3
First Contact: the Proper Category

3.1 Overview

Having given some idea of the kinds of manifolds to which the Borel conjecture
applies directly in Chapter 2, we consider now the effect of modifying Borel’s
heuristic. Taking light of Prasad’s (1973) extension of Mostow rigidity to the
case of nonuniform lattices, we ask whether topological rigidity holds in this
context?

It was already noticed in the early 1980s that this is not the case. Making
use of Borel’s calculations of the stable cohomology of SL,(Z), Farrell and
Hsiang observed that for n >200 and T a torsion-free subgroup of finite index
in SL,,(Z), the quotient SO, \SL,,(R)/SL,,(Z) is a not “properly rigid;” i.e. there
are infinitely many manifolds M not homeomorphic to SO, \SL,(R)/SL,,(Z),
but proper homotopy-equivalent to it.

Actually this happens iff n > 4 (and, moreover, the same is true for any
number rings in place of Z) as we will §3.7.!

The goal of this chapter is to explain this in its natural setting, using it as an
excuse to explain some aspects? of the structure of K\G/T,3, Property (T),* L?
cohomology?, and some surgery theory that we will need in later chapters. Not
as critical on utilitarian grounds, but nevertheless important, are discussions of

Actually, we will only explain the failure of proper rigidity if n > 3; its affirmative solution
depends on the “Borel conjecture with coefficients” and will have to wait till later.

The next several footnotes are intended for the more expert reader.

The discussion of which is also relevant to the proof of the Novikov conjecture for linear
groups explained in Chapter 8.

Which we will use, as is traditional, in the construction of expanders, which are relevant to the
failure of forms of the Baum—Connes conjecture.

Which is used in the proof of the flexibility theorem later that affirms a consequence of the
Farrell-Jones conjecture and of the Baum—Connes conjecture unconditionally.

W
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32 First Contact: the Proper Category

the cohomology of arithmetic groups (ultimately these discussions go to the
very meaning of the conjecture),® and superrigidity.

The outline of the chapter is as follows: we will first explain the overall shape
of K\G/I' (which is a far-reaching generalization of the classical nineteenth-
century reduction theory of binary quadratic forms) and give some informa-
tion about the Borel-Serre compactification of this manifold (Borel and Serre,
1973). Then we will discuss some generalities about the cohomology of arith-
metic groups and describe Borel’s results on these groups.

Assembling all of this with some surgery theory, we will see a critical
role played by the Q-rank. The case of Q-rank = 0 corresponds to the compact
manifolds, i.e. the Borel conjecture in its usual sense, and if Q-rank < 3, it turns
out that these noncompact manifolds behave (for the purposes of topological
rigidity) just like the compact case, and results explained later in the book
will give their proper rigidity. Nonrigidity will immediately follow from the
combination of surgery theory with Borel’s calculations for very large n (as
mentioned above, n > 176).

Both for the purpose of lowering n and for allowing a wider range of Lie
groups (and for the purposes of later developments) we digress and explain
several important properties of lattices in higher-rank groups, and of certain
linear groups.

The first of these topics is strong approximation. This property of linear
groups will give us control on certain finite quotients of linear groups. We will
need this only in this chapter, so our discussion will be brief.

We then turn to Kazhdan’s Property (T). Our focus will merely be on defi-
nitions, and we leave to other sources serious discussions of the scope of this
property and its remarkable applications. These ingredients are then assembled
and combined with superrigidity’ to show that any lattice that has Q-rank > 3
has a finite sheeted cover that is not properly rigid.

This proper rigidity we thus obtain is somewhat weaker than one would hope:
it asserts the existence of a proper homotopy equivalence f: M — K\G/T that
is not properly homotopic to a homeomorphism. We will need to work harder
to ensure that M is not homeomorphic to K\G/I" (by some other map), and
that M is smoothable, and to get the set of such Ms to be infinite. For these
we will use a mix of tools from comparison to the Lie algebra mod p, to the
Baily—Borel compactification in the Hermitian case, to the use of “generalized
modular symbols” of Ash and Borel (1990), in order to give a definitive solution
for all SL,,(O) (with O a number ring) and for all T of Q-rank > 3. (Alas, at

6 As the cohomology of groups gives rise to geometric consequences via the Novikov conjecture.
7 The extension of linear representations from lattices to the semisimple Lie groups that contain
them.

https://doi.org/10.1017/9781316529645.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781316529645.004

3.2 K\GT and its Large-Scale Geometry 33

the time of this writing, for example, the proper rigidity properties of certain
lattices in E7 are still not well understood.)

We close the chapter by considering the morals of this story, a reexamination
of the forest having focused on particular trees. Despite the failure of proper
rigidity, we consider noncompact variations of rigidity that actually are true for
these locally symmetric spaces. We also discover a role for functoriality in this
problem — an aspect which could seem surprising given that the initial problem
is purely about certain very specific and beautiful objects.

3.2 K\GT and its Large-Scale Geometry

... in which we encounter the Tits building and the Borel-Serre
compactification®

If G is a connected Lie group, then it has a maximal compact subgroup K,
which is unique up to conjugacy. Topologically, K\G is contractible. Give G
a right invariant and K bi-invariant metric. If G is semisimple (i.e. has no
normal solvable subgroups), then K\G gets a complete metric of non-positive
curvature.

As discussed in Chapter 2, G often contains lattices. We shall assume (for
simplicity) that G is given the structure of linear algebraic group defined over
Q. The first lattices one thinks of are G(Z) and its congruence subgroups, i.e.
matrices lying in G(Z) that are =Imod n. (We have to do this if we want to
restrict attention to torsion-free lattices so that K\G/I" is a manifold — the
quotient space being a manifold means that the action of I' on K\G is free: the
isotropy of the action of I" on the right has to be a compact subgroup of the
discrete group I', and hence finite, and will be trivial when I is torsion-free.
Conversely, when I' has torsion, each element of finite order has a fixed point
in K\ G, making the quotient an orbifold.)

