc having 2 cone points of orders 2, m and

2 corners as the quotient orbifold if and only if N = lcm(2, m). In such

case S is nonorientable, it has N/2 boundary components, its genus is equal

to g = 2 + (m− 2)N/2m, and such an action is unique up to topological

conjugation.

Theorem 2.14. There is an action of a cyclic group of order N on a

bordered surface S with a disc having 2 cone points of orders 3, m, where

m ∈ {3, 4, 5}, and 2 corners as the quotient orbifold if and only if N =

lcm(2, 3, m), S has N/2 boundary components, and

• if m= 3 then S is orientable of genus 2;

• if m= 4 then S is nonorientable of genus 7;

• if m= 5 then S is orientable of genus 8.

Furthermore, for m= 3 there are two different topological types of such

action, and for m= 4, 5 the action is unique up to topological conjugation.

§3. Preliminaries

In principle, we use a combinatorial approach, based on Riemann

unformization theorem for compact Riemann surfaces, its generalization

for nonorientable or bordered surfaces with dianalytic structures of Klein

surfaces, good knowledge of discrete group of isometries of the hyperbolic

plane and some elementary covering theory. For the reader’s convenience,

we review the terminology of [4] used in this paper.

3.1 Hurwitz–Nielsen geometrization and its generalizations

Let G be a finite group of orientation-preserving self-homeomorphisms of

a closed orientable surface Sg of genus g, g > 2.

By [11] and [15], there exists a structure of a Riemann surface on Sg,

with respect to which the elements of G act as conformal automorphisms.
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This result was generalized to the case of actions containing orientation-

reversing self-homeomorphisms and to closed nonorientable surfaces by

Kerejarto [12], and for bordered surfaces in a more recent monograph of

Alling and Greenleaf [1], who introduced the concept of a Klein surface.

Thus, although the paper concerns topological classification of topological

actions, we assume, whenever necessary, that a surface has such a structure

of a bordered Klein surface, and the elements of G act on it as dianalytic

automorphisms. This assumption allows for effective conformally algebraic

methods described in the following subsections.

3.2 Non-Euclidean crystallographic groups

By a non-Euclidean crystallographic group (NEC-group in short) we

mean a discrete and cocompact subgroup of the group G of all isometries

of the hyperbolic plane H. The algebraic structure of such a group Λ is

encoded in its signature:

(1) s(Λ) = (g;±; [m1, . . . , mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)}),

where the brackets (ni1, . . . , nisi) are called the period cycles, the integers

nij are the link periods, mi proper periods and finally g the orbit genus of

Λ. A group Λ with signature (1) has the presentation with the following

generators

xi for 1 6 i6 r,
cij , ei for 1 6 i6 k, 0 6 j 6 si,
ai, bi for 1 6 i6 g if the sign is +,
di for 1 6 i6 g if the sign is −,

subject to the relations

xmi
i = 1 for 1 6 i6 r,

c2ij = (cij−1cij)
nij = 1 for 1 6 i6 k, 0 6 j 6 si,

cisi = eici0e
−1
i for 1 6 i6 k,

x1 · · · xre1 · · · ek[a1, b1] · · · [ag, bg] = 1 if the sign is +,

x1 · · · xre1 · · · ekd21 · · · d2g = 1 if the sign is −,

where [x, y] = xyx−1y−1. Elements of any system of generators satisfying

the above relations will be called canonical generators. The elements xi are

elliptic transformations, ai, bi hyperbolic translations, di glide reflections
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and cij hyperbolic reflections. Reflections cij−1 and cij are called consecu-

tive. It is essential for applications that every element of finite order in Λ is

conjugate either to a canonical reflection, or to a power of some canonical

elliptic element xi, or else to a power of the product of two consecutive

canonical reflections.

The orbit space H/Λ is a hyperbolic orbifold, with underlying surface

of topological genus g with k boundary components, and it is orientable if

the sign is + and nonorientable otherwise. The image in H/Λ of the fixed

point of the canonical elliptic generator xi is called cone point of order

mi, whereas the image of the fixed point of the product of two consecutive

canonical reflections cij−1cij is called corner point of order nij .

Now, an abstract group with such presentation can be realized as an

NEC-group Λ if and only if the value

(2) εg + k − 2 +
r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

)

is positive, where ε= 2 if the sign is +, or ε= 1 otherwise. This value turns

out to be the normalized hyperbolic area µ(Λ) of an arbitrary fundamental

region for such a group, and we have the following Hurwitz–Riemann

formula

(3) [Λ : Λ′] =
µ(Λ′)

µ(Λ)

for a subgroup Λ′ of finite index in an NEC-group Λ.

Finally, NEC-groups without orientation-reversing elements are Fuchsian

groups. They have signatures (g; +; [m1, . . . , mr]; {−}) usually abbreviated

as (g;m1, . . . , mr). Given an NEC-group Λ containing orientation-reversing

elements, its subgroup Λ+ consisting of the orientation-preserving elements

is called the canonical Fuchsian subgroup of Λ, and by [16], for Λ with

signature (1), Λ+ has signature

(4) (εg + k − 1;m1, m1, . . . , mr, mr, n11, . . . , nksk).

A torsion free Fuchsian group Γ is called a surface group and it has

signature (g;−).

We also use other results concerning relationship between the signatures

of an NEC-group and its finite index subgroup proved in [4, Chapter 2].
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3.3 Bordered Riemann surfaces and their groups of automor-

phisms

By the Riemann uniformization theorem, every closed Riemann surface

S of genus g > 2 can be identified with the orbit space H/Γ of the

hyperbolic plane with respect to an action of a Fuchsian group Γ isomorphic

to the fundamental group of S. A Klein surface is a compact bordered

topological surface equipped with a dianalytic structure – historically it is

also called bordered Riemann surface. For a given Klein surface S, Alling

and Greenleaf [1] constructed certain canonical double cover S+ being a

Riemann surface, such that S is the quotient of S+ by an action of an

antiholomorphic involution with fixed points. The algebraic genus p= p(S)

of S is defined as the genus of S+ and it follows from the construction

that p coincides with the rank of the fundamental group of S, and so for a

surface of topological genus g having k boundary components it is equal to

p= εg + k − 1, where ε= 2 if S is orientable and ε= 1 otherwise. It is well

known (see [4] for example) that any compact Klein surface S of algebraic

genus p> 2 can be represented as H/Γ for some NEC-group Γ. If S has

topological genus g and k boundary components, then Γ can be chosen to

be a bordered surface group, that is, an NEC-group with the signature

(5) (g;±; [ ]; {( ), k. . . , ( )}),

whose only elements of finite order are reflections. It has the presentation

〈a1, b1, . . . , ag, bg, e1, . . . , ek, c1, . . . , ck |

c2i , [ei, ci], e1 . . . ek[a1, b1] . . . [ag, bg]
〉

if the sign is +, or

〈d1, . . . , dg, e1, . . . , ek, c1, . . . , ck | c2i , [ei, ci], e1 . . . ekd21 . . . d2g〉

otherwise. Finally, a finite group G is a group of automorphisms of S =H/Γ
if and only if G∼= Λ/Γ for some NEC-group Λ. A convenient way of

defining an action of a group G on a bordered surface S is by means of an

epimorphism θ : Λ→G whose kernel is a bordered surface group. In such

a case S =H/Γ, where Γ = ker θ. We shall refer to such an epimorphism

as to a bordered-surface-kernel epimorphism (BSK in short) or smooth

epimorphism.

Two actions of G on S are topologically conjugate (by a homeomorphism

of S) if and only if the associated smooth epimorphisms are equivalent
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in the sense of the next definition (see [3, Proposition 2.2]). We say that

two smooth epimorphisms θi : Λ→G, i= 1, 2, are equivalent if and only if

there exist automorphisms φ : Λ→ Λ and ϕ :G→G such that the following

diagram is commutative.

(6)

Λ
φ
// Λ

G
ϕ
//

��
θ1

G
��
θ2

3.4 Some elementary algebra

For integers a, b we denote by (a, b) their greatest common divisor and we

use additive notation for cyclic groups ZN = Z/NZ throughout the whole

paper. Furthermore, by abuse of language, we write a ∈ ZN for a nonnegative

integer a < N . To avoid unnecessary parentheses, we denote expressions of

the form a/(bc) simply as a/bc.

We need the following version of the classical Chinese remainder theorem.

Lemma 3.1. Given integers a, b, the system of congruences{
x≡ a (m),

x≡ b (n),

has a solution if and only if a≡ b (t), where t= (m, n) and this solution is

unique up to lcm(m, n).

The following useful result can be proved using Dirichlet’s theorem on

arithmetic progression (see [7] for a more elementary, direct, argument).

Lemma 3.2. Given an integer N and its divisor n, the reduction map

Z∗N → Z∗n is a group epimorphism.

Proof. Let a ∈ Z∗n, then (a, n) = 1 and so by Dirichlet theorem on

arithmetic progression there exists infinitely many primes A of the form

a+ bn and so A ∈ Z∗N and its reduction modulo n is equal to a.

