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Recent genomic evaluation studies using real data and predicting genetic gain by modeling breeding programs have reported
moderate expected benefits from the replacement of classic selection schemes by genomic selection (GS) in small ruminants.
The objectives of this study were to compare the cost, monetary genetic gain and economic efficiency of classic selection and GS
schemes in the meat sheep industry. Deterministic methods were used to model selection based on multi-trait indices from a sheep
meat breeding program. Decisional variables related to male selection candidates and progeny testing were optimized to
maximize the annual monetary genetic gain (AMGG), that is, a weighted sum of meat and maternal traits annual genetic gains.
For GS, a reference population of 2000 individuals was assumed and genomic information was available for evaluation of male
candidates only. In the classic selection scheme, males breeding values were estimated from own and offspring phenotypes. In GS,
different scenarios were considered, differing by the information used to select males (genomic only, genomic+ own performance,
genomic+ offspring phenotypes). The results showed that all GS scenarios were associated with higher total variable costs than
classic selection (if the cost of genotyping was 123 euros/animal). In terms of AMGG and economic returns, GS scenarios were
found to be superior to classic selection only if genomic information was combined with their own meat phenotypes
(GS-Pheno) or with their progeny test information. The predicted economic efficiency, defined as returns (proportional to number of
expressions of AMGG in the nucleus and commercial flocks) minus total variable costs, showed that the best GS scenario
(GS-Pheno) was up to 15% more efficient than classic selection. For all selection scenarios, optimization increased the overall
AMGG, returns and economic efficiency. As a conclusion, our study shows that some forms of GS strategies are more
advantageous than classic selection, provided that GS is already initiated (i.e. the initial reference population is available).
Optimizing decisional variables of the classic selection scheme could be of greater benefit than including genomic information in
optimized designs.

Keywords: breeding programs, genomic selection, economic analysis, sheep

Implications

Albeit to a much lesser degree than in dairy cattle, genomic
selection may be technically efficient and economically prof-
itable in sheep. Rather than implementing new selection
schemes only based on rams’ genomic evaluation of the
breeding values, genomic and phenotypic information recor-
ded for rams candidates (e.g. meat performances) should be
merged. In the example studied in the present paper, about
half of the improvement seen when moving from the current

situation to the best genomic plan may be obtained by a
better organization of classical breeding schemes.

Introduction

Genomic selection (GS) has become possible due to high-
performance genotyping technology that allows individuals
to be typed for thousands of single nucleotide polymorph-
isms (SNPs), genetic markers distributed over the whole
genome. Assuming that all quantitative trait loci are in
linkage disequilibrium with at least one genotyped SNP, the
breeding values of selection candidates may be estimated
directly from the analysis of such markers (Meuwissen et al.,
2001). Genomic evaluation is already used routinely in many† E-mail: Jean-Michel.Elsen@toulouse.inra.fr
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dairy cattle breeding programs and is expected to be
implemented in the near future in other species. Recent
studies in sheep and goats reported that the genomic
evaluation of young males was more accurate than poly-
genic, pedigree-based evaluation (Daetwyler et al., 2012;
Duchemin et al., 2012; Baloche et al., 2013; Carillier et al.,
2013 and 2014).
Several studies have focused on the benefits of GS over

conventional selection strategies in terms of genetic gain in
various types of farm animal breeding programs and great
economic gains have been reported in dairy cattle (Schaeffer,
2006; Konig et al., 2009). These expected benefits were
mainly due to a reduction of the generation interval, an
increase in the accuracy of the estimated breeding values for
young bulls and bull dams and a reduction in costs for pro-
geny testing (Schaeffer, 2006). The breeding structures and
biological conditions inherent to sheep breeding programs
differ from those used for dairy cattle in many aspects. In
particular, (1) the generation interval is relatively short,
(2) only few males are progeny tested, (3) joint use of arti-
ficial insemination (AI) and natural service and use of fresh
semen only affect the progeny testing capacity, (4) progeny
testing is less expensive than in cattle and (5) costs of
genotyping is high when compared with the economic value
of the selection candidate. The expected technical and eco-
nomic benefits of GS could therefore be lower than in dairy
cattle. A recent study (Shumbusho et al., 2013) showed that,
nevertheless, benefits in terms of genetic gain may be
associated with GS in small ruminant breeding programs.
However, the authors did not demonstrate that, in sheep,
breeding programs with higher genetic gains actually
resulted in improved economic efficiency. Indeed, the
economic benefits of a breeding program depend on the
genetic gain, but also on many other parameters such as
the extent and timing of expression of those genetic gains,
the economic value of one unit of genetic gain and the costs
of all inputs.
The objectives of this study were to compare the costs,

monetary genetic gains and returns of classic and GS plans,
taking the example of the Mouton Ile de France sheep
meat breeding program as organized in France. In order to
compare the different selection strategies, costs and returns
were determined at the industry level because the genetic
superiority generated in nuclear farms is distributed across
both nucleus and production farms.