The possibility of other algebraic number fields is not essentially eliminated
by this condition, because of the method of restriction of scalars: the group
SL,(Z+/2) is a lattice in SL,(R) x SL,(R). For uniform lattices, as we saw
in §2.2, there are other arithmetic lattices that come from G having compact
forms that are Galois conjugate to the given form — because a lattice in G x G’
gives us one in G by projecting if G’ is compact (or alternatively, G and G X G’
are isomorphic after modding out by their maximal compact subgroups). For
the noncompact case, these more subtle lattices don’t play a role — since all the
forms must be noncompact (because I' contains unipotents and compact groups
do not), so the definition of arithmeticity is somewhat less subtle in this case.

8 With apologies to A.A. Milne
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While our focus in Chapter 2 was on the compact case, here we are interested
in what occurs in the noncompact case. An important theorem of Borel and
Harish-Chandra® “blames” noncompactness on a “Q-split torus” for G.

Let us follow this subgroup around in the simplest situation SL,(Z). We will
see an even more precise picture than mere noncompactness.

In SO(n)\SL,,(R) we can consider the torus of diagonal matrices (such that
the product of their entries is 1). As a space of tori, these are the “rectangular”
tori. Taking the logs of these eigenvalues, we get a map to R"~! (the elements
of R that have the sum of their components equal to 0). The symmetric group
%, acts on this by permutation — without loss of generality, we can assume that
the eigenvalues are listed in increasing order. This gives us a polyhedral cone
in R"! and a subset of SO(n)\SL,(R)/SL,(Z). This subset gives us a very
good large-scale picture of this quotient manifold: for example, this embedding
is essentially undistorted, and every point in the quotient space is of uniformly
bounded distance to a point of this sector. Moreover, this statement is true if
Z is replaced by integers in a totally real field. Although the real Lie group
this embeds in a product of SL, (R)s, the effect of taking the quotient by the
action of SL,,(0) is to cuts it down to the size of the polyhedral cone that is the
quotient of the maximal flat.!® The proofs of these kinds of statements are the
subject of “reduction theory,” developed by C.L. Siegel (1988), A. Borel, and
their successors (see Borel and Ji (2005) for a modern account).

For other lattices we will have to glue together copies of this sector according
to some combinatorial description governed by the theory of Tits buildings —
which records the combinatorics of the parabolic subgroups. All of this is first
most easily observed in yet another, even simpler, example, the product of
hyperbolic manifolds [] M;. After discussing this toy example, we will return
to SO(n)\SL,(R)/SL,,(Z) and the general case.

Each noncompact hyperbolic manifold M has a core, with cusps coming off.
Pick a base point, and a sequence of points going towards infinity in each of
the cusps. The geodesics connecting this base point to those points converge to
a finite union of geodesic rays, each of which is isometrically embedded in the
manifold (see Figure 3.1).

This union of geodesics looks like an asterisk with one “prong” for each
cusp; we denote this by A. (This is the direct analogue of the polyhedral cone
from the SL,,(Z) case.)

One can imagine a map from M to A, roughly mapping each point to the

9 See Borel and Harish-Chandra (1961).

10 This is very much like the phenomenon that occurs in the Dirichlet unit theorem, where all of
the directions in logarithm space for the various embeddings of the units just curl it up into a
torus.
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Figure 3.1 Adapted from Thurston’s notes

point on the asterisk closest to it, (and then modifying it slightly on a compact
set, arrange the map so that the inverse image of the base point is the core of
M, and the inverse image of any point in one of the rays is a “flat manifold
horospherical section” of the cusp.

Let me elaborate on the terminology.

The isometry group of hyperbolic space H" is O(n, 1) — which we will imagine
via the ball model. The isometries form three classes: elliptic, hyperbolic, and
parabolic. Each elliptic element has fixed points in the interior, and lies in
a maximal compact. (The action of the isometry group is transitive, so what
fixes one point is conjugate to what fixes any other point: hence, the maximal
compact subgroup is unique up to conjugacy.)

Hyperbolic elements act via translation along a geodesic (with some rotation
in the normal direction.!'!) A parabolic element has a unique fixed point on the
boundary sphere at co.

Given such a fixed point, the horosphere going through that point can be
defined as follows. Choose a unit speed geodesic y going from p to a specific
point at co. Now consider the sphere of radius R centered at y(R). The limit set
of these spheres is an orbit O(n, 1), /O(n, 1). The isotropy group is a parabolic
subgroup, which is isomorphic to the semidirect product O(n — 1) <R"~! which
is the isometry group of R"~!.

(In general, parabolic subgroups are those subgroups that contain a Borel

11" Following Thurston (2002), we do not distinguish between hyperbolic isometries and
“loxodromic” ones.
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subgroup, i.e. a maximal connected solvable group. They are the isotropy
groups of points on the boundary of K\G.)

Now let us return to our hyperbolic manifold with a number of cusps. Lifting
the geodesics associated to the cusps gives a finite set of points on the boundary,
which are fixed points of nontrivial parabolics. The subgroup of I" fixing a
(lifted) cusp acts as a lattice on the horosphere. The quotient is a flat manifold
(which is a cross section of the cusp — choosing another point p on y would
give a parallel cross section).

The product of a number of hyperbolic manifolds both contains and maps
to the corresponding product of asterisks, which is a polyhedral cone whose
dimension in the Q-rank of this product lattice. '?

Note that the inverse image of a point in this cone depends strongly on which
face that point lies on. It will be a product of some number of cores and some
number of flat manifolds. (Note that by taking finite covers of this product, we
can mangle the product structure, but will still get a similar union of flat pieces
approximating the manifold.)

For SL,, the picture is similar. We’ve seen the cone, and the inverse of
a point in the interior of the top simplex is a nilmanifold: isomorphic to
UT(n,R)/UT(n,Z), where UT(n,?) denotes the group of upper triangular ma-
trices with (1s on the diagonal and) entries in ‘?’.

Recall that a point in the top simplex corresponds to a diagonal matrix,
whose eigenvalues are distinct. This unitary group is the unipotent subgroup of
the matrices that preserve the flag given by these subspaces. A point in a dif-
ferent simplex corresponds to some coincidences among eigenvalues. At these
points, one has an incomplete flag and normal to it one has a “genuine” lattice
part (corresponding to a product of SLs associated to the various combined
eigenspaces) with a nilpotent bundle over that associated to the unipotents that
are the identity module the flag.