We also need

Lemma 3.3. (Harvey, [8]) The group ZN is generated by three elements

a, b, c of orders m, n, l and such that a+ b+ c= 0 if and only if

(i) N = lcm(m, n) = lcm(m, l) = lcm(n, l); and

(ii) if N is even, then exactly one of the numbers N/m, N/n, N/l is even.
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The condition (i) of Lemma 3.3 is equivalent to existence of pairwise

relatively prime integers A, A1, A2, A3 for which

(7) m=AA2A3, n=AA1A3, l =AA1A2, N =AA1A2A3.

The condition (ii) of Lemma 3.3 is that one of the numbers A1, A2, A3

is even if N is even. The quadruple (A, A1, A2, A3) is called Maclachlan

decomposition of the triple (m, n, l) after Hidalgo [9].

§4. Periodic self-homeomorphisms of compact bordered surfaces

of big periods

From (3.1.0.1) and (3.1.0.2) in [4, p. 61] we immediately obtain the

following result.

Lemma 4.1. There exists a structure of a bordered Klein surface

S = Skg,± of topological genus h, with k boundary components and orientable

or not according to the sign being plus or minus having a dianalytic

automorphism ϕ of order N if and only if ZN ∼= Λ/Γ, where Γ and Λ have

signatures respectively

(8)

(g;±; [ ]; {( ), k. . . , ( )}) and (g′;±; [m1, . . . , mr]; {C1, . . . , Ck′}),

where each cycle Ci is either empty or consists of an even number of periods

equal to 2. Furthermore, nonempty cycles do not appear for odd N .

For the rest of this section we assume that Λ and Γ are as in Lemma 4.1

and we denote by θ : Λ→ Λ/Γ the canonical projection, where Λ/Γ will be

identified with ZN . Recall that θ is called BSK-epimorphism. In order to

state the next lemma, we need one definition and some notation. We define

a nonorientable word to be a word w in the canonical generators of Λ and

their inverses, such that w defines an orientation-reversing isometry of H
and the reflections cij of Λ which belong to Γ do not appear in w. For

i= 1, . . . , k′ let si be the length of the cycle Ci in the signature of Λ. Let li
denote the order of θ(ei) in ZN and

ti =


0 if si = 0 and ci0 /∈ Γ,

N/li if si = 0 and ci0 ∈ Γ,

siN/4 if si > 0.

The following lemma can be deduced from [4].
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Lemma 4.2. Let S be the surface H/Γ. Then:

(a) S is nonorientable if and only if Γ contains a nonorientable word;

(b) the number of boundary components of S is k = t1 + · · ·+ tk′.

Proof. Indeed (a) follows from [4, Theorems 2.1.2 and 2.1.3]. Now, with

the above notation, each empty period cycle of Λ whose corresponding

canonical reflection belongs to Γ, produces N/li empty period cycles in

Γ by [4, Theorem 2.3.3] (see also Theorems 2.4.2 and 2.4.4 therein). Next,

let c0, c1, . . . , c2s be a cycle of canonical reflections of Λ corresponding to a

nonempty period cycle (2, 2s. . . , 2). Then θ(ci) = 0 or N/2. Observe however

that two consecutive canonical reflections ci−1, ci have different images, since

otherwise ci−1ci would be an orientation-preserving torsion element of Γ.

So this cycle of reflections is mapped either on 0, N/2, 0, N/2, . . . , 0 or on

N/2, 0, N/2, . . . , 0, N/2. In the former case each ci for even i produces in Γ

N/2 empty period cycles, while in the latter case the same is true for every

odd i, and so each nonempty period cycle of length 2s produces in Γ s(N/2)

empty period cycles in virtue of [4, Theorem 2.3.2] (see also Theorem 2.4.4

therein).

Observe that we can determine the topological type of the surface H/Γ
by using Lemma 4.2 together with the Hurwitz–Riemann formula.

Lemma 4.3. If Γ is a bordered surface group of algebraic genus p and

N > p− 1 then Λ has one of the following signatures:

(1) (0; +; [ ]; {(2, 2, 2, 2, 2, 2)}), (2) (0; +; [ ]; {( ), (2, 2)}),
(3) (1;−; [ ]; {(2, 2)}), (4) (0; +; [m]; {(2, 2)}),
(5) (0; +; [m]; {(2, 2, 2, 2)}), (6) (1;−; [m]; {( )}),
(7) (0; +; [m, n]; {( )}), (8) (0; +; [m]; {( ), ( )}),
(9a) (0; +; [2, 3, m]; {( )}), m= 3, 4, 5, (9b) (0; +; [2, 2, m]; {( )}),
(10a) (0; +; [3, m]; {(2, 2)}), m= 3, 4, 5, (10b) (0; +; [2, m]; {(2, 2)}).

Proof. By the Hurwitz–Riemann formula, N > p− 1 is equivalent to

µ(Λ)< 1. For Λ as in Lemma 4.1, we have

µ(Λ) = εg′ + k′ − 2 +
r∑
i=1

(
1− 1

mi

)
+
s

4
,

where s is the sum of lengths of nonempty period cycles. Observe that s is

even and k′ > 0. We have −1 6 εg′ + k′ − 2 6 0.
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Suppose that εg′ + k′ − 2 = 0. Then, since (1− 1/mi) > 1/2, 0 6 r 6 1. If

r = 0, then s= 2 and Λ has signature (2) or (3). If r = 1, then s= 0 and Λ

has signature (6) or (8).

Suppose that εg′ + k′ − 2 =−1, hence (g′, k′) = (0, 1). Then 0 6 r 6 3.

If r = 0, then s= 6 and Λ has the signature (1). If r = 1, then s= 2 or

4 and Λ has signature (4) or (5). If r = 2, then s= 0 or 2. In the former

case Λ has signature (7). In the latter case 1/m1 + 1/m2 > 1/2 and Λ has

signature (10a) or (10b). Finally, if r = 3 then s= 0, 1/m1 + 1/m2 + 1/m3 >

1 and Λ has signature (9a) or (9b).

We close this section by a technical but simple lemma, which will be very

useful in the next section.

Lemma 4.4. Suppose that Ci is a nonempty cycle in the signature of

Λ. Then for some φ ∈Aut(Λ), θ ◦ φ maps the corresponding reflections

(ci0, ci1, . . . , cisi) on (N/2, 0, . . . , N/2, 0, N/2).

Proof. By Lemma 4.1, all the periods in Ci are equal to 2 and by the

proof of Lemma 4.2, consecutive canonical reflections ci0, ci1, . . . , cisi are

mapped either on N/2, 0, . . . , N/2, 0, N/2, or on 0, N/2, . . . , 0, N/2, 0. In

the former case we take φ to be the identity, while in the latter case we define

φ by φ(cij) = cij−1 for j = 1, . . . , si, φ(ci0) = e−1i cisi−1ei, and the identity

on the remaining generators of Λ.

§5. Automorphisms of NEC-groups versus mapping class groups

From diagram (6) in Section 3 we see that for a topological classification

of group actions via smooth epimorphisms we need to know how to calculate

automorphisms groups of NEC-groups Λ. As we shall see, we need to know

these automorphisms up to conjugation, which means that we actually

need the groups Out(Λ) of outer automorphisms of Λ’s. From the previous

section we see that in this paper we need them only for three signatures

(1;−; [m]; {( )}), (0; +; [m]; {( ), ( )}), (0; +; [m, n]; {( )}), and the outer

automorphism groups for these NEC-groups were found in [3, Section 4]

by using a connection between Out(Λ) and the mapping class group of the

orbifold H/Λ. For reader’s convenience we review these results and their

proofs (illustrated with figures and easier to follow then the proofs in [3]).

For an NEC-group Λ, let Mod(H/Λ) be the group of isotopy classes of

homeomorphisms over H/Λ which map a cone point to a cone point of

the same order, and analogously for the corner points, and PMod(H/Λ) be

the group of isotopy classes of homeomorphisms over H/Λ which fix the
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cone points and the corner points. For two elements φ1, φ2 of Mod(H/Λ),

φ1φ2 means applying φ2 first and then applying φ1. Let Out0(Λ) be the

subgroup of Out(Λ) which acts trivially on the set of conjugacy classes of

the stabilizers of the fixed points of elliptic elements of Λ. Observe that

these conjugacy classes are in one to one correspondence with the integers

m1, . . . , mr, n11, . . . , nksk , and hence Out0(Λ) is a subgroup of finite index

of Out(Λ). The following lemma is proved in [3, Corollary 4.4].

Lemma 5.1. If PMod(H/Λ) has finite order n, then Out0(Λ) has order

at most n.

In order to obtain presentations of these groups, we review mapping class

groups of two elementary surfaces. Let S0,3 be the sphere with three marked

points p1, p2 and p3, and PMod(S0,3) be the group of isotopy classes of

orientation-preserving diffeomorphisms over the sphere preserving each of

these three points. It is well known that PMod(S0,3) is trivial (see, for

example, [5, the proof of Proposition 2.3]). Let N1,2 be the real projective

plane with two marked points p1 and p2, and PMod(N1,2) be the group of

isotopy classes of diffeomorphisms over the real projective plane preserving

each of these two points. Let β1 and β2 be the oriented circles shown in

Figure 1, and νi be the element of PMod(N1,2) obtained by sliding pi once

along βi (i= 1, 2). Korkmaz [13, Corollary 4.6] showed that PMod(N1,2) is

generated by ν1 and ν2, and ν21 = ν22 = (ν2ν1)
2 = 1. Let ρ be the reflection

indicated in Figure 1. By investigating the action on the fundamental group,

we can see ρ= ν1ν2. Therefore, we see that PMod(N1,2) is generated by ν1
and ρ, and ν21 = ρ2 = (ρν1)

2 = 1.