Material and methods

The Mouton Ile de France breeding scheme is targeted at
improving meat and maternal traits. The structure and all
population parameters of this breeding scheme have been
described previously by Shumbusho et al. (2013). Briefly, the
population is made of ∼14 000 ewes belonging to many
breeders, of which 70% are candidates to become dams of
sires. In total, around 40 proven (used as AI rams) and 300
natural service rams are available to service within the

population (i.e. each male mates about 30 females). Each
year, ∼300 young males enter the central testing station,
where they are evaluated on their meat performances. About
Test = 20 of these males are then progeny tested (each
tested ram is required to have at least 20 progeny records).
Females are evaluated on their maternal performances, that
is prolificacy measured by the number of live born lambs per
lambing and milking ability measured by the 10 to 30 days of
age lamb growth rate.
The differences in costs and economic efficiency between

classic and GS schemes were assessed by implementing two
approaches. We first consider the scheme found by
Shumbusho et al. (2013) that maximizes genetic progress by
an optimized choice of decision variable levels without tak-
ing into account economic cost and returns. As fully descri-
bed in Shumbusho et al. (2013), decision variables are
quantities, which may be chosen when designing the selec-
tion scheme (e.g. number of males selection candidates,
selection rates, etc.). The objective here is to analyze the
economic consequences of this first type of maximization.
Second, for each type of selection scenario as defined in the
following section, varying the level of decision variables, we
search for the scheme that maximizes the genetic progress or
the economic returns for a given level of investment.

Selection scheme scenarios
Four different selection scenarios were studied in respect to
variable costs and economic efficiency. The scenarios have
been described previously by Shumbusho et al. (2013) and
are summarized hereafter.

Classic. This is a classical selection scheme, where estimates
of breeding values (EBV) were based on phenotypes and
pedigree information. After selection on the parents’ average
EBV, young males were selected based on their meat index.
The best males are then progeny tested creating, by AI, a set
of daughters in farms. These rams are evaluated on a global
index combining meat and maternal traits. This scenario was
used as a reference for comparative analysis with genomic
scenarios.

GS. This is a pure GS scenario. Young male selection candi-
dates were genotyped and best reproducers selected on their
genomic breeding value (GBV) of meat and maternal traits at
an early age. This scenario was modeled to quantify the
effect of reducing the generation interval and use of genomic
information.

GS-Pheno. In this scenario, young male selection candidates
were genotyped and phenotyped for meat traits. Then, best
reproducers were selected on an index combining genomic
and individual phenotype information for meat records. The
aim of this scenario was to assess the usefulness of the GS
strategy for both meat and maternal traits when meat
phenotypes are available from an early age.
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GS-PT. This scenario also used the GS scenario procedures as
a pre-selection step. After progeny testing, elite rams were
selected using a single index that combined the meat and
maternal records of their progeny.
For all selection scenarios, females were first selected

based on their parents’ average EBV and, in a second step,
on their phenotypes. Males were genotyped and their GBV
estimated. Genomic information was available for male
selection candidates (Ms males) only.

Response to selection
The breeding scheme was assumed to be in a steady state,
that is, it had been implemented for long enough to provide a
constant annual genetic gain and the same cost each year.
Selection response was predicted with deterministic methods
based on selection index theory (Hazel, 1943), extending the
model developed by Shumbusho et al. (2013) to include
multiple traits in each index. The model predicts selection
accuracy and genetic superiority of selection candidates,
accounting for their age and genetic level.
In this study, two indices were constructed to represent

two groups of traits: meat and maternal traits, which are the
improvement targets for many meat sheep breeding pro-
grams in France (including the Mouton Ile de France breeding
program). The meat index (Ib) was a combination of the
average daily gain, back fat depth and conformation score
traits, and the maternal index (Im) included prolificacy (Pr)
and milk value. The genetic parameters and economic values
of these indices traits are provided in Table 1 and details on
the formulae used for the indices are described in Supple-
mentary Material S1. The heritabilities and correlations are
those reported by Bibé et al. (2002) and the economic values
and standard deviations (SD) are those reported by Guerrier
et al. (2010).
Using the physical units of the phenotypic and genetic