As one moves towards infinity, the unipotent pieces have volume that decays
rapidly to 0,'3, and that is what accounts for the finiteness of the volume of
these nonuniform lattices. The lattice part stays bounded in size (but does not
shrink ).

12 Here by Q-rank we merely mean the number of noncompact hyperbolic factors, whether or not
they are arithmetic. As a consequence of Margulis’s arithmeticity theorem, all, even
non-arithmetic lattices, can be approximated by finite polyhedral cones, defining for us Q-rank
even when there is no Q-structure! The reason is that there is such a structure for negatively
curved manifolds, and everything is virtually a product of negatively curved homogeneous
spaces and arithmetic ones.

A nilmanifold is essentially “an iterated fiber bundle of torus on top of torus and so on”. The
layers shrink at different rates. Gromov (1978) has shown that manifolds with metrics of
bounded curvature but diameter going to O are finitely covered by nilmanifolds.

14 This is also similar to what occurs in the case of a product of hyperbolic manifolds — the
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Another concrete case for which the calculations are not difficult is the case
of Hilbert modular groups,'®> I' = SL,(Or) where F is a totally real field of
degree d. In that case, there are finitely many cusps (equal to #(OF), the class
number of the ring!®). This group acts on a product of d hyperbolic planes
(where d = [F; Q]). The cusps are actually solvable manifolds.!” The bounded
part is a torus corresponding to OF.. The fiber is the torus R?/OF and the
monodromy of this bundle is the action of O}, on Of. The base torus stays
of bounded size as one goes down the cusp (it takes some distance to work
up the twist corresponding to a nontrivial unit), while the fiber torus decays
exponentially by homothety as one goes down the cusp.

Now let us work in general, guided by these special case. If G is a linear
algebraic group defined over Q, we shall define a simplicial complex, the Tits
building of G using the parabolic subgroups of G. The minimal parabolic is B,
by definition, the Borel subgroup, and G itself is the maximal parabolic.

To a parabolic P we associate a simplex op so that op C o iff Q C P. The
group G corresponds to the empty simplex. The maximal simplices correspond
to (conjugates of a) Borel'® subgroup.

It is a very nice theorem of Solomon and Tits (proved rather geometrically:
see, e.g., Abramenko and Brown, 2008) that this complex has the homotopy
type of a wedge of spheres of dimension g — 1 (where ¢ = Q-rank).

The Borel-Serre compactification (Borel and Serre, 1973) of K\G/T is a
compact manifold'® with boundary so that K\G/T is its interior. Actually, it
has a more refined structure: it has the structure of a manifold with corners —
and this structure carries a great deal of geometry in it, but we will not need
this.

The compactification takes place on K\G, and is G(Q)- (but not G(R)-)
equivariant. Associated to P we have a Euclidean space ep so that dimep +
dimop = g — 1. These open cells are disjoint, but ep C cl(egp) iff P C Q.

The corner structure comes like this. The unipotent subgroup of P acts
on K\G as a free (R,*)3™(@r)*1_proper action. Include each orbit into the

inverse images of points that are not in a top simplex have bounded diameter, which does not
go to 0 as the point moves to infinity. Of course, the volumes of these point inverses go to 0
very rapidly, or the locally symmetric manifold could not be finite volume.

See Freitag (1990) for a crystal clear explanation.

For congruence subgroups, the number of cusps is the order of a ray class group.

That non-nilmanifolds arise is because here G has rank greater than 1, and we are dealing with
nonpositive curvature rather than strict negative curvature.

It is not instantly obvious that this is a simplicial complex. A hint is that for simple algebraic
groups, the conjugacy classes of parabolic subgroups are in a 1-1 correspondence with subsets
of the nodes of the Dynkin diagram.

Actually, when I has torsion, it is an orbifold.
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(R, *)dim@r)+1_gpace ([0, 00))4im(@P)+1 One can thus compactify each orbit.?”
The relations among the parabolic subgroups enable one to glue these together
to include K\G as the interior in a manifold with corners on which the G(Q)-
action extends. Borel and Serre topologize this union as a manifold so that the
action of I on it is continuous and proper discontinuous. In particular, they see
that down in the quotient, they obtain a compactification.

They also observe that the boundary of K\G so obtained has the Tits complex
as its nerve and therefore the I' cover of the d has the homotopy type of a wedge
of spheres \/ 8971

In the case of a lattice of Q-rank 1, the picture is the one of isolated cusps, and
the compactification glues onto the end a copy of the slice of the horosphere. For
a product of these manifolds, one obtains the product of these compactifications
(and, of course, the corner structure is evident in this case).

Moreover, using the fact that the universal cover of these closures are con-
tractible, it is quite easy to see that the boundaries look like joins of the
boundaries of the universal covers of the original compactified factors — and
hence an infinite wedge of spheres, \/ S¢~! (where ¢ is the Q-rank).

Note then the underlying homotopy type:

e If Q-rank = 0, then we must be compact (and the homotopy type is that
of @).

e If Q-rank = 1, then the cover of the boundary is a union of copies of the
universal cover of the boundary. Thus the Borel-Serre boundary is a (union
of) aspherical manifold(s) whose fundamental group is a subgroup of I" (of
course, it’s a lattice in the parabolic associated to that cusp).

o If Q-rank = 2, then we get a pleasant surprise, the boundary is connected —
which means that every compact subset of K\G/I" has a unique component
with compact closure (i.e., it has one end).

Moreover, the boundary is a closed aspherical manifold, since it has an as-
pherical cover, namely the regular cover associated to I', which is homotopy
equivalent to a wedge of circles.?!

This is actually a very interesting aspherical manifold that is not a lattice
in any Lie group! However it is not really a surprise to us — the Tits building
in this situation is a graph, and we have lattices associate to the nodes, glued
together according to “boundaries” along the edges>?. Like 3-manifolds, these

20 Formally, one should take an associated bundle to viewing K\G as a
(R, *)dim(eP)*+! _principal bundle using this action on the octant ([0, co))dim(p)+1,

21 Note that aspherical is equivalent to all higher homotopy groups vanishing, but higher
homotopy groups are unchanged in covering spaces.