Lemma 5.2. [3, Proposition 4.12] Let Λ be an NEC-group with signature

(1;−; [m]; {( )}) and canonical generators x, d, c, satisfying the relations

xm = c2 = 1, d2xc= cd2x. Then Out(Λ) is isomorphic to the Klein four-

group and is generated by classes of automorphisms γ, δ defined by

γ :


x 7→ x−1,

d 7→ x−1d−1x,

c 7→ c,

δ :


x 7→ x,

d 7→ (dx)−1,

c 7→ (dx)−1c(dx).

Proof. Under the correspondence p1 to the boundary, and p2 to the cone

point, PMod(N1,2) is isomorphic to Mod(H/Λ) = PMod(H/Λ). The action

of ρ on Λ is γ and that of ν1 is δ and these actions are of order 2 and not

inner automorphisms of Λ. By Lemma 5.1, the order of Out0(Λ) = Out(Λ) is
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Figure 1.

⊗ indicates the place to attach a Möbius band. The loops x, c and d represent

the generators of Λ with signature (1;−; [m]; {( )}) or the orbifold fundamental

group of H/Λ whose base point is ∗.

at most 4. Therefore, we see that Out(Λ) is the Klein four-group generated

by γ and δ.

Lemma 5.3. Let Λ be an NEC-group with signature (0; +; [m]; {( ), ( )})
with canonical generators x, e, c1, c2 satisfying the following defining rela-

tions: xm = c21 = c22 = 1, ec1 = c1e, xec2 = c2xe. Then Out(Λ) is isomorphic

to the Klein four-group and is generated by classes of automorphisms α, β

defined by

α :


x 7→ e−1x−1e,

e 7→ e−1,

c1 7→ c1,

c2 7→ c2,

β :


x 7→ e−1xe,

e 7→ (xe)−1,

c1 7→ c2,

c2 7→ c1.

Proof. Let f be a homeomorphism over H/Λ fixing boundaries and

a cone point, then we can regard f as an element of PMod(S0,3) = 1.

Therefore, every element of PMod(H/Λ) = Mod(H/Λ) is determined by its

action on the boundary of H/Λ. Let ρ be the reflection about the axis

shown in Figure 2, and σ be the π-rotation about the cone point as shown

in Figure 2. PMod(H/Λ) is generated by ρ and σ, and its defining relations

are ρ2 = σ2 = (ρσ)2 = 1. The action of ρ on Λ is α and that of σ is β and

these actions are not inner automorphisms of Λ. By Lemma 5.1, the order of

Out0(Λ) = Out(Λ) is at most 4. Therefore, we see that Out(Λ) is the Klein

four-group generated by α and β.
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Figure 2.

The loops x, c1, c2 and e represent the generators of Λ with signature (0; +; [m];

{( ), ( )}) or the orbifold fundamental group of H/Λ whose base point is ∗.

Lemma 5.4. Let Λ be an NEC-group with a signature (0; +; [m, n]; {( )})
and generators x1, x2, c, satisfying the following defining relations: xm1 =

xn2 = c2 = 1, x1x2c= cx1x2. Then if m 6= n then Out(Λ) has order 2 and

is generated by the class of automorphism α while if m= n and the Klein

four-group generated by α, β in the other case, where

α :


x1 7→ x−11 ,

x2 7→ x1x
−1
2 x−11 ,

c 7→ c,

β :


x1 7→ x2,

x2 7→ x−12 x1x2,

c 7→ c.

Proof. Let f be a homeomorphism over H/Λ fixing boundaries and a

corner, then we can regard f as an element of PMod(S0,3) = 1. Therefore,

every element of PMod(H/Λ) is determined by its action on the boundary

of H/Λ. Let ρ be the reflection about the axis shown in Figure 3. Then ρ

reverses the orientation of the boundary of H/Λ. PMod(H/Λ) is generated

by the involution ρ. The action of ρ on Λ is α and is not inner automorphism

of Λ. By Lemma 5.1, the order of Out0(Λ) is at most 2. Therefore, Out0(Λ)

is generated by α and Out0(Λ) is isomorphic to Z2. If n 6=m, Out0(Λ) =

Out(Λ). If n=m, there is a short exact sequence 1→Out0(Λ)→Out(Λ)→
Z2→ 1, where Z2 is the group of permutation of cones and is generated by τ
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Figure 3.

The loops x1, x2, c are the generators of Λ with signature (0; +; [m, n]; {( )}) or

the orbifold fundamental group of H/Λ whose base point is ∗.

in Figure 3. The action of τ on Λ is β. We conclude that Out(Λ) is generated

by α and β, and its defining relations are α2 = β2 = (αβ)2 = 1.

§6. Proofs of the main results

In this section we prove the results stated in Section 2, that is we classify,

up to topological conjugation, cyclic actions corresponding to the signatures

given in Lemma 4.3.

6.1 Actions with a disc with 6 corner points as the quotient

orbifold

This is the easiest case concerning an NEC-group Λ with the signature

(0; +; [ ]; {(2, 2, 2, 2, 2, 2)}) from Lemma 4.3. We denote the canonical

reflections c1i simply by ci for i= 0, 1, . . . , 6. We have e1 = 1 and c0 = c6.

It follows that Λ has the presentation

〈c0, . . . , c5 | c20 = · · ·= c25 = (c0c1)
2 = · · ·= (c4c5)

2 = 1〉.

Proof of Theorem 2.1. By Lemma 4.4 there is only one, up to equiv-

alence, BSK-epimorphism θ : Λ→ ZN , mapping (c0, c1, c2, c3, c4, c5) on

(N/2, 0, N/2, 0, N/2, 0). In particular, we see that N/2 generates ZN , hence

N = 2. By Lemma 4.2 and the Hurwitz–Riemann formula, S is a 3-holed

sphere.
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6.2 Actions with annulus with 2 corner points as the quotient

orbifold

This case concerns an NEC-group Λ with the signature

(0; +; [ ]; {( ), (2, 2)})

from Lemma 4.3 which has the presentation

〈e1, e2, c10, c20, c21, c22 |

e1e2 = c2ij = (c20c21)
2 = (c21c22)

2 = 1, e1c10 = c10e1, e2c20 = c22e2
〉
.

Proof of Theorem 2.2. Let θ : Λ→ ZN be a BSK-epimorphism and let

θ(e1) = a. By Lemma 4.4 we may assume

θ(e1) = a, θ(e2) =−a, θ(c20) = θ(c22) =N/2,

θ(c21) = 0 and θ(c10) = 0 or N/2.

Since a and N/2 generate ZN , we have (a, N/2) = 1 and it follows that the

order of a is either N or N/2, the latter being possible only for odd N/2.

Suppose that the order of a is N . Then after composing θ with a suitable

automorphism of ZN we can assume that θ(e1) = 1. By Lemma 4.2 S is

nonorientable, since e
N/2
1 c20 is a nonorientable word in Γ = ker θ, and its

number of boundary components is either N/2 if θ(c10) 6= 0, or N/2 + 1 if

θ(c10) = 0. From the Hurwitz–Riemann formula we easily compute that the

genus of S is respectively 2 or 1. Now suppose that the order of a is N/2

which is odd. As above, after composing θ with a suitable automorphism

of ZN we can assume that θ(e1) = 2 and therefore again we obtain two

nonequivalent BSK-maps, which give rise to two topologically nonconjugate

actions. Observe however, that this time S is orientable by Lemma 4.2, and it

has either N/2 or N/2 + 2 boundary components. By the Hurwitz–Riemann

formula the genus of S is respectively 1 or 0.

6.3 Actions with Möbius band with 2 corner points as the

quotient orbifold

This case concerns an NEC-group Λ with signature (1;−; [ ]; {(2, 2)})
from Lemma 4.3. We denote the canonical reflections c1i simply by ci for

i= 0, 1, 2. After ruling out the redundant generator e1, we can write a

presentation for Λ as

〈d, c0, c1, c2 | c20 = c21 = c22 = (c0c1)
2 = (c1c2)

2 = 1, c0d
2 = d2c2〉.
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Proof of Theorem 2.3. The proof is very similar to that of Theorem 2.2

above. By Lemma 4.4 every BSK-map θ : Λ→ ZN is equivalent to one of

the form

θ(c0) = θ(c2) =N/2, θ(c1) = 0, θ(d) = a,

for some a ∈ ZN . By (b) of Lemma 4.2, S has N/2 boundary components,

and from the Hurwitz–Riemann formula we compute that its genus is either

2 if it is nonorientable, or 1 otherwise. There are two cases, according to the

order of a, which is either N or N/2. If a has order N , then by composing θ

with a suitable automorphism of ZN we can assume that θ(d) = 1. Observe

that here N/2 can be arbitrary, but S is nonorientable if and only if N/2 is

even, since only then dN/2c0 is a nonorientable word in ker θ. If the order

of a is N/2 then it must be odd, and by composing θ with a suitable

automorphism of ZN we can assume that θ(d) = 2. In such case dN/2 is

a nonorientable word in Γ = ker θ and hence S is nonorientable.