variances of the traits, and their economic values, the genetic
progress was expressed in monetary unit per unit change of
the index (i.e. AMGG).
Genomic information was modeled as a trait with a

heritability of 1.0, which was genetically correlated to the
corresponding selection index (Dekkers, 2007). This genetic

correlation between the genomic information and the index
was equal to the accuracy of genomic prediction, rGBV, which
depends on the reference population. The rGBV was predicted
using formulae of Daetwyler et al. (2008):

rGBV¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nref ´h2=ðnref ´h2 +MeÞ

q
where Me = 2NeL/log(4NeL) is the number of effective
genome segments (Goddard, 2009), which depends on the
effective population size of the considered population (Ne)
and the genome length in Morgans (L), nref is the number of
animals forming the reference population and h2 is the
heritability of the trait. As in Shumbusho et al. (2013),
the length of the genome was fixed to L = 27, and a
medium-sized reference population (nref = 2000) of geno-
typed and phenotyped animals and an effective population
size of Ne = 200 were used to calculate rGBV.

Evaluation of the variable cost of different
selection strategies
Following the model and selection scenarios described in the
recent study by Shumbusho et al. (2013), we predicted the
annual total variable cost (C) of adopting the different
selection strategies. Only costs that vary among the various
selection scenarios were considered. Those costs correspond
to, on the one hand, genomic information costs and, on the
other hand, all other decisional variables characterizing the
selection scheme. Formally, the total variable cost, per year,
for any selection scenario was given as: C = ∑icviXi+
cgeno, in which cvi is the unit cost of the i th decision vari-
able, Xi the value or level of the decision variable and cgeno
the costs related to genotyping and extra statistical analysis
(genomic scenarios only). In more details, cgeno was equal
to cgeno = Genoc× (Ms+ 0.2× nref)+ statc were Genoc is
the cost of genotyping one individual and statc the fixed
costs of statistical analyses on genomic information. Geno-
typing costs were those spent on male selection candidates
and on the renewal of the reference population (a 20%
renewal rate was supposed here). The question of to what
extent and how often the reference population should be
renewed to maintain or improve the prediction accuracy is
still open to discussion. The consensus is that the reference
population should be updated, at least to maintain GBV
accuracy. On the basis of the assumption that this was an
established breeding program, the costs of forming an initial
reference population were not included in the variable costs.
Except for the costs of genomic information, other costs

can be divided into four categories: (i) costs related to
maintenance, recording and loss in slaughter of male selec-
tion candidates: cmale = Ms× (Mscp(1− qMs)+Mscm)
where Mscp is a unit cost for loss in slaughter, Mscm the costs
of maintenance and recording male selection candidates,
and qMs the proportion of males selected as reproducers or
males kept for further evaluation. (ii) costs of keeping male
reproducers: crepro = nElite× elitec+ nNS×NSc, where
elitec and NSc are the unit costs of maintaining elites and
natural service rams, respectively, and nElite and nNS the

Table 1 Economic values (a), genetic standard deviation (GSD), herit-
abilities (bold on diagonal), genetic (above diagonal) and phenotypic
(below diagonal) correlations of the traits included in selection indices

Traits

Pr MV ADG BFD ConfS

Economic value (a) 0.48 0.94 0.005 9.41 7.31
Genetic standard deviation (GSD) 14.0 0.9 20.0 0.63 0.23
Heritabilities and correlations
Prolificacy (Pr; %) 0.09 0.0 0.0 0.0 0.0
Milk value (MV; kg) 0.0 0.2 0.0 0.0 0.0
Average daily gain (ADG; g/j) 0.0 0.0 0.18 0.01 0.0
Back fat depth (BFD; mm) 0.0 0.0 −0.08 0.29 0.11
Conformation score (Confs) 0.0 0.0 0.11 0.11 0.30
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number of elite and NS rams used in a given scenario.
(iii) costs of AI: cAI = pAI× pAIc where pAI is the number of
AI doses and pAIc is the cost per dose. (iv) costs related to
progeny testing: ctest = Test× (testcb+ testcm), where
testcb and testcm are the costs per ram of progeny testing for
meat and maternal traits, respectively, and Test the number
of male progeny tested per year.
Table 2 lists the decisional variables with their unit costs

(cvi) as well as the cost categories affected by these variables
and shows which selection scenarios they have an impact on.
Optimal values of decision variables corresponding to the
maximum genetic gain described in Shumbusho et al. (2013)
are detailed in F. Shumbusho’s PhD dissertation (2014). On
the basis of these values, and using the above formulae and
unit costs, variable costs associated with classic and GS
strategies were estimated (Table 3).