22 For example for SL3(Z) one gets two copies of SLy(Z) < Z2 thought of as block 3 x 3 matrices
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boundaries have decompositions into geometric pieces, and it is not hard to
generalize this construction to more complicated kinds of “graph manifolds”.

The connectedness of this cover means that the map from fundamental group
at oo to I is surjective. In other words, any loop in K\G/I" can be pulled to co
(i.e. outside of any compact). However, to do this, one typically must increase
the diameter of loops.??

If Q-rank > 2, then we discover that the boundary is not aspherical (r,_; is
nonzero) — our first hint that all is not well with a proper Borel conjecture.?* As
we will see in the coming sections, because of this, when Q-rank > 2, proper
rigidity typically fails. At the end of the chapter we will try to learn some
lessons from this failure.

3.3 Surgery

Surgery theory is a framework for studying the classification of high-dimen-
sional manifolds. In this section we will describe some of the features of
surgery theory, and in particular, a situation where there are “no obstructions”.
In particular, we will explain the observation of Farrell and Hsiang (1982) that
for very large lattices the proper analogue of the Borel conjecture fails. Later
sections will show that failure is actually ubiquitous and more dramatic than
these examples show.?

Our presentation in this section is quick and dirty. Later on we will need
and give more precise, and more conceptual, discussions: the need for better
calculations requires alternative descriptions, from whose vantage point the
very nature of our central problem changes.

Atiyah (1961) observed that:

Theorem 3.1 [f one has a homotopy equivalence between closed manifolds
h: M’ — M, then there is a kind of equivalence between their stabilized tangent
bundles, namely stable isomorphism of spherical fibrations.

Let me explain. Assume first that M > m and M’ > m’ are smooth so
that they have tangent bundles, TM and TM’ respectively, in the usual sense.

(with a 2 X 2 block either on the top left or bottom right). These intersect along the Heisenberg
group U(3, Z) in SL3(Z). The fundamental group of the boundary is this amalgamated free
product. The kernel of the map of this group to SL3(Z) is an infinite-rank free group.

23 This will be (part of) the reason why we will ultimately succeed in proving a “bounded”
topological rigidity for higher-rank locally symmetric manifolds — see the discussion in the
morals, §3.8.

24 Of course, the resolution could have been that there are some special non-aspherical manifolds
that are rigid. There are some, but Borel-Serre boundaries turn out not to be among these.

25 But as we said, there are also versions of rigidity that do apply to nonuniform lattices.
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An equivalence between tangent vector bundles in the usual sense would be
a continuous family of linear isomorphisms (not necessarily the differential,
Dh, of the map) TM,, — TMyy). A stable isomorphism of such vector
bundles would be such a family TM, , X RY — TMp ) X R4 for some d.
A stable isomorphism of spherical fibrations is such a family of maps, not
necessarily linear, but which is a degree-1 proper homotopy equivalence on
each fiber. (This means that the map induces a homotopy equivalence between
the fiberwise one-point compactifications, i.e. the stable spherical fibrations.
Note that the one point compactification can be thought of as being the unit
sphere of one stabilization further.)

This implies that some invariants of the tangent bundle are homotopy invari-
ant, such as Stiefel-Whitney classes.?% However, this equivalence relation on
bundles is very weak: over a space X of finite type,?’ there are only finitely
many such equivalence classes.?® However, characteristic classes, such as the
Pontrjagin classes, allow for an infinite number of conceivable tangent bundles
for manifolds within that homotopy type.

Just as (oriented) bundles can be thought of as maps into Grassmanians,
BSO, there is a classifying space for (oriented) spherical fibrations BSF, i.e.
maps E — X whose homotopy fiber is a sphere are classified by maps X —
BSF, so that we can interpret Atiyah’s theorem as saying that the composite
map

29

M — BSO — BSF

is a homotopy invariant of compact manifolds M. The proper analogue of
Atiyah’s theorem holds as well.

So, given h: M’ — M, taking into account the automatic equivalence of
their stable tangent bundles in BSF, gives us a refined tangential data for a
homotopy equivalence:

v(h): M — F/O,

where F/O is the fiber of the map BSF — BSO. This invariant of % is called
the normal invariant of h (since it is a stable invariant, and the stable normal

26 This fact also follows from the Wu formula that gives a homotopy-theoretic description of the
Stiefel-Whitney classes in terms of the action of the Steenrod operations on the cohomology
of a manifold.

27 That is, with the homotopy type of a finite CW-complex.

28 This follows immediately from an obstruction theory — induction over the skeleta of a
triangulation — making use of Serre’s result that the stable homotopy groups of spheres are
finite.

29 That is, there is a universal bundle, and every bundle is the pullback of this bundle under a
map that is well-defined up to homotopy.
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bundle is adequate for its definition, rather than the more subtle, unstable tangent
bundle).

Another way to say this is that the two tangent bundles combine to give a
map from M to the homotopy pullback of

BSO

1
BSO — BSF,

which, of course, is homotopy equivalent to BSO x F/O, as we leave to the
reader.

Now, I should say that there is a similar discussion possible in the category
of nonsmooth, triangulable, or even topological, manifolds, which gives rise to
classifying spaces — so in the topological case, we have v(h): M — F/Top.
A first view of surgery theory is that it is about the difficulty in realizing maps
into F /O or F/Top from homotopy equivalences.

However, there is one situation where there is no obstruction at all:

Theorem 3.2 (7—r theorem) Suppose that M is a connected manifold with
nonempty connected boundary, dimM > 6, and n1(0M) — n(M) is an
isomorphism. Then every homotopy class of maps M — F[Cat (for Cat =
Diff, PL, Top ) is realized by a homotopy equivalence of pairs (M’,0M’) —
(M,0M).

A relative version of this theorem actually implies a uniqueness result for the
pair (M’,0M ').30 This theorem is immediately relevant to our situation, since
the Borel-Serre compactification, when Q-rank(I") > 2, satisfies the hypothesis
of this theorem.

We shall now review some results about the nature of these classifying
spaces.

First of all, the homotopy groups of BSF are finite, so the map G/O — BSO
is a rational homotopy equivalence.