6.4 Actions with a 1-punctured disc with 2 corner points as the

quotient orbifold

This is the case concerning an NEC-group Λ with the signature

(0; +; [m]; {(2, 2)})

from Lemma 4.3. We denote the canonical reflections c1i simply by ci for

i= 0, 1, 2. After ruling out the redundant generator e1, we can rewrite the

presentation for Λ as

〈x, c0, c1, c2 | xm = c20 = c21 = c22 = (c0c1)
2 = (c1c2)

2 = 1, c0x= xc2〉.

Proof of Theorem 2.4. Let θ : Λ→ ZN be a BSK-epimorphism. Then ZN
is generated by θ(x), which has order m, and θ(ci) for some canonical

reflection ci which has order 2. Thus either N =m if m is even, or N = 2m if

m is odd. By Lemma 4.4, we can assume that θ(c0) = θ(c2) =N/2, θ(c1) = 0.

If m=N then after composing θ with a suitable automorphism of ZN we can

assume that θ(x) = 1, and hence the action is unique. By (a) of Lemma 4.2,

S is nonorientable in this case, since xN/2c0 is a nonorientable word in

ker θ. Now assume that N = 2m. Then after composing θ with a suitable

automorphism of ZN we can assume that θ(x) = 2, and hence also in this

case the action is unique up to topological conjugation. Observe that now S

is orientable, by (a) of Lemma 4.2. Finally, by (b) of Lemma 4.2, S has N/2

boundary components in both cases, and its genus can be easily computed

from the Hurwitz–Riemann formula.
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6.5 Actions with a 1-punctured disc with 4 corner points as the

quotient orbifold

This is the case concerning an NEC-group Λ with the signature

(0; +; [m]; {(2, 2, 2, 2)})

from Lemma 4.3. This case is very similar to that from the previous section.

Now Λ has the presentation

〈x, c0, . . . , c4 |

xm = c20 = · · ·= c24 = (c0c1)
2 = (c1c2)

2 = (c2c3)
2 = (c3c4)

2 = 1, c0x= xc4
〉
.

The proof of Theorem 2.5 is almost identical as that of Theorem 2.4. We

leave details to the reader.

6.6 Actions with 1-punctured Möbius band as the quotient

orbifold

These actions correspond to an NEC-group Λ with signature

(1;−; [m]; {( )})

from Lemma 4.3 which has the presentation

〈x, d, c, e | xed2 = xm = c2 = 1, ec= ce〉.

We have µ(Λ) = (m− 1)/m.

Proof of Theorem 2.6. Suppose that θ : Λ→ ZN is a BSK-epimorphism,

such that Γ = ker θ is an orientable bordered surface group with k empty

period cycles. Since Γ contains a reflection, we have θ(c) = 0, and by (b) of

Lemma 4.2, θ(e) has order n=N/k. In particular, k divides N . Note that

θ(x) and θ(e) generate a subgroup of index at most 2 of ZN . Since S is

orientable, this has to be a proper subgroup of ZN , for otherwise Γ would

contain a nonorientable word of the form wd, where w is a word in x and e

such that θ(w) =−θ(d). It follows that N = 2lcm(m, n).

By multiplying θ by an element of Z∗N , we can assume that

(9) θ(x) =N/m, θ(e) = aN/n, θ(d) = b,

for some a ∈ Z∗n and some b for which

(10) N/m+ aN/n+ 2b≡ 0 (N).
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We denote such BSK-map by θa, bearing in mind that the parameter a does

not always determine it uniquely. Indeed, we have

b=−N/2m− aN/2n+ εN/2 =−n/t− am/t+ εN/2

for some ε ∈ Z2.

If N/2 is odd then for arbitrary a ∈ Z∗n we have a unique odd b, namely

ε= 0 if a is even, and ε= 1 if a is odd. If N/2 is even but t is odd, then b is

odd for arbitrary a ∈ Z∗n and ε ∈ Z2. Finally, suppose that t is even. Then a

must be odd since (a, n) = 1, and b is odd if and only if n/t and m/t have

opposite parity. But since n/t and m/t are relatively prime, b is odd if and

only if mn/t2 =N/2t is even and ε arbitrary.

Summarizing the above paragraph, we conclude that if N/2 is odd, then

θa(d) is uniquely determined by a, whereas if N/2 is even, then θa(d) is

determined only modulo N/2. However, the two different possibilities for

θa(d) define equivalent BSK-epimorphisms. Indeed, set c= 1 +N/2 and

note that c≡ 1 (m), c≡ 1 (n) and c is odd, hence c ∈ Z∗N . Furthermore,

we have cθa(x) =N/m, cθa(e) = aN/n and cθa(d) = θa(d) +N/2, because

θa(d) is odd.

Now, we determine the number of equivalence classes of BSK-

epimorphisms. For φ representing an element of Out(Λ) and a BSK-map

θ : Λ→ ZN , let θφ = θ ◦ φ. Since θ is into an abelian target, for the generators

of Out(Λ) given in Lemma 5.2 we have

θγ :


x 7→ −θ(x),

e 7→ −θ(e),
d 7→ −θ(d),

θδ :


x 7→ θ(x),

e 7→ −θ(e),
d 7→ −θ(d)− θ(x).

In particular, for every φ we have θφ(x) =±θ(x) and θφ(e) =±θ(e).
We claim that θa and θa′ are equivalent if and only if a≡±a′ (t).

For suppose that θa′ = cθφa for some c ∈ Z∗N and φ ∈Aut(Λ). Then, by

replacing c by −c if necessary, we may assume that θa′(x) = cθa(x) and

θa′(e) =±cθa(e), which gives c≡ 1 (m) and a′ ≡±ca (n). It follows that

a≡±a′ (t). Conversely, suppose that a≡±a′ (t). Then by Lemma 3.1 there

exists c, such that c≡ 1 (m) and c≡±a′a−1 (n), where a−1 denotes the

inverse of a modulo n. Note that such c is relatively prime to m and n, and

hence to N/2. If N/2 is odd, then we can take c to be odd as well, so that

c ∈ Z∗N . Now θa′(x) = cθφa (x) and θa′(e) = cθφa (e), where φ= id or φ= δ. If

N/2 is odd, then necessarily also θa′(d) = cθφa (d), whereas if N/2 is even,
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then possibly cθφa (d) = θa′(d) +N/2, in which case it suffices to replace c by

c+N/2.

Summarizing, on one hand each element of Z∗t is the residue mod t of

some a ∈ Z∗n defining BSK-map θa by Lemma 3.2. On the other hand θa
and θa′ are equivalent if and only if a≡±a′ (t). So the elements of the

quotient group Z∗t /{±1} parametrize the equivalence classes of BSK-maps

(although it might happen that for a particular representative x ∈ Z∗t , θx is

not a BSK-epimorphism, because x /∈ Z∗n). Therefore, we have ϕ(t)/2 classes

for t > 1 and 1 class for t= 1.

Proof of Theorem 2.7. Suppose that θ : Λ→ ZN is a BSK-epimorphism,

such that Γ = ker θ is a nonorientable bordered surface group with k empty

period cycles. As in the proof of the previous theorem, we have θ(c) = 0

and θ(e) has order n=N/k. Since Γ contains a nonorientable word, θ(d) is

equal to θ(w) for some word w in x and e. It follows that ZN is generated

by θ(x) and θ(e), hence N = lcm(m, n). By multiplying θ by an element of

Z∗N , we can assume that θ = θa defined by (9) for some a ∈ Z∗n and some b

for which (10) is satisfied.

Now, if N is odd then for arbitrary a ∈ Z∗n we have a unique b satisfying

(10). By the same argument as in the previous proof, θa is equivalent to θa′

if and only if a≡±a′ (t), and hence there are ϕ(t)/2 equivalence classes of

BSK-epimorphisms if t > 1, and one such class if t= 1.

For the rest of the proof assume that N is even. By (10), N/m+ aN/n=

n/t+ am/t is even, which is possible if and only if n/t and m/t are both

odd, hence nm/t2 =N/t is odd. Now θa(d) is determined by a only modulo

N/2:

b=−1

2

(
N

m
+ a

N

n

)
+ ε

N

2

for some ε ∈ Z2. We claim that given a, a′ ∈ Z∗n, θa and θa′ are equivalent if

and only if either

(1) a≡ a′ (t) and θa′(d) = cθa(d), where c is the unique element of Z∗N
satisfying c≡ 1 (m) and ca≡ a′ (n); or

(2) a≡−a′ (t) and θa′(d) = c(θa(d) + θa(x)), where c is the unique element

of Z∗N satisfying c≡−1 (m) and ca≡ a′ (n).