Economic returns and efficiency of different
selection strategies
Returns from genetic improvement depend on (i) the
magnitude of genetic change (e.g. annual genetic gain
expressed in physical or monetary units) and (ii) the extent of
each individual’s expression of genetic value on both nucleus
and production farms. In the case of the Mouton Ile de
France breeding program where selection targets to improve
meat and maternal traits, the genetic change is reflected by
the number of culled lambs on nucleus (NAn) and production
(NAh) farms and breeding females on nucleus (NFn) and
production (NFh) farms. The extra genetic value of a lamb
attributable to selection is only expressed once in meat traits,
but, for maternal traits, the extra genetic value of a female
may be expressed more than once because dams are
generally used for several years. For females, this multiple

expression is quantified by the factor
Pa1 +n
i¼ a1

1
1 +d

� �i, where a1
is the age (number of time units) at which females start

expressing genetic superiority, n the number of times dams
are used as reproducers and d a discounting rate. Table 4
gives population parameters related to the number of
animals used to achieve genetic progress. (iii) The time lag
between the creation and start of expression of genetic
superiority. On nucleus farms, this time lag was approxi-
mated by the mean generation interval ðLÞ. On production
farms, the time lag was linked to the rate of replacement
from the nucleus (rh) and was approximated by Lh¼ L

rh, that
is, the asymptotic mean generation interval between a
selected cohort in the nucleus and its first descendants born

Table 2 Decision variables, related costs and impact of the different costs on selection scenarios

Scenario impacted1

Decision variable Symbol Related costs Symbol
Unit costs

(cvi) Classic GS
GS-

Pheno
GS-
PT

Number of male selection candidates Ms Loss in slaughter value for male selection
candidates

Mscp 30 X X X X

Records and maintenance of males in SCI Mscm 100 X X X X
Number of progeny tested males/year Test Progeny testing on meat trait testcb 1800 X X

Progeny testing on maternal trait testcm 1000 X X
Total number of elite males nElite Maintenance of Elite rams per year elitec 400 X X X X
Total number of natural service males nNS Maintenance of Natural service rams per year NSc 300 X X X X
Number of female artificially
inseminated

pAI Cost of one AI dose pAIc 10 X X X X

Cost of a genotype Genoc 123 X X X
Cost of extra statistical analyses per year Statc 3000 X X X

1Classic = phenotypic selection and progeny testing with index selection; GS = pure genomic selection; GS-Pheno = combined selection on genomic information and a
meat phenotype; GS-PT-index = genomic selection and progeny testing with index selection.

Table 3 Optimal values of decision variables for the modeled
scenarios, at different optimization levels

Decision variable3

Scenario1 Optimization level2 Ms Test pAI nElite nNS

Classic Current 300 20 5000 30 300
Optirest 310 30 5000 17 120
Optifull 380 48 8200 10 50

GS Current 300 − 5000 − 300
Optirest 400 − 5000 − 52
Optifull 600 − 5900 − 50

GS-Pheno Current 300 − 5000 − 300
Optirest 420 − 5000 − 68
Optifull 460 − 6000 − 50

GS-PT Current 300 20 5000 20 300
Optirest 320 36 5000 10 85
Optifull 420 46 7800 11 50

1Classic = phenotypic selection and progeny testing with index selection;
GS = pure genomic selection; GS-pheno = combined selection on genomic
information and a meat phenotype; GS-PT-index = enomic selection and
progeny testing with index selection.
2Current = decision variables were those currently used in the breeding
program except for genomic information; Optirest = decisional variables were
optimized but AI constrained to its current level of use in the breeding unit;
Optifull = all decision variables were optimized.
3Defined in Table 2.
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on the production farms (a proportion rh of these descen-
dants are offspring, rh(1− rh) grand offspring, etc.) This
approximation is rather conservative because it neglects the
erratic results observed over the first few years (Elsen and
Mocquot, 1974; Hill, 1974). (iv) The time horizon T that is,
the moment when any prediction about the organization of
the selection scheme looks too fragile (here 30 years).
The returns from selection on maternal traits (Rm) and on

meat traits (Rb) are given as:

Rm ¼AMGGm

Xa1 +n
i¼ a1

1
1 +d

� �i
( )

NFn
XT
t¼ L

1
1 +d

� �t
+NFh

XT
t¼ Lh

1
1 +d

� �t8<
:

9=
;

Rb ¼AMGGb NAn
XT
t¼ L

1
1 +d

� �t
+NAh

XT
t¼ Lh

1
1 +d

� �t8<
:

9=
;

which result in a total return R = Rm+ Rb and a contribution
margin CM = R− C. Similarly to Shumbusho et al. (2013),
the costs, returns and contribution margins were compared
across scenarios in three different situations: (1) with the
current values of the decision variables (‘Current’ situation),
(2) with all the decision variables in the nucleus optimized
except the proportion of AI (‘Optirest’ situation), and (3) with
all decisions variables optimized (‘Optifull’ situation).
Situation 3 allows a fair comparison between scenarios.
Changes from situation 1 to 3 demonstrate the interest of
optimization within scenario v. full reorganization of
selection schemes adopting GS. Scenario 2 is an alternative
to scenario 3 when avoiding changes in AI use, as the
development of this technics is still limited by many factors,
such as its cost and use of fresh semen in sheep. In
Shumbusho et al. (2013), this procedure was applied using
AMGG as the objective function, submitted to constraints
between decision variables. In the present study, two
approaches were followed: assessment of the economic
efficiency of these technically optimized schemes (variable
levels given in Table 3) and estimation of the maximum
profitability (using either maximum R or CM) at a given C
level. The second approach was justified by the observation

that, when costs are not taken into account in the
maximization program, the optimal scheme that are
obtained leads to very different total variable cost. It is hence
interesting to analyze how these results are affected when
maximizing the AMGG at given level of variable costs.
At the time when this work was done, the cost of

genotyping an individual with the OvineSNP50 BeadChip
array was ∼123 euros; therefore, the 123 euros costs was
considered when estimating in the section dealing with
optimized returns at given total variable costs. However, a
lower cost of 70 euros was also considered when comparing
scenario technically optimized.

Results

Economic consequences of maximizing AMGG without
cost constraint
We first consider four selection scenarios where AMGG was
maximized without taking into account the economic
consequences (cost and returns). Table 5 gives the detailed
variable costs for the two possible genotyping costs.
Comparing the total variable cost of each scenario at any
optimization level (i.e. Current, Optirest or Optifull) shows

Table 4 Parameters related to the number of animals used to estimate
the genetic gain and to calculate revenues for the selection strategies

Parameters Symbol Value

Number of females on nucleus farms NFn 14 000
Number of lambs born on nucleus farms Nan 18 200
Number of females on commercial farms NFh 200 000
Number of lambs born on commercial farms Nah 220 000
Rate of dissemination of genetic gain to
commercial population

rh 0.5

Investment period T 30
Discounting rate d 0.05

Table 5 Detailed variable costs in keuros for two different genotyping
costs (123 or 70 euros) for different selection schemes at different
optimization levels

GS4 GS-Pheno5 GS-PT6

Optimization level1 Costs2 Classic3 123 70 123 70 123 70

Current C 246 271 234 271 234 336 298
cgeno 89 52 89 52 89 52
cmale 34 34 34 34 34 34 34
crepro 106 98 98 98 98 106 106
cAI 50 50 50 50 50 50 50
ctest 56 56 56

Optirest C 221 223 181 233 190 264 226
cgeno 101 59 103 60 91 53
cmale 41 51 51 53 53 39 39
crepro 48 21 21 26 26 32 32
cAI 50 50 50 50 50 50 50
ctest 81 50 50

Optifull C 243 283 230 249 204 337 294
cgeno 126 73 108 63 103 60
cmale 47 77 77 58 58 53 53
crepro 24 21 21 22 22 24 24
cAI 82 59 59 60 60 78 78
ctest 89 78 78

1Current = decision variable levels as observed in Mouton Ile de France;
Optirest = decision variables maximizing the genetic gain (all but the propor-
tion of AI in the nucleus); Optifull = decision variables maximizing the
genetic gain.
2cgeno = costs related to genomic information; cmale = costs related to male
selection candidates; crepro = costs of keeping male reproducers; cAI = costs
of artificial insemination; ctest = costs of progeny testing.
3Selection scheme without genomic information.
4Selection of rams on genomic information only.
5Selection of rams on genomic information and meat phenotypes.
6Selection of rams on genomic information and maternal phenotypes
(after progeny testing).
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that all genomic scenarios are more expensive than classical
selection if the genotyping cost is 123 euros, but less
expensive than classical selection if genotyping only costs
70 euros (except for the GS-PT scenario). The GS-PT scenario
is the most expensive because, in addition to costs common
to all scenarios, it also includes the costs of both genotyping
and progeny testing.
The AMGG and corresponding returns of the different