The reason for this is not difficult: the homotopy groups of BSF corresponed
to spherical fibrations over the sphere. A spherical fibration over S” can be
thought of (just like a bundle) as the result of gluing together two trivial
bundles over the two hemispheres 7. The gluing is a map S"~! — self-
homotopy equivalences of the fiber sphere S, which is the iterated loop-space
Q'S of a sphere. A little thought then shows that the homotopy groups of BSF
are therefore the same as the stable homotopy groups of spheres, and these are
finite thanks to a theorem of Serre (see Serre, 1951).

30 Tt will be unique up to h-cobordism, or, if we work with simple homotopy equivalences, then it
will be unique up to Cat-isomorphism.
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Characteristic class theory also tells us that Pontrjagin classes give us a
rational homotopy equivalence BSO — [] K(Z,4i).

The theorem of Kervaire and Milnor (1963) on the finiteness of the number
of smooth structures on a sphere can be translated into the statement that the
homotopy of Top /O is finite, or that F/O — F/Top is a rational equivalence. !
Thus:

Theorem 3.3 There is a rational homotopy equivalence
F/Cat — ]_[ K(Q,4i).

Remarkably, Sullivan gave a complete and precise analysis of F/Top,>?
which we will explain in Chapter 4. See, for example, Rourke and Sullivan
(1971) — in itself a historically interesting paper — for part of the proof of the
following, and Madsen and Milgram (1979)) for a complete explanation.

Theorem 3.4 At the prime 2, there is an equivalence:
F/Topy — ﬂ K(Z2), 4i) X K(Z/2,4i - 2).
Away from 2, there is an equivalence:
F/Top[1/2] — BSO[1/2].

Remark 3.5 In writing things this way, we are using localization theory
for simply connected spaces (or of H-spaces) which enables one to assign to
such a space X, the localization of X as a set P of primes. This space X(p)
is functorially associated to X, and its homotopy (and homology) groups are
those of X, but tensored with Z[1/¢q], where ¢ runs over the primes not in P.
So X(2) has as homotopy groups those of X, tensored with the group of rational
numbers with odd denominators.

Localizing at a set of primes has the effect of ignoring contributions of the
other primes. Part of the theory explains how to combine the information at the
various primes with rational information to give information about ordinary
homotopy classes of maps [ ; X]. We refer the reader to Hilton et al. (1975) for

31 This is an outright lie of the worst kind: it is a misleading truth. To set up such an equivalence,
one needs to be able to do enough topological topology (i.e. topology in the topological
category) to be able to mimic many smooth constructions. In particular one requires
topological transversality — which is indeed a theorem from Kirby and Siebenmann (1977).
With transversality however, it is a simple matter to prove that rational Pontrjagin classes are
topological invariants (a transparent consequence of the statements thrown about in the main
text) — as we explain in §4.5. That was a major result of Novikov, for which he earned a Fields
medal. In the next section we will return to this train of thought. In any case, for now, please
bear with the inaccuracies above.

Actually, Sullivan did the PL case, but once the work of Kirby and Siebenmann mentioned in
the previous footnote became available, the result for Top immediately follows.

32
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an exposition of this theory and Bousfield and Kan (1972) for a more modern
approach.

Warning Sullivan’s map to BSO[1/2] is not transparently related to the
tangent bundle of the underlying smooth manifolds (when one has a homotopy
equivalence between closed manifolds) — and then forgetting their smooth
structure — however, rationally it contains the same information as should be

reasonable given our discussion above.>?

Let us now combine our discussion into a proposition:

Proposition 3.6 I[f M = K\G/T is a locally symmetric manifold of dimension
greater than 5 and Q-rank(I') > 3, then there are infinitely many smooth
manifolds proper homotopy-equivalent to M that are not homeomorphic to M
(detected by their rational Pontrjagin classes) if, for some i, H¥(M;Q) # 0.

(The reader who is familiar with Siebenmann’s thesis can also reverse the
argument we have given to prove the converse to this proposition.)

We can assume M is replaced by the Borel-Serre compactified version.
If the Q-rank(I") > 3, this is a 7—n manifold, so Wall’s theorem reduces it
to a classifying space question — and the cohomological condition is exactly
equivalent to the set of homotopy classes of maps M — F/Top to be infinite
(and infinitely many of these classes will automatically be smoothable).

Following Farrell and Hsiang, we presently observe that for n > 176, Borel’s
work gives on cohomology of arithmetic groups gives us this conclusion for
SO(n)\SL,,(R)/SL,,(Z) (or more precisely a lattice in SL,,(Z) that is of finite
index and torsion free). (We remark that for Z[i], Borel’s results would have
allowed the choice of n > 32.)

The proper setting for this work is the relation between cohomology of arith-
metic groups and representation theory, but we will avoid a general discussion
focusing on just the contribution of the trivial representation — which Borel
(1974) showed was the whole story in a “stable range”.

The result is that:

Theorem 3.7 For K < Q-rank(I')/4, H*(K\G/T;R) is represented by differ-
ential forms on K\G that are right G-invariant.

In particular, the lattice itself is irrelevant! (We will see that however, above

33 It turns out that BO — BTop is an isomorphism on homotopy groups rationally (the injectivity
of this map being Novikov’s theorem on topological invariance of rational Pontrjagin classes,
and the rational surjectivity following from the finiteness of the number of differential
structures on the sphere).
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this value of k, the cohomology group can indeed change with the choice of
lattice I'.)

Here’s a way to think about this. Suppose L is a compact Lie group con-
taining K; then, by the Hodge theorem, we can compute H*(K\ L) by means of
harmonic forms, but by integrating with respect to L, and using the uniqueness
of harmonic representatives, we can essentially identify the cohomology with
the forms on K\ L that are invariant under the action of L.

Now if G is a real semisimple group, with K its maximal compact, we denote
by G¢ its complexification, and by G’ the maximal compact of G¢. The Cartan
decomposition for G’ and G¢ only differ by a multiplication by i. This implies
that the G-invariant forms on K\G are essentially the same as the G’-invariant
forms on K\G’. We call K\G’ the compact dual of K\G.