To prove the claim suppose that θa′ = cθφa for some c ∈ Z∗N and

φ ∈Aut(Λ). By Lemma 5.2, we may suppose that φ ∈ {1, γ, δ, δγ}. If φ= 1

or φ= γ, then after replacing c by −c in the latter case, we have θa′(x) =
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cθa(x), θa′(e) = cθa(e) and θa′(d) = cθa(d). Thus c satisfies c≡ 1 (m) and

ca≡ a′ (n). By Lemma 3.1, such (unique) c exists if and only if a≡ a′ (t).
Similarly, if φ= δ or φ= δγ, then after replacing c by −c in the former case,

we have θa′(x) =−cθa(x), θa′(e) = cθa(e) and θa′(d) = c
(
θa(d) + θa(x)

)
.

Such (unique) c again exists if and only if a≡−a′ (t). This completes the

proof of the claim.

Suppose t > 2. It follows from the previous paragraph that there is a

surjection π from the set of equivalence classes of BSK-maps onto Z∗t /{±1},
defined by π([θa]) = [[a]t], where a ∈ Z∗n. We claim that π is a 2-over-one

map. For let θa be a BSK-map defined by (9) and define θ′a by

θ′a(x) =N/m, θ′a(e) = aN/n, θ′a(d) = b+N/2.

Evidently π(θa) = π(θ′a), but θa is not equivalent to θ′a. For if they were

equivalent, then (1) would be satisfied with c= 1, hence b= b+N/2. Now

if π(θa′) = π(θa) for some a′ ∈ Z∗n, then θa′ is equivalent either to θa or to

θ′a, by (1) if a′ ≡ a (t), or by (2) if a′ ≡−a (t).

Finally, suppose t= 2. By (1) every BSK-map is equivalent to θ : Λ→ ZN
such that θ(x) =N/m and θ(e) =N/n. Fix such θ and define θ′ by θ′(x) =

θ(x), θ′(e) = θ(e), and θ′(d) = θ(d) +N/2. We have to show that θ and θ′

are equivalent. Let c be the unique element of Z∗N such that c≡−1 (m) and

c≡ 1 (n). By (2) it suffices to show that θ′(d) = c(θ(d) + θ(x)). We have

2cθ(d) =−c(θ(x) + θ(e)) = θ(x)− θ(e) = 2(θ(x) + θ(d)).

Either cθ(d) = θ(d) + θ(x) or cθ(d) = θ(d) + θ(x) +N/2. The former equal-

ity is not possible, because θ(x) =N/m is odd and θ(d)(c− 1) is even. Hence

c(θ(d) + θ(x)) = cθ(d)− θ(x) = θ(d) +N/2 = θ′(d).

It follows that all BSK-maps Λ→ ZN are equivalent.

6.7 Actions with a 2-punctured disc as the quotient orbifold

This case concerns an NEC-group Λ with signature (0; +; [m, n]; {( )})
from Lemma 4.3 which has the presentation

〈x1, x2, c, e | xm1 = xn2 = c2 = x1x2e= 1, ec= ce〉.

We have µ(Λ) = 1− 1/m− 1/n.
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Proof of Theorem 2.8. Suppose that θ : Λ→ ZN is a BSK-map. Since

ker θ contains a reflection, θ(c) = 0 and it follows by (a) of Lemma 4.2 that

S is orientable. By (b) of Lemma 4.2 we have k =N/l, where l is the order

of θ(e). Since θ is a surjection, ZN is generated by θ(x1), θ(x2) which have

orders m and n respectively and θ(e) =−(θ(x1) + θ(x2)) has order l. It

follows that the conditions (i) and (ii) of Lemma 3.3 are satisfied, in partic-

ular N = lcm(m, n). Let (A, A1, A2, A3) be the Maclachlan decomposition

of (m, n, l), as above. We have t=AA3, A1 = n/t, A2 =m/t and A3 = k.

We see that k divides t, and because A3 is relatively prime to A1A2, k is

relatively prime to nm/t2 =N/t. It follows that k divides t/(t, N/t). Finally,

if N is even, then by (ii) of Lemma 3.3, one of the numbers k, n/t, m/t must

be even. It follows that k must be even if N/t= nm/t2 is odd. Conversely,

having k, n, m, N satisfying the conditions of the theorem, one can easily

define, using Lemma 3.3, an appropriate BSK-map defining a surface and

an action in question.

Every BSK-map is equivalent to θa : Λ→ ZN defined by

θa(x1) =A1, θa(x2) = aA2, θa(e) =−(A1 + aA2), θa(c) = 0

for some a ∈ L, where

L= {a ∈ Z∗n |A1 + aA2 has order l}.

Suppose first that m 6= n. Let S = {c ∈ Z∗N | c≡ 1 (m)}. For a, b ∈ L, we

claim that θa and θb are equivalent if and only if b≡ ca (n) for some

c ∈ S. Indeed, suppose that θb = cθφa for some φ ∈Aut(Λ) and c ∈ Z∗N . By

Lemma 5.4, either θa(φ(xi)) = θa(xi) for i= 1, 2, or θa(φ(xi)) =−θa(xi) for

i= 1, 2. By changing c to −c in the latter case, we have A1 = cA1 and

bA2 = caA2, and the claim follows. Thus, the equivalence classes of BSK-

maps are parametrized by the orbits of the action of S on L. Since this

action is free, the number of orbits is |L|/|S|. Let B =A/C = t/kC and

write B =B1B2B3, where for i= 1, 2, 3 each prime dividing Bi divides Ai.

By [2, Theorem 3.4] we have

|L|= ϕ(A1B)ψ(C) = ϕ(A1B1)ϕ(B2)ϕ(B3)ψ(C).

We also have

|S|= ϕ(N)

ϕ(m)
=
ϕ(A1B1)ϕ(A2B2)ϕ(A3B3)ϕ(C)

ϕ(B1)ϕ(A2B2)ϕ(A3B3)ϕ(C)
=
ϕ(A1B1)

ϕ(B1)
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|L|/|S|= ϕ(B1)ϕ(B2)ϕ(B3)ψ(C) = ϕ(B)ψ(C).

This completes the proof in the case m 6= n.

Now suppose that m= n. This common value is equal to N and we have

A1 =A2 = 1 and

L= {a ∈ Z∗N | 1 + a has order l}.

Now θa(β(x1)) = θa(x2) and θa(β(x2)) = θa(x1) for β ∈Aut(Λ) from

Lemma 5.4. Consequently, θa and θb are equivalent if and only if either

a= b or ab= 1. It follows that the number of equivalence classes of BSK-

maps is (|L|+ I)/2, where I is the number of a ∈ L for which a2 = 1. As in

the case m 6= n, we have |L|= ϕ(B)ψ(C), where C is the biggest divisor of

l coprime with k, and B = l/C.

In order to compute I, suppose that a2 = 1 for some a ∈ L. We have

N = kBC, and since kB and C are coprime, ZN ∼= ZkB ⊕ ZC . Under this

isomorphism, we write a= (a1, a2), where a1 ∈ Z∗kB and a2 ∈ Z∗C . We have

a21 ≡ 1 (kB) and a22 ≡ 1 (C). Since 1 + a has order l, we have 1 + a1 = ks for

some s ∈ Z∗B and 1 + a2 ∈ Z∗C .

In suitable rings we have

0 = 1− a2i = (1 + ai)(1− ai).

Since (1 + a2) is invertible in ZC , a2 = 1. In ZkB we have

0 = (1 + a1)(1− a1) = ks(2− ks).

Since s is invertible, it follows that B divides 2− ks, hence (B, k) 6 2.

Observe that every prime divisor of B divides k, hence also (B, k). It follows

that B is a power of 2. If B 6 2 then s= 1 and a= (a1, a2) = (k − 1, 1). If

B = 2z for z > 1, then k/2 is coprime to B/2. Let k′ ∈ Z∗B/2 denote the

inverse of k/2. Then, since B/2 divides 1− sk/2, we have s≡ k′ (B/2), and

hence s= k′ or s= k′ +B/2. Summarizing, we have

I =


2 for B = 2z, z > 1,

1 for B 6 2,

0 otherwise.

To finish the proof, observe that since ψ(C) is odd, and ϕ(B) is even if and

only if B > 2, we have I ≡ ϕ(B)ψ(C) (mod 2). It follows that (|L|+ I)/2 =

d|L|/2e if I 6= 2.
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6.8 Actions with a 1-punctured annulus as the quotient orbifold

This case concerns an NEC-group Λ with the signature

(0; +; [m]; {( ), ( )})

from Lemma 4.3 which has the presentation

〈x, e1, e2, c1, c2 | xe1e2 = xm = c21 = c22 = 1, e1c1 = c1e1, e2c2 = c2e2〉.

We have µ(Λ) = (m− 1)/m.