selection strategies are given in Table 6. For all scenarios,
genetic progress and returns were higher for the meat traits
than for maternal traits. This can be explained in part by the
fact that the variance and accuracy of the meat index were
higher compared with the maternal index. From the con-
tribution margins (CM) criteria, the highest economic benefits
were observed with the GS-Pheno scenario. All genomic sce-
narios were superior to classic selection (Classic), except for
the GS scenario at the ‘Optifull’ level of optimization. How-
ever, apart from the GS-Pheno scenario, the benefits remain
limited. The impact of an increase of the quantity of AI doses
depends on the structure of the selection scheme. More pre-
cisely, increasing the quantity of AI doses is beneficial (higher
CM) only for selection scheme with progeny testing (10.6%
and 8.8% higher CM for Classic and GS-PT, respectively). For
all scenarios, optimization increased overall AMGG, returns
and CM. For the classic selection scenario, optimizing the use
of decisional variables was more beneficial than including
genomic information in an optimized classic design.

Optimized returns at given total variable costs
The optimized overall AMGGs are plotted in Figure 1 and the
corresponding returns in Figure 2. Increasing the maximum
annual variable costs increased the overall AMGG and
returns of all selection scenarios. Trends were globally
similar, but it is interesting to note that GS-PT produced a
higher AMGG but lower expected returns than GS-Pheno
when annual variable costs were over 260 keuros.
The plateau, when returns remain constant as costs continue

to increase, was reached at ∼180 keuros for the GS scenario,
240 keuros for the Classic and GS-Pheno scenarios, and
300 keuros for the GS-PT scenario. For the GS scenario, once
the level of annual variable costs is sufficient to cover all the
genotyping needs (180 keuros), its AMGG reaches a max-
imum level and no extra returns can be obtained. For the GS-
Pheno scenario, the plateau is reached at a higher level of
costs because increasing the number of phenotyped young
rams continues to result in extra genetic gains in meat traits.
For both classic and GS-PT scenarios, a better efficiency of
progeny testing when more resources are available explains
the shift of the plateau towards higher annual variable costs.
Optimized returns were, at almost all investment levels,

highest for the GS-Pheno and GS-PT scenarios. The results
shown in Figure 3 demonstrate that in terms of economic

Table 6 Annual monetary genetic gain for meat (AMGGb) and maternal (AMGGm) indices, returns (Rb, Rm, R = Rb+ Rm) and contribution margins
(CM) in Meuro, for different selection strategies

Scenario1 Optimization level2 AMGGb AMGGm Rb Rm R CM

Classic Current 0.440 0.156 1.029 0.240 1.269 1.022
Optirest 0.509 0.178 1.190 0.275 1.464 1.243
Optifull 0.556 0.216 1.301 0.334 1.634 1.390

GS Current 0.438 0.205 1.025 0.315 1.340 1.068
Optirest 0.515 0.210 1.204 0.324 1.528 1.304
Optifull 0.545 0.194 1.276 0.299 1.575 1.291

GS-Pheno Current 0.533 0.194 1.247 0.298 1.546 1.274
Optirest 0.630 0.198 1.473 0.305 1.777 1.544
Optifull 0.639 0.191 1.495 0.294 1.789 1.539

GS-PT Current 0.444 0.216 1.039 0.333 1.372 1.036
Optirest 0.510 0.281 1.192 0.433 1.625 1.360
Optifull 0.590 0.283 1.380 0.436 1.816 1.479

1Classic: phenotypic selection and progeny testing with index selection; GS = pure genomic selection; GS-Pheno = combined selection on genomic information and a
meat phenotype; GS-PT-index = genomic selection and progeny testing with index selection.
2Current = decision variables were those currently used in the breeding program except for genomic information; Optirest = decisional variables were optimized but AI
constrained to its current level of use in the breeding unit; Optifull = all decision variables were optimized.

0.65
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0.75

0.8

0.85

0.9

160 180 200 220 240 260 280 300 320 340

Total 
AMGG

Annual variable costs (Keuros)

classic GS-PT

GS-Pheno GS

Figure 1 Optimized total Annual Monetary Genetic Gain (AMGG on
meat+AMGG on maternal traits) at given total variable costs for
different selection scenarios of the breeding program.
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efficiency (contribution margin), the GS-Pheno scenario was
the most efficient at all levels of total variable costs studied. All
selection scenarios had an optimum cost level, with a con-
tribution margin peak. This economically relevant efficiency
peak was at lower cost levels for scenarios without progeny
testing (180 and 200 keuros, respectively, for the GS and GS-
Pheno scenarios) than for progeny testing scenarios (240 and
300 keuros, respectively, for the Classic and GS-PT scenarios).