For a uniform lattice, this copy of the cohomology of K\G’ actually embeds
in H*(K\G/T;R).

For nonuniform lattices, this is not the case, and it is not easy to tell which of
these cohomology are actually present in H*(K\G/T') (e.g. the top class never
survives). However, here Borel’s theorem tells us that in the range mentioned
above this is actually a complete description of the cohomology.

For SL,,(R), the complexification is SL,(C), whose maximal compact is
SU(n). Thus the compact dual is SO(n)\SU(n). Thus the cohomology is that of
a product of spheres of dimensions 5,9,13,17,... The smallest dimension that
is a sum of these and a multiple of 4 is 44, giving the result for n > 176.

For SL,,(C), thought of as a real Lie group, the complexification is SL,,(C) x
SL,(C). Thus, the compact dual of SU(n)\SL,,(C) is SU(n) and therefore a
product of spheres of dimension 3,5,7,9,. .. The first relevant cohomology is
in dimension 8, so for n > 32 these produce examples.

This method shows failure of proper rigidity for SL,(OF) for n > 32 if
F has a complex embedding, and n > 176 when F is totally real. These
counterexamples are “stable” in at least two senses: (1) they do not go away if
we stabilize the manifold by taking products with Euclidean space, R¥; and (2)
they survive on passing to any further finite cover.

However, this method is insensitive to the lattice in SL,,, and for example,
this cannot lead to the idea that as the volume of the symmetric space goes up,
so does the size of this set of manifolds, which actually seems to be the typical
behavior.

More precisely, we will soon see that there is a finitely generated abelian
group structure on this set of topological manifolds, and that (via a nonlinear
map related to the Pontrjagin classes but distinct from it) it is = ®@H*(T'; Q)
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after ®Q.3* We shall see that frequently the rank of this abelian group (even
rationalized) grows with I.

However, the impatient reader who wants to move on to matters more directly
concerned with the validity of rigidity can now skip to the end of this chapter
or to the next (with occasional references to the skipped sections, especially
about Property (T)).

3.4 Strong Approximation

Our first order of business is to give a fairly straightforward argument that,
in the case of SL,,(Of), n > 4, there is always a finite sheeted cover with
a substantial amount of cohomology. In §3.7, we will use this to give an
essentially elementary replacement for the work of Borel used in the previous
section to disprove the proper Borel conjecture for n > 4. (The argument for
n = 4 will not be quite as elementary and will require material from §3.6.) We
will write down the argument in the case of Z, but the arguments are completely
general. Following this we will discuss strong approximation, which gives a
good understanding of the quotients of quite general linear groups. Ultimately,
this will imply that all Q-rank > 2 lattices have finite covers that are not properly
rigid.®

We begin by noting that SL,(Z) — SL,(Z,) is a surjection. The kernel
SL,(Z; p) consists of matrices of the form (I + pA), where A € M,,(Z) is such
that (I + pA) is invertible. The key thing as noted by Lee and Szczarba (1976)
is that this congruence kernel has a homomorphism — M,,(Z,), assigning A to
I+ pA. Note that det(I + pA) = £p"pa(—1/p) and hence we need that A have
trace Omod p. (Of course, this is the Lie algebra of G in general.)

Now we can write down explicitly a 3-cycle in the congruence subgroup that
is p-torsion and detected by projection to this abelian p-group. It is a Z* in
SLs(Z). There is a Z? which consists of matrices that are Is on the diagonal
and the top row is (1,0,0, pa, pb). This commutes with the Heisenberg group
(Heis) of upper diagonal matrices in SL3(Z) C SL3(Z) X SL,(Z) c SLs(Z). We
obtain a Z> by taking the product of the Z with the central pZ in the level-p
congruence subgroup of the Heisenberg group.

This Z> gives us a cycle in H>(SL,(Z; p); Z) which is nontrivial, because it
34 The smooth version maps to the topological one so that the map is finite-to-one, and the image

need not be a subgroup, but it contains a lattice in this cohomology group by an argument we

will give in §3.7.

35 But it will not imply stability in the second sense of the previous section. Indeed we will see a

rank-3 reducible lattice where every proper homotopy equivalence to any finite sheeted cover
becomes properly homotopic to a homeomorphism in a further cover.
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is detected by mapping to M, (Z,) (by the Kiinneth formula), but is p-torsion,
because the central Z is of order p in H'(Heis3(Z; p); Z) — i.e. the homology
of the level-p congruence subgroup of the Heisenberg group — since the 3 x 3

matrix
1 0 p?
01 0
0 0 1

is a commutator in this group. Consequently we have found an element of order
p in H*(SL,.(Z; p); Z) by the universal coefficient theorem.

We will see in §3.7 below that for p sufficiently large this element is
the first Pontrjagin class of some manifold proper-homotopy equivalent to
SO(n)\SL,,(R)/SL,(Z; p). Actually, these elementary calculations with Lie
algebras and playing with congruence subgroups suffice to show that for
Q-rank > 6 one can always find a congruence cover where there are arbi-
trarily large finite number of manifolds that can be distinguished by p; — the
first Pontrjagin class.3¢

Reduction modulo primes for linear groups over fields of characteristic 0
is a very powerful method and produces many useful homomorphisms. This
is, for instance, used to prove (see e.g. Wehrfritz, 1973) that such groups are
residually finite (Malcev) and also virtually torsion-free (Selberg).

Let us describe some easy homomorphisms if I' ¢ GL,(F) is a finitely
generated group over a field F of characteristic 0. Consider the generators of
I as lying in a finitely generated ring over Z. Its field of fractions is a finite
(algebraic) extension of a field of finite transcendence degree. We can then
“specialize” values for the transcendentals so that these matrices all lie in an
algebraic extension (as the determinant will be a rational function that is not
identically 0). Then the matrix entries really are algebraic numbers with finitely
many primes in their denominators, and we can therefore reduce modulo large
primes. However, for simplicity of exposition, we will imagine that our groups
lie just over the integers, perhaps with finitely many denominators.