Proof of Theorem 2.9. Suppose that θ : Λ→ ZN is a BSK-map, such

that Γ = ker θ is a nonorientable bordered surface group. Then, since Γ is

bordered, some of the canonical reflections, say c1 belongs to Γ. Furthermore,

by (b) of Lemma 4.2, the order of θ(e1) is N/k. But since Γ is nonorientable,

it contains a nonorientable word, by (a) of Lemma 4.2, which is possible if

and only if θ(c2) =N/2 and N/2 is in the subgroup of ZN generated by θ(x)

and θ(e1), and thus we obtain the condition N = lcm(m, N/k). Conversely,

if the last condition is satisfied, then for a ∈ Z∗N/k we can define a BSK-map

θa(x) =N/m, θa(e1) = ak, θa(e2) =−(N/m+ ak),

θa(c1) = 0, θa(c2) =N/2,

and every BSK-map is equivalent to some θa. Let a, a′ ∈ Z∗N/k and suppose

that θa′ = cθaφ for some c ∈ Z∗N and some φ ∈Aut(Λ). By Lemma 5.3, θaφ

maps (x, e1) on ±(N/m, ak) and so by replacing c by −c if necessary in the

latter case, we obtain that

θa′(x) = cN/m, θa′(e1) = cak, θa(e2) =−c(N/m+ ak),

θa(c1) = 0, θa(c2) =N/2,

which give c≡ 1 (m) and a′ ≡ ca (N/k). As in the proof of Theorem 2.6, we

conclude that θa and θa′ are equivalent if and only if a′ ≡ a (t), and hence,

the number of equivalence classes of such BSK-maps is ϕ(t).

As we already mentioned in Section 2, the case of orientable S is much

more involved.

Proof of Theorem 2.10. Suppose that an action exists and let θ : Λ→ ZN
be the corresponding BSK-map. Since S is bordered, ker θ contains at least

one canonical reflection, and we can assume θ(c1) = 0. We consider two

cases: (1) θ(c2) 6= 0 and (2) θ(c2) = 0.
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Case 1. θ(c2) 6= 0. By (b) of Lemma 4.2, θ(e1) has order N/k, in particular

k|N . Since S is orientable, θ(x) and θ(e1) generate the subgroup of index 2

of ZN , by (a) of Lemma 4.2. Hence N = 2lcm(m, N/k), and θ(c2) =N/2 is

odd. Conversely, if (1) is satisfied, then for each a ∈ Z∗N/k we can define a

BSK-map θ1a : Λ→ ZN by

θ1a(x) =N/m, θ1a(e1) = ak, θ1a(e2) =−(N/m+ ak),

θ1a(c1) = 0, θ1a(c2) =N/2.

Case 2. θ(c2) = 0. Let li denote the order of θ(ei) and set ni =N/li for

i= 1, 2. Then, by (b) of Lemma 4.2 we have n1 + n2 = k. Now θ(x), θ(e1)

and θ(e2) generate ZN and hence the triple (l1, l2, m) satisfies the conditions

of Lemma 3.3. Consider the Maclachlan decomposition of (l1, l2, m)

l1 =AA2A3, l2 =AA1A3, m=AA1A2.

We have A1 = n1 = n, A2 = n2, A3 =N/m and the conditions (a), (b), (c)

follow from the properties of the Maclachlan decomposition. Conversely,

if (2) is satisfied, then by Lemma 3.3, ZN is generated by three elements

a, b and c of orders m, l1 and l2, respectively such that a+ b+ c= 0. We

define θ2 : Λ→ ZN by

θ2(x) = a, θ2(e1) = b, θ2(e2) = c, θ2(c1) = θ2(c2) = 0.

This completes the proof of assertion (i).

Now we shall find the number of conjugacy classes of actions. The proof

of assertion (ii) is analogous to that of Theorem 2.9 and we omit it.

To prove (iii), consider the Maclachlan decomposition (A, A1, A2, A3) of

the triple (N/n, N/(k − n), m). We have A1 = n, A2 = k − n, A3 =N/m

and A=m/(n(k − n)). Every BSK-map is equivalent to θ2a : Λ→ ZN defined

by

θ2a(e1) =A1, θ2a(e2) = aA2, θ2a(x) =−(A1 + aA2),

θ2a(c1) = θ2a(c2) = 0

for some a ∈ L, where

L= {a ∈ Z∗N/(k−n) |A1 + aA2 has order m}.

It follows form Lemma 5.3, that for a, a′ ∈ L, θ2a is equivalent to θ2a′ if and

only if a′ = ca for some c≡ 1 (N/n), or aa′ = 1, the latter being possible only
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for n= n− k = 1. Now, the formulas for the number of equivalence classes

of BSK-maps can be obtained by repeating the calculations from the proof

of Theorem 2.8. The assertion (iv) is evident.

Theorem 2.10 has some delicate subtlety which we illustrate with two

remarks and two examples.

Remark 6.1. For some triples (N, m, k) both conditions (1) and (2) are

satisfied, as for instance in Example 6.3 below. In such a case, θ1 and θ2

are not equivalent. For suppose that θ1 = cθ2φ for some c ∈ Z∗N and some

φ ∈Aut(Λ). By Lemma 5.3, φ preserves {c1, c2}, hence θ1(ci) = cθ2φ(ci) = 0

for i= 1, 2. This is a contradiction, because θ1(c1) 6= θ1(c2).

Remark 6.2. Suppose that N, m, k satisfy the condition (2), and let

θ21 and θ22 be BSK-maps, where θ21(e1), θ
2
1(e2) have orders N/n1, N/n2,

where n1 + n2 = k and θ22(e1), and θ22(e2) have orders N/n′1, N/n
′
2, where

n′1 + n′2 = k. If {n1, n2} 6= {n′1, n′2} then θ21 and θ22 are not equivalent. This

follows from Lemma 5.3, because for every φ ∈Aut(Λ), θ21φ maps (e1, e2)

on ±(θ21(e1), θ
2
1(e2)).

Example 6.3. Suppose k = 2, 2m |N and N/2 is odd. Then both

conditions (1) and (2) are satisfied (n= 1 in (2)). The number of BSK-

maps of type (1) is ϕ(m) by the assertion (ii), and the number of BSK-

maps of type (2) is dϕ(m/C)ψ(C)/2e, where C is the biggest divisor of m

coprime to N/m, by the assertion (iii). By adding up these two numbers we

obtain the total number of topological types of ZN -action on S, with the

prescribed quotient orbifold. By the Hurwitz–Riemann formula, the genus

of S is N(m− 1)/2m.

Example 6.4. Consider m=N = 12 and k = 7. Then (1) is not satis-

fied, but (2) is by two different pairs {n, k − n}, namely {1, 6} and {3, 4}.
By the assertion (iii) of Proposition 2.10, for each of these pairs, the

corresponding BSK-map is unique up to equivalence. Thus we have two

different topological types of Z12-action on S, with the prescribed quotient

orbifold. By the Hurwitz–Riemann formula, the genus of S is 3.

6.9 Actions with a 3-punctured disc as the quotient orbifold

This subsection concerns NEC-groups Λ with the signatures

(0; +; [2, 3, m]; {( )}) for m= 3, 4, 5 and (0; +; [2, 2, m]; {( )})
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from Lemma 4.3 which have the presentation

〈x1, x2, x3, e, c | x21 = xn2 = xm3 = x1x2x3e= c2 = 1, ce= ec〉,

where n= 2 or n= 3.

Proof of Theorem 2.11. Suppose that θ : Λ→ ZN is a BSK-map, such

that ker θ is a bordered surface group. Then θ(c) = 0, θ(x1) = θ(x2) =N/2,

and by multiplying θ by an element of Z∗N , we may assume θ(x3) =N/m, and

hence θ(e) =−N/m. Evidently, such BSK-map is unique up to equivalence.

Since θ is an epimorphism, we have N = lcm(2, m). By Lemma 4.2, S is

orientable and has N/m boundary components. The genus of S is uniquely

determined by the Hurwitz–Riemann formula.

Proof of Theorem 2.12. Here the cyclic group ZN is generated by three

elements of orders 2, 3 and m and hence N = lcm(2, 3, m). For any BSK-

map θ : Λ→ ZN we have θ(c) = 0, and it follows from Lemma 4.2, that S

is orientable and its number of boundary components is N/l, where l is

the order of θ(e) =−(θ(x1) + θ(x2) + θ(x3)). We have θ(x1) =N/2, and by

multiplying θ by a suitable element of Z∗N we may assume θ(x2) =N/3.

For Λ with the signature (0; +; [2, 3, 3]; {( )}), any BSK-epimorphism

θ : Λ→ Z6 is equivalent to one mapping (x1, x2, x3) either on (3, 2, 2)

or (3, 2, 4). In the former case we have θ(e) = 5 and S has 1 boundary

component and genus 3. In the later case we have θ(e) = 3 and S has 3

boundary component and genus 2.

If Λ has signature (0; +; [2, 3, 4]; {( )}) or (0; +; [2, 3, 5]; {( )}), then by

Chinese reminder theorem, there is c ∈ Z∗N such that cθ maps (x1, x2, x3)

on (N/2, N/3, N/m). In both cases we have θ(e) =−1, hence S has one

boundary component. The genus of S is easily computed from the Hurwitz–

Riemann formula.