Discussion

In this study, we modeled and optimized classic and GS in
sheep with the example of the Mouton Ile de France breeding

program. Three GS scenarios were compared with the classic
scenario: GS (males are only selected on GEBV), GS-Pheno
(males are selected on an index combining meat phenotypes
and GEBV), and GS-PT (males are first selected on GEBV,
then on the results of a progeny test).

Modeling options
Assuming both classic and GS schemes were in routine use,
comparisons were based on the variable costs incurred by
each selection strategy and the economic returns resulting
from genetic change. The dissemination of genetic progress
in nucleus and commercial flocks was approximated using a
discounting technique. The dynamics of the gene diffusion, in
particular in multi-tier populations, is known to be not linear
(Elsen and Mocquot, 1974; Hill, 1974) and could be modeled
appropriately. Further investigations using such a model will
help to balance the costs related to one cycle of selection and
the returns resulting from the extra value of the individuals
selected during this cycle, expressed by generations of
progeny in the nucleus and in commercial farms. The most
interesting feature of this dynamic modeling will be the
possibility of describing transition phases, in our case the
transition from classic to genomic schemes.
To be consistent with the Shumbusho et al. (2013) paper,

the accuracy rGBV of GS was predicted (1) using the
Daetwyler et al. (2008) formulae, and (2) assuming
the number of effective genomic segments Me follows the
Goddard (2009) equation. The recent publication of Brard
and Ricard (2015), based on a meta-analysis of 13 publica-
tions on GS, mainly in dairy cattle, showed how variables are
the predictions of GS precision, and in particular strongly
depend on the rGBV and Me formulae chosen. They concluded
that ‘no rules can be applied to predict the reliability of GS
using [compared] formulae’. From their simulations, the
combination chosen here for rGBV (Daetwyler et al., 2008)
and Me (Goddard, 2009) predicts high accuracy in the
situations they explored. However, with the parameters
chosen in the present work (L = 27, nref = 2000 and Ne =
200), this accuracy is low, with an upper bound of 0.65
(corresponding to h 2 = 1). Moreover, with the genetic
parameters supposed here (Table 1), and using Supplemen-
tary Material S1, heritabilities of meat and maternal traits
were 0.19 and 0.16, and GEBV accuracies limited to 0.26 and
0.23. These very low values are explained by the organiza-
tion of the reference population, genotyped individuals being
phenotyped on their own performances only.
Even if the size of the reference population (nref = 2000)

may appear large relatively to the recorded population size
(14 000 females), it was needed to provide sufficient accu-
racy to GS. This reference population may be rapidly
obtained for maternal traits, but needs some time for the
meat traits, since only 300 to 600 new males are phenotyped
each year. It was supposed that meat traits were measured
on the replacement female lambs as well, allowing a faster
creation of the reference population. This simplifying
hypothesis is consistent with the 20% annual renewal, which
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corresponds to the female observed replacement rate in meat
sheep population.
Other options should be considered for the creation and

renewal of the reference population: 300 to 600 young males
are performance tested each year, 20 to 48 rams are progeny
tested using AI and 50 to 300 natural service rams get EBV
from their daughters’ performances. These opportunities
would improve the quality of the reference population and
the accuracy of GS. Returns on investment could be appre-
ciated following the principle presented here.
As there are many uncertainties about the accuracy of GS,

and to overcome all the simplifications done in the present
paper, considering this accuracy as a parameter and
searching for a threshold above which GS is profitable would
be an other option we are presently working on.

Costs
Genomic costs included the cost of genotyping male
selection candidates and a 20% renewal of the reference
population, as well as the cost of extra statistical analyses.
Genomic scenarios were more expensive than the classic
scenario. When scenarios were compared with the current
level of decisional variables, costs of up to 89 keuros were
found for obtaining genomic information (32.7% of the total
variable cost of the GS and GS-Pheno scenarios), whereas the
cost of progeny testing was 56 keuros (22.6% of the total
variable cost of the Class-PT scenario). This means that
implementing GS (even without progeny testing) in meat
sheep breeding schemes similar to the Mouton Ile de France
program, will involve extra costs. A similar result was
obtained by Banks and Van der Werf (2009) who concluded
that ‘implementing Genomic Selection in sheep should
stimulate evolution of the industry structure towards a more
clearly defined nucleus:multiplier:commercial base model’.
This is quite different from what was predicted in dairy cattle
breeding programs. Indeed, Schaeffer (2006) compared the
cost of genotyping male selection candidates and dams of
sires with the cost of progeny testing in dairy cattle breeding
programs and predicted a 92% decrease in the cost of
proving bulls (the author considered the cost of genotyping
an individual at $500). However, compared with our results,
much higher extra costs were predicted in pig breeding
programs. In this respect, Tribout et al. (2013) showed that in
French pig breeding schemes, ‘genomic selection would not
result in organizational changes to the schemes that could
generate sufficient savings to compensate for the cost of
genotyping’.
If the cost of genotyping was of only 70 euros/animal, both