These congruence subgroups provide a natural sequence?’ of subgroups that
converge to the trivial group. Amazingly, the image of a linear group under such
reductions is, with finitely many exceptions, governed by the Zariski closure of

36 As explained in §3.7, Novikov’s theorem that rational Pontrjagin classes are topological
invariants can be refined for p to the statement that in H*(BSTop; Z[1/2]) it is definable for
oriented topological bundles.

Which corresponds to a tower of covering spaces if one chooses a sequence of moduli that
divide one another. A different choice, which does not form a directed system but rather is just
a sequence of covers, is the congruence kernels as one varies over different primes. Those still
converge to the universal cover, for example, in the pointed Gromov—Hausdorff sense.

37
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the group. (This is the content of the strong approximation theorem.) Thus, any
Zariski-dense finitely generated subgroup of SL,(Q) surjects onto PSL,,(Z,)
for all but finitely many primes. Indeed, like in the Chinese remainder theorem,
one can map onto almost any finite product XPSL,,(Zp, ).

Slightly more precisely, let S be a finite set of primes. We consider Z[1/S]
the ring of rational numbers whose denominators have all prime factors in S.
Suppose that I' € GL,,(Z[1/S]) with Zariski closure G. Strong approximation
asserts that the closure of I" in [] G(Z),) is of finite index. Informally, strong
approximation says that the closure of a linear group in the congruence topology
is essentially determined by its closure in the Zariski topology.

A nice application of this is due to Lubotzky (1996). Recall that the start of
the Gromov—Piatetski-Shapiro examples was the construction of a separating
hypersurface in a hyperbolic manifold. Millson (1976) had noticed that on
taking a finite cover, this hypersurface lifts to several components.

Actually this virtual disconnectedness is true in general, as the fundamental
group of the hypersurface is not Zariski-dense in O(n, 1) — it lies in a smaller
O(n — 1,1) — and therefore not congruence dense. A suitable deep finite con-
gruence cover will therefore have the hypersurface disconnected.

As each of the sides is Zariski-dense in the group, these both have full image,
which means that the complement of the union of the lifts of the hypersurface
have two components.

A corollary of Van Kampen’s theorem and these observations directly gives:

Theorem 3.8 Every hyperbolic manifold with a separating hyperbolic hyper-

surface has a finite index subgroup whose fundamental group surjects to a free
38

group.

This then implies that such a lattice has many subgroups of finite index —
indeed super-exponentially in the index (since nonabelian free groups do).

Another nice application of strong approximation, also due to Lubotzky
(1987), is the following.

Theorem 3.9 Any finitely generated group linear group in a field of charac-
teristic 0 always has subgroups of index divisible by d (for any given d).

We refer to Lubotzky and Segal (2003) for a more thorough discussion of
strong approximation, its literature and applications.

38 Explicitly, let M be a manifold containing two hypersurfaces A and B whose union does not
separate M and = be a base point of AU B. Then, making a curve transverse to A U B, one can
write a product aabba™! - - - € F; recording the order and directions of the intersections.
This gives a (surjective) homomorphism 7 (M) — F.
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3.5 Property (T)

In this brief section we will discuss the notion of Property (T), discovered by
Kazhdan during the 1966 Moscow ICM (during a game of ping-pong with
Atiyah). While it seems at first like a technical property about unitary repre-
sentations, it has had applications — surely not all foreseen at that point — to
many areas of mathematics, and (via the notion of expander graph) theoretical
computer science.

We shall also discuss the opposite notion, amenability, originally introduced
by von Neumann in his analysis of the Banach—Tarski paradox. These are both
fascinating subjects deserving (and having received) book-length treatments;
here they are merely introduced in recognition of the role they will play several
times in what follows.

We will begin on the amenable side of the universe, since it is more familiar.
For finite groups G, averaging the values of a real-valued function on G is
a general and straightforward algebraic procedure that involves no limiting
procedures. If G is compact then, at least for continuous functions, this can be
done by integration with respect to Haar measure.

Remarkably, using weak-+ limits it is possible to define averaging processes
on some infinite groups. Even for Z this is a remarkable statement: we are
asserting that there is a functional

A: L™(Z) > R

that assigns a number to any bounded sequence of real numbers, agrees with
ordinary limit when it exists, and is positive, linear, and translation invariant.
Positivity means that A(f) > 0 if f > 0. Linear is obvious and translation
invariant means that A is invariant under the action of Z on L*(Z) by trans-
lation. Positivity and linearity can be achieved by extending any f (since Z is
discrete, any function is continuous) to 8Z, the Stone—Cech compactification
and evaluating this extension on any point in 8Z — Z.

The invariance requires using a bit of the geometry of Z, but this is the
key! Replace the sequence by its averages (i.e. like Cesaro means). Let g(n) =
1/(2|n + 1)| 3, f(m) (where the sum is over the interval I,, = [—|n|, |n]].

Observation A, defined as the limit of the sequence g(n), is translation
invariant because the number of elements in the symmetric difference I, AT,
is o(#1,,).

Remark We made the construction using the Stone-Cech compactification.
Sometimes (as hinted above) people construct A as a weak-+ limit of the averag-
ing functionals that define the values of g; sometimes non-principal ultrafilters
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are used in making this construction. These are just cosmetic differences — al-
though they have somewhat different feels (point-set topology versus functional
analysis versus logic).

Note the averaging procedure (and the limiting procedure) is well defined
when the sequence has a limit. However, in general, it is very dependent on our
choices. For example, suppose we had replaced the intervals I,, = [—|n|, |n|] by
intervals J,, = [n — |n|,n + |n|]; we still would obtain an averaging function that
satisfies all the above properties, yet would have a much less democratic feel
than the I,, seem to have — the values of f at most integers (e.g. those outside
of union of the J,,) will then be completely irrelevant.

Democracy put aside, the above consideration suggests defining a Fol-
ner sequence® to be a sequence of subsets A, of T, so that for any v,
#(yA,0A,)/#A, — 0. (This need only be checked for generators.) Under
those conditions we can define a left-invariant positive linear functional by the
procedure above. Folner (1956) proved the converse, that a group has a mean iff
there is a sequence of such sets. Groups that have such a mean, or equivalently,
an exhaustion*' by subsets whose “boundaries” are asymptotically negligible,
are called amenable.