6.10 Actions with a 2-punctured disc with two corners as the

quotient orbifold

This case concerns NEC-groups Λ with signatures

(0; +; [3, m]; {(2, 2)}) for m= 3, 4, 5 and (0; +; [2, m]; {(2, 2)})

from Lemma 4.3 which have the presentation

〈x1, x2, e, c0, c1, c2 |

xn1 = xm2 = c20 = c21 = c22 = (c0c1)
2 = (c1c2)

2 = x1x2e= 1, c2e= ec0
〉
,

where n= 2 or n= 3.
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Proof of Theorem 2.13. Suppose that θ : Λ→ ZN is a BSK-map, such

that ker θ is a bordered surface group. By Lemma 4.4, we may assume that

θ(c0) = θ(c2) =N/2 and θ(c1) = 0. We have θ(x1) =N/2, and by multiplying

θ by an element of Z∗N , we may assume θ(x2) =N/m, and hence θ(e) =

N/2−N/m. Evidently, such BSK-map is unique up to equivalence. Since

θ is an epimorphism, we have N = lcm(2, m). By Lemma 4.2, S has N/2

boundary components and is nonorientable, as x1c0 is a nonorientable word

in ker θ. The genus of S is uniquely determined by the Hurwitz–Riemann

formula.

Proof of Theorem 2.14. Suppose that θ : Λ→ ZN is a BSK-map, such

that ker θ is a bordered surface group. As in the previous proof, we

can assume θ(c0) = θ(c2) =N/2, θ(c1) = 0 and θ(x1) =N/3. Since θ is an

epimorphism, ZN is generated by three elements of orders 2, 3 and m

and hence N = lcm(2, 3, m). By (b) of Lemma 4.2, S has N/2 boundary

components.

For Λ with the signature (0; +; [3, 3]; {( )}), any BSK-epimorphism θ :

Λ→ Z6 is equivalent to one mapping (x1, x2) either on (2, 2) or (2, 4). By

[3, Lemma 4.6 and Proposition 4.14], for every φ ∈Aut(Λ), φ(e) is conjugate

to e or e−1, and hence the order of θ(e) is an equivalence invariant. It follows

that the two maps described above are not equivalent. Indeed, for the first

one θ(e) = 2 has order 3, whereas for the second one θ(e) = 0 has order 1. In

both cases S is orientable, because θ(x1), θ(x2) are even, whereas θ(c0) = 3

is odd, and hence there is no nonorientable word in ker θ.

If Λ has signature (0; +; [3, 4]; {( )}) or (0; +; [3, 5]; {( )}), then by Chi-

nese reminder theorem, there is c ∈ Z∗N such that cθ maps (x1, x2) on

(N/3, N/m). It follows that θ is unique up to equivalence. For m= 4 we have

a nonorientable word x22c0 in ker θ, hence S is nonorientable. For m= 5 there

is no such word, hence S is orientable. The genus of S is easily computed

from the Hurwitz–Riemann formula.

§7. On uniqueness of actions realizing the solutions of the mini-

mum genus and maximum order problems

Throughout the rest of the paper the letter p, used before to denote

algebraic genus, will be used also to denote a prime integer, which will not

lead to any ambiguity; for the genus we assume p> 2.
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7.1 The minimum genus and maximum order problems for

finite groups acting on bordered surfaces

We start with the following easy proposition which justifies later defini-

tions.

Proposition 7.1. Let G be a finite group. Then there exists a bordered

topological surface S, which can be assumed to be orientable or not, such

that G acts on S by homeomorphisms. Furthermore, if S is assumed to

be orientable, then the action of G can be chosen to contain orientation-

reversing elements if and only if G has a subgroup G′ of index 2.

Proof. Let g1, . . . , gr be a set of generators of G and gr+1 = (g1 . . . gr)
−1.

Clearly we can assume that r > 2. Let Λ be an NEC-group with the signature

(0; +; [ ]; {( ), r+1. . ., ( )}) and let us define an epimorphism θ : Λ→G mapping

ei to gi for i6 r + 1 and all ci to 1, the identity element of G. Then, for

Γ = ker θ, we have G∼= Λ/Γ acting as a group of conformal automorphisms

on S =H/Γ, which has the conformal structure of orientable bordered

Klein surface inherited from the hyperbolic plane H. Now assume that G

contains a subgroup G′ of index 2. Assume that G′ is generated as above, let

x ∈G \G′, consider an NEC-group Λ with signature (1;−; [ ]; {( ), r+2. . ., ( )})
and define an epimorphism θ : Λ→G mapping all reflections ci to 1, ei to

gi for 1 6 i6 r + 1, er+2 to x−2, and d1 to x. Then for Γ = ker θ, we have

G∼= Λ/Γ acting as a group of conformal or anticonformal automorphisms

on S =H/Γ, where x reverses orientation. If we need the action on a

nonorientable surface, then it is sufficient to take an NEC-group Λ with

signature (1;−; [ ]; {( ), r+1. . ., ( )}) and define θ on ei, ci as above and θ(d1) =

1, in virtue of (a) of Lemma 4.2.

So, let K+(N) (resp. K−(N)) be the family of orientable (resp. nonori-

entable) bordered topological surfaces, admitting a self-homeomorphism of

order N . Denote by p= p(S) the algebraic genus of a bordered surface S and

recall that it is the rank of the fundamental group of S equal to εg + k − 1,

where g is the topological genus of S, k is the number of its boundary

components and ε= 2 or 1 if S is orientable or not. By S±p will be denoted

a bordered surface of algebraic genus p, orientable if the sign is + and

nonorientable otherwise, and similar meaning will have S±g,k.

Denote by Hp(S) the set of all periodic self-homeomorphisms of S and

consider two of its subsets H+
p (S) and H−p (S), consisting of respectively

orientation-preserving and orientation-reversing self-homeomorphisms when
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S is orientable. Finally let

K+
+(N) = {S ∈ K+(N) | ∃ ϕ ∈H+

p (S) such that #(ϕ) =N},

K−+(N) = {S ∈ K+(N) | ∃ ϕ of H−p (S) such that #(ϕ) =N},

where the operator # stands for the order. With these notations we define:

p+(N) = min{p(S) | S ∈ K+(N)}, p−(N) = min{p(S) | S ∈ K−(N)}

p++(N) = min{p(S) | S ∈ K+
+(N)}, p−+(N) = min{p(S) | S ∈ K−+(N)}

and

p(N) = min{p+(N), p−(N)}.
The calculation of the above five values is known as the minimal genus

problem. A bordered surface S is called N -minimal if p(S) attains p(N),

p±(N) or p±+(N).

Another problem of a similar type is the maximum order problem which

consists in finding, for a given p, the maximal order of a finite action on a

bordered topological surface of algebraic genus p. For G= ZN we refine this

problem by considering

N+
+ (p) = max{N | S+

p ∈ K+
+(N)}, N−+ (p) = max{N | S−p ∈ K−+(N)}

N+(p) = max{N+
+ (p), N−+ (p)}, N−(p) = max{N | S−p ∈ K−(N)}

and

N(p) = max{N+(p), N−(p)}.
These problems, of minimal genus and maximal order, were solved in [4],

and here we consider the question of uniqueness of topological type of

self-homeomorphisms of maximal order and self-homeomorphisms acting

on surfaces of minimal genus.

7.2 On topological type of cyclic actions of a given nonprime

order on bordered orientable surfaces of minimal genus

Theorem 7.2. [4, Theorem 3.2.5] Let N be a nonprime odd integer and

let p be the smallest prime dividing N . Then

p++(N) = p+(N) =


(p− 1)

N

p
if p2 |N,

(p− 1)
N − p
p

if p2 6 |N,

and the corresponding N -minimal surface has 1 boundary component.
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Corollary 7.3. The action realizing p++(N) and p+(N) given in

Theorem 7.2 is unique up to topological conjugation if p2 does not divide

N and there are p− 1 classes of such action in the other case.

Proof. In the proof of Theorem 7.2 given in [4] it is shown that the

minimum genus is realized just for an NEC-group Λ having signature

(0; +; [p, q]; {( )}),

where q =N if p2 |N , and otherwise q =N/p. We have k = 1, and t= (p, q)

is equal to p and 1 respectively. By Theorem 2.8, there are ϕ(t) topological

types of action corresponding to this signature.

Theorem 7.4. [4, Theorem 3.2.6] Let N 6= 2 be an even integer not

divisible by 4. Then p++(N) = p−+(N) =N/2− 1. Moreover any N -minimal

surface from K+
+(N) has one boundary component, whilst any such surface

from K−+(N) has N/2 boundary components.

Corollary 7.5. The actions realizing p++(N) and p−+(N) given in

Theorem 7.4 are unique up to topological conjugation.

Proof. In the proof of Theorem 7.4 given in [4] it is shown that Λ

determining the minimal genera must have signature (0; +; [2, N/2]; {( )})
in the case of p++(N) and (0; +; [N/2]; {(2, 2)}) in the case of p−+(N). In

the first case there is a unique class of such action by Theorem 2.8. In the

second case the action is unique by Theorem 2.4.

Theorem 7.6. [4, Theorem 3.2.7] Let 4 divide N . Then p++(N) =

N/2, p−+(N) =N/2 + 1. Moreover any N -minimal surface from K+
+(N) has

one boundary component, whilst any such surface from K−+(N) has 2

boundary components if 8 divides N , and otherwise 4 boundary components.