our GS and GS-Pheno scenarios would be cheaper than
classic selection. Such a reduction in the cost of genotyping is
not necessarily unrealistic and could be envisaged in two
different manners. First, with the constant developments in
sequencing and genotyping technologies and the progressive
decrease in genotyping costs, it is reasonable to expect that
costs of genotyping will continue to decrease. Second, the
costs related to genotyping could be reduced if selection
candidates were genotyped on low density (thus low cost)

chips and imputation techniques used. Imputation is already
being used for genomic evaluation in dairy cattle and
excellent results have been reported (Dassonneville et al.,
2011; Huang et al., 2012).
Our modeling assumed the breeding schemes were in a

steady state, and the cost of genotyping the initial reference
population was not considered here. For a reference popu-
lation such as ours of 2000 individuals, this cost amounts to
246 keuros and could be distributed over an investment
period of 30 years (i.e. 8200 euros/year without discounting).
This would slightly increase the cost of genomic scenarios,
but would not change scenario rankings, and the predicted
contribution margin comparisons would be only marginally
affected. More generally, considering an investment period
of 30 years may look optimistic in comparison with the speed
of technological evolution. However, even if new technolo-
gies emerge in the future, we expect that the gain provided
by GS will not be diminished but amplified.

Economic returns and efficiency
In general, GS-Pheno and GS-PT scenarios gave the highest
AMGG and associated returns for two main reasons. In the
GS-Pheno scenario, this was due to a short generation
interval and sustained high accuracy of the index. Unlike the
GS scenario where the accuracy depended only on genomic
information, the GS-Pheno scenario combined both genomic
information and a meat phenotype. This meant that high
accuracy was achieved for the meat index and thus a highly
accurate genetic trend was obtained. The superiority of the
GS-PT scenario was due to genomic pre-selection for
progeny-tested males. At a low investment level, progeny
testing scenarios showed lower returns. Such scenarios are
therefore of very limited interest if the progeny sample sizes
are not large enough to correctly estimate the sires’ breeding
values. The difference in cost at which the maximum
contribution margin is achieved between the Classic and
GS-PT scenarios (300 v. 240 keuros) results from the need to
invest both in genomic and progeny test information in the
latter scenario. The fact that at high cost levels (over 280
keuros), the GS-PT scenario was superior to the GS-Pheno
scenario with respect to the AMGG (Figure 1), but inferior in
terms of economic return and CM (Figures 2 and 3), may be
due to the longer generation interval in the GS-PT scenario.
On average, the creation of genetic superiority (in breeding
units) takes longer with the GS-PT scenario than with the
GS-Pheno scenario and this affects the overall result when
measured over the same investment period.
The GS-Pheno scenario was the most profitable, with

maximum contribution margins increased by ∼15% com-
pared with the classic selection scheme. Indeed, in addition
to providing higher returns as a result of a higher annual
genetic gain, the GS-Pheno scenario was relatively less
expensive because, as for the GS scenario, the costs of pro-
geny testing were saved. For the GS scenario, the costs of
phenotyping male selection candidates at the central testing
station were maintained in order to renew the reference
population for the following generations. This affected the
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economic efficiency of the scenario because this meat
phenotype was not used to improve selection accuracy.
Obviously, if a phenotype can be recorded before the
reproduction age, it should be combined with genomic
information to improve selection accuracy and the predicted
genetic gain. Although the GS-PT scenario gave high returns,
its superiority in terms of contribution margins was lower
because it incurred higher costs than other scenarios.
Non-progeny testing scenarios reached their highest returns
at relatively low costs and thus were most efficient at low
investment levels.
In conclusion, this study shows that the implementation of

some forms of genomic evaluation in small ruminant breed-
ing programs can be more profitable than classic selection.
However, these economic gains are relatively lower than the
technical gains (annual genetic gain) predicted by
Shumbusho et al. (2013) in sheep and goat breeding pro-
grams. Our results also confirm the need to optimize the use
of decisional variables. Our comparisons were performed at
the industry level without differentiating between revenues
from nucleus or production farms. It would be interesting to
further analyze in detail specific costs and benefits of such
strategies for the different stakeholders of the sheep industry
(i.e. breeding organizations, breeders and farmers).
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