(The boundary of a set in I' is precisely the the union symmetric difference
of the set with its translates under a generating set of I'. If we consider the
volume of a set the number of elements it contains, then the last sentence is just
a restatement in words of the formula of the previous one.)

There is a close connection between amenability and unitary representation
theory. Consider the unitary action of I" on L°T". It has a nontrivial fixed vector

iff T is finite.
However, v, = (1/4#A4,) Y, v where the sum is taken over A, is a sequence
of almost-invariant vectors. That is, ||v,|| = 1 but for every vy, ||yv, — v4|| —

0. One can describe this as saying that the trivial representation is weakly
contained in the regular representation — another equivalent of amenability.
Yet another interpretation of amenability can be given in terms of the Lapla-
cian on functions V: L?T" — LT defined as follows. We shall consider T as a
graph, as usual, choosing a finite symmetric generating set S, and connecting
two elements g and g’ if there is an s € S such that g = sg’ (so that I" acts on the
right by isometries). Define the Laplacian by Vf(x) = f(x) — (1/#S Y f(sx)).

39 And more fickle, in that J,, is disjoint from the later sets averaged over.

40 These considerations do not explain why we would give this name to this class of subsets, only
that we call attention to them. The last sentence in the paragraph is necessary for that point.

41 Ttis a very elementary fact that if a discrete metric space X has a Folner sequence of subsets,
then it has an exhaustion by Folner sets B;;i.e., B; C B4+ and X = | B;.
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It compares f to its average. Note that V is a (bounded) self-adjoint and positive
operator (by direct calculation of (V £, f)).

Theorem 3.10 (Kesten, 1959) 0 € Spec(V) iff T is amenable. This is equiva-
lent to each of the following two statements:

(1) The symmetric random walk on T does not have exponentially decaying
return probabilities, i.e. py,(e,e) # O(c™) for any ¢ < 1, where e is the
identity element of the group.

(2) The number of words (in the symmetric set of generators S) of length at
most 2n representing the trivial element W(n) satisfies W(n)'/*" — #S.

Note that the statement 0 € Spec(V) does not mean that there are any eigen-
vectors with eigenvalue O (although that would be the simplest explanation),
i.e. ker V need not be nontrivial, because of the possibility of a nondiscrete
spectrum. Indeed, O is an eigenvalue*? iff I is finite.

However, the almost-invariant vectors are test functions of norm 1 with
Vil < X #(yA,VA,)/#A, (summed over the elements of S) showing that it
is not true that (V £, f) > c||f]|? for any ¢ > 0.

The connection between random walk, heat flow, and the Laplacian is im-
portant. Note that V = I — M, where M is the Markov operator, defined by

M f(x) = E(f(yx)),

where E means, as always, the expectation value of a random variable, and here
it is f of a random neighbor of x (i.e. the translate by a random generator of
I'). Note || M || < 1, and equality holds iff I" is amenable. The probability of
return is given by

pn(e, e) = <667Mn 68>

So if 0 ¢ Spec(V), we get exponential decay of the return probabilities. (The
converse is tricky.) The expression W(n)/#5" is simply another calculation of
Pan(e, ) and hence statement (2) is equivalent to (1).

Property (T) is opposite to amenability (not its negation!) and it is quite
nontrivial that there are any infinite groups at all that have this property.

Definition 3.11 A group I' has Property (T) if every unitary representation
that has almost-invariant vectors has a fixed vector. (In other words, given a
generating set S, there is a Kazhdan constant € — that typically depends on S —
such that, for any nontrivial irreducible representation p (or, equivalently, any

42 There is a natural generalization of V to differential forms, and then as we will discuss in §3.6,
V frequently has nontrivial kernel acting on L2-forms.
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representation with no nontrivial fixed vectors p), the only v with ||p(s)v—v|| <
0. 43

gllv|lisv =

An amenable discrete group has Property (T) iff it is finite — one can construct
almost-invariant vectors by averaging over a sequence of Folner sets.

Margulis showed that higher-rank lattices have only finite or finite index nor-
mal subgroups by the crazy strategy of showing that all quotients are amenable
and have Property (T). Obviously, arbitrary quotients of Property (T) groups
have Property (T).

Kazhdan observed, in his original 1967 paper, via consideration of induced
representations, the following.

Proposition 3.12 A locally compact group G has Property (T) iff any (and
hence every**) lattice T G does.

He also showed

Proposition 3.13 A discrete group with Property (T) must be finitely gener-
ated.

For suppose that I' = | I is an ascending union of proper subgroups. Then
P L*(T'/T,) is a unitary representation which has almost-invariant vectors
(each y ultimately acts trivially, so a sequence of vectors that are nontrivial
only in the components indexed by a large n form an almost-invariant sequence
of vectors), but it will have an invariant vector only if some I'; =T'.

Theorem 3.14 (Kazhdan) Products of real simple Lie groups of rank greater
than 1 have Property (T).

He deduced that lattices in these groups were finitely generated.

We already know enough to see that O(n, 1) does not have Property (T),
because we know lattices that have nontrivial Z quotients, and note that Prop-
erty (T) is (obviously!) inherited by quotients. Less simple is that U(n, 1) also
does not have Property (T). This is shown in Kostant (1975), as is the following
positive result.

Theorem 3.15 (Kostant) Sp(n, 1) has Property (T), as does the real rank
1-form Fy_20) of the exceptional complex Lie group of type F.

This gives us now negatively curved examples of Property (T) groups. We

43 The notation is supposed to indicate that the trivial representation T is separated from all the
other irreducible representations (by the parentheses).
44 Assuming there is at least one!
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can add large powers of all the elements one at a time,* and maintain negative
curvature, giving (uncountably many!*®) Property (T) groups that are torsion.

The early history of Property (T) only had examples that came out of rep-
resentation theory. Now there are completely different mechanisms for this of
both algebraic and analytic geometric origin — so now there are many other
Property (T) groups known. Before saying a little more about this, we digress
to give another characterization of Property (T) (see Shalom, 2000; Bekka
et al., 2008).

Theorem 3.16 (Delorme—Guichardet, Shalom) A group has Property (T) iff
every action of I on a Hilbert space by affi