Corollary 7.7. The actions realizing p++(N) and p−+(N) given in

Theorem 7.6 are unique up to topological conjugation.

Proof. Also here it was shown in [4] that the action realizing p++(N) is

given just by an NEC-group Λ with signature (0; +; [2, N ]; {( )}) and so the

action is unique by Theorem 2.8. In turn the signature (1;−; [2]; {( )}) is the

unique one realizing p−+(N) and so this action is unique by Theorem 2.6.

7.3 On topological type of cyclic actions of a given nonprime

order on bordered nonorientable surfaces of minimal genus

Theorem 7.8. [4, Theorem 3.2.8] Let N be a nonprime odd integer and

let p be the smallest prime dividing N . Then p−(N) = (p− 1)N/p+ 1 and
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the corresponding N -minimal surface has 1 boundary component if p2 divides

N , and 1 or p boundary components if p2 does not divide N and both of these

cases can actually occur.

Corollary 7.9. The actions realizing p−(N) given in Theorem 7.8 are

unique up to topological conjugation if k = p and there are (p− 1)/2 types

of action for k = 1.

Proof. In the proof of Theorem 7.10 given in [4] it is shown that Λ

realizing the minimum genus must have signature (1;−; [p]; {( )}). So the

corollary follows from Theorem 2.7.

Theorem 7.10. [4, Theorem 3.2.9] Let N be even and N 6= 2. Then

p−(N) =N/2 and any N -minimal surface from K−(N) is a projective plane

with N/2 boundary components.

Corollary 7.11. The actions realizing p−(N) given in Theorem 7.10

is unique up to topological conjugation.

Proof. Also here it was shown in [4], that Λ must be an NEC-group

with the signature (0; +; [N ]; {(2, 2)}) and so our corollary follows from

Theorem 2.4.

7.4 On topological type of actions of a prime order N on

surfaces of minimal genus

Observe that all results from the previous section concerning minimal

genus were formulated and proved for N being nonprime. For prime N ,

more general results concerning the minimum genus p++(N, k), p−+(N, k) and

p−(N, k) of surfaces with specified number k of boundary components are

given in [4]. These functions are periodic with respect to k, and so their

knowledge obviously gives an effective way to solve the minimum genus

problem by simply taking the minimum of p∗∗(N, k) for varying k, and in this

way the problem was solved in [4]. One can however calculate the minimum

genus for a given prime N directly or using results of the previous; which

is more relevant for our purpose which is also topological classification of

actions realizing p∗∗.

Proposition 7.12. We have p++(2) = p−+(2) = p−(2) = 2. The topolog-

ical type of a Z2-action on a bordered surface of algebraic genus 2 is

determined by the surface and the quotient orbifold. Up to topological

conjugacy there are:
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• 2 actions realizing p++(2): 1 on 1-holed torus and 1 on 3-holed sphere;

• 4 actions realizing p−+(2): 2 on 1-holed torus and 2 on 3-holed sphere;

• 8 actions realizing p−(2): 3 on 2-holed projective plane and 5 on 1-holed

Klein bottle.

Proof. We shall see that p++(2) = p−+(2) = p−(2) = 2 – the smallest

admissible genus. Since in such case N = 2> 1 = p− 1 all the possible

involved signatures appear in Lemma 4.3. We are interested with the ones

with the normalized area 1/2 and we list all of them here for the reader’s

convenience:

(1) (0; +; [ ]; {(2, 2, 2, 2, 2, 2)}), (2) (0; +; [ ]; {( ), (2, 2)}),
(3) (1;−; [ ]; {(2, 2)}), (5) (0; +; [2]; {(2, 2, 2, 2)}),
(6) (1;−; [2]; {( )}) (8) (0; +; [2]; {( ), ( )}),
(9b) (0; +; [2, 2, 2]; {( )}) (10b) (0; +; [2, 2]; {(2, 2)}).

Now the signature (1) give rise to a reflection of the 3-holed sphere with

the disk with 6 corner points as the orbit space which is unique up to

topological conjugacy by Theorem 2.1. By Theorem 2.2 the signature (2)

provides four actions of Z2: on 1-holed Klein bottle, 2-holed projective plane

and orientation-reversing reflections of 1-holed torus and 3-holed sphere. By

Theorem 2.3 the signature (3) provides two actions of Z2: on 1-holed Klein

bottle and an orientation-reversing action on 1-holed torus. By Theorem 2.5

the signature (5) gives rise to one action on 2-holed projective plane. By

Theorem 2.6 the signature (6) does not provide any action on bordered

orientable surface, whereas by Theorem 2.7 it gives rise to one action on

1-holed Klein bottle. By Theorem 2.9, the signature (8) gives rise to two

actions on 1-holed Klein bottle and 2-holed projective plane, whereas by

Theorem 2.10 it gives rise to an orientation-preserving action on 3-holed

sphere. By Theorem 2.11, the signature (9b) gives rise to the orientation-

preserving action on 1-holed torus. Finally the signature (10b) gives rise

to the unique action on 1-holed Klein bottle by Theorem 2.13. Observe

also that any two actions corresponding to different signatures are not

topologically conjugate.

Observe now that for odd N , there are no surfaces admitting orientation-

reversing self-homeomorphisms of order N , and so we have to look only for

p−(N) and p++(N), and classify topologically all actions realizing them.
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Proposition 7.13. Let N be an odd prime. Then p++(N) =N − 1, and

p−(N) =N . Furthermore, in both cases the corresponding surface has k =N

or k = 1 boundary components. Up to topological conjugation, there are:

• 2 actions of order N on the N -holed nonorientable surface of algebraic

genus p−(N). The orbit spaces of these actions are 1-punctured Möbius

band and 1-punctured annulus;

• 3(N − 1)/2 actions of order N on the 1-holed nonorientable surface of

algebraic genus p−(N); N − 1 with a 1-punctured annulus and (N − 1)/2

with a 1-punctured Möbius band as orbit spaces of the actions;

• unique action of order N on the N -holed orientable surface of algebraic

genus p++(N);

• (N − 1)/2 actions of order N on the 1-holed orientable surface of algebraic

genus p++(N).

Proof. Let θ : Λ→ ZN be a BSK-epimorphism defining an action of ZN
on a bordered surface. Then Λ has an empty period cycle in order to produce

holes in the corresponding surface X =H/Γ for Γ = ker θ. Now all periods

in Λ, if exists, are equal to N and so (0; +; [N, N ]; {( )}) is the signature of

Λ with the minimal possible area here.

On the other hand Theorem 2.8 asserts that such an epimorphism indeed

exist, and the corresponding surface is orientable and has N or 1 boundary

components. Furthermore, up to topological equivalence, there is unique

such action or dψ(N)/2e= (N − 1)/2 actions respectively. This completes

the part of the proof concerning p++(N) and also shows that for the study

of p−(N) and its attainments, we need to consider NEC-groups with bigger

area.

The second smallest area in this case have NEC-groups Λ with signatures

(1;−; [N ]; {( )}) and (0; +; [N ]; {( ), ( )})

which indeed, due to the Hurwitz–Riemann formula, concern actions of

ZN on surfaces of algebraic genus p=N . In the first case, such action

indeed exists by Theorem 2.7. Furthermore, the corresponding surface has

N or 1 boundary components and therefore, up to topological conjugacy,

the corresponding action is respectively unique or there are (N − 1)/2

topological classes of such actions. The second signature may realize ZN -

actions both on orientable (Theorem 2.10) and nonorientable (Theorem 2.9)

surfaces and in the latter case either k =N and the action is unique, or
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k = 1 and there are N − 1 actions up to topological conjugation mentioned

in Theorem 2.9.

7.5 On topological type of cyclic actions of maximal order on

bordered surfaces of given algebraic genus

Theorem 7.14. [4, Theorem 3.2.18] Let p> 2 be an integer. Then

• N−(p) = 2p;

• N+
+ (p) =

{
2(p+ 1) if p is even,

2p if p is odd;

• N−+ (p) =

{
2(p+ 1) if p is even,

2(p− 1) if p is odd.

In particular

N+(p) =

{
2(p+ 1) if p is even,

2p if p is odd,
and

N(p) =

{
2(p+ 1) if p is even,

2p if p is odd.

Corollary 7.15. All actions realizing the solutions of the maximum

order problem described in Theorem 7.14 are unique up to topological

conjugacy.

Proof. By the proof of [4, Theorem 3.2.18], N−(p) for arbitrary p and

N−+ (p) for even p are realized by NEC-groups with signatures

(0; +; [2p]; {(2, 2)}) and (0; +; [p+ 1]; {(2, 2)})

respectively, and so these actions are unique by Theorem 2.4. Next, N+
+ (p)

is realized by signatures

(0; +; [2, p+ 1]; {( )}) and (0; +; [2, 2p]; {( )})

for p even and odd respectively, the corresponding surface has one boundary

component, and so these actions are unique by Theorem 2.8. Finally, N−+ (p)

for odd p is realized by signature (1;−; [2]; {( )}), and the corresponding

surface has 2 boundary components if 4 divides p− 1 and 4 boundary

components otherwise, so this action is unique again by Theorem 2.6.
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