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Numerical experiments on the turbulent entrainment and mixing of scalars in a
incompressible flow have been performed. These simulations are based on a scale
decomposition of the velocity field, thus allowing the establishment from a dynamic
point of view of the evolution of scalar fields under the separate action of large-scale
coherent motions and small-scale fluctuations. The turbulent spectrum can be split
into active and inactive flow structures. The large-scale engulfment phenomena actively
prescribe the mixing velocity by amplifying inertial fluxes and by setting the area and the
fluctuating geometry of the scalar interface. On the contrary, small-scale isotropic nibbling
phenomena are essentially inactive in the mixing process. It is found that the inertial
mechanisms initiate the process of entrainment at large scales to be finally processed by
scalar diffusion at the molecular level. This last stage does not prescribe the amount of
mixing but adapts itself to the conditions imposed by the coherent anisotropic motion at
large scales. The present results may have strong repercussions for the theoretical approach
to scalar mixing, as anticipated here by simple heuristic arguments which are shown able
to reveal the rich dynamics of the process. Interesting repercussions are also envisaged
for turbulence closures, in particular for large-eddy simulation approaches where only the
large scales of the velocity field are resolved.

Key words: turbulent mixing

1. Introduction

The mixing of scalars and their release to a surrounding fluid are of overwhelming
importance for a plethora of industrial and environmental flows. Examples are the release
and propagation of airborne molecules in free or enclosed spaces, atmospheric or oceanic
thermal motions and combustion in closed chambers. The simplest paradigm for turbulent
mixing is when a substance is a scalar characterized only by its concentration that does not
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influence the flow (Shraiman & Siggia 2000; Warhaft 2000). Turbulent mixing is a process
that naturally occurs when regions at different scalar concentrations interact (Eswaran &
Pope 1988; Overholt & Pope 1996). As a consequence, mixing is inherently associated
with statistically inhomogeneous anisotropic flows (Craske, Debugne & van Reeuwijk
2015). It can be viewed as being composed of two elementary processes: turbulent stirring
and diffusion (Holzer & Siggia 1994; Pumir 1994; Dimotakis 2005). The former is a result
of the motion induced by turbulence while the latter is a result of the scalar concentration
gradients. From a local perspective, these two processes have opposite effects on the
scalar concentration gradients and thus contrast each other. Molecular diffusion causes
the homogenization of the scalar concentration, thus eroding the concentration gradients
and the effectiveness of the diffusion itself. On the contrary, the scalar stirring induced
by the fluctuating velocity field sustains the scalar concentration gradients by distorting
and pushing toward each other the scalar iso-concentration surfaces (Sreenivasan 2019).
When the free-surface boundary of a passive scalar flow is considered, the velocity stirring
of the scalar field is commonly distinguished in large-scale engulfment and small-scale
nibbling (Mathew & Basu 2002; Westerweel et al. 2005, 2009; Watanabe et al. 2015;
Borrell & Jiménez 2016; Jahanbakhshi & Madnia 2016) and the concentration flux across
the so-called scalar interface is of overwhelming importance for applications and needs to
be understood (Holzner & Lüthi 2011; da Silva et al. 2014).

The process of stirring of scalar iso-concentration surfaces is initiated with the
large-scale coherent structures of turbulence by engulfment of fluid at different scalar
concentrations. The scalar entrapped by the large-scale motions is then further processed
by nibbling mechanisms at smaller and smaller scales produced by the turbulent cascade
where, finally, molecular diffusion is rapid enough to complete the turbulent entrainment
and mixing. It is then evident that turbulent mixing is a spatially evolving cascade process
involving the full spectrum of scales (Sreenivasan 1996; Schumacher & Sreenivasan 2005;
Schumacher, Sreenivasan & Yeung 2005; Cimarelli et al. 2015, 2021) and different flow
regions. Hence, it is legitimate to study the turbulent mixing from both the large- and
small-scale perspective. The first stage of the process, at the large scale of motion, is highly
influenced by the flow configuration, large scales being the result of the flow instability.
On the other hand, the last stage of turbulent mixing, at small scales, is characterized by a
larger degree of universality.

This multi-scale nature of turbulent mixing calls for a multi-scale analysis of the
process as demonstrated by a number of recent works. As an example, Philip et al.
(2014) and Mistry et al. (2016) studied the entrainment process by analysing particle
image velocimetry data of a turbulent boundary layer and of an axisymmetric jet,
respectively, decomposed in a hierarchy of scales by means of a spatial filtering
operation. This approach provided evidence that large-scale transport determines the
overall rate of entrainment but that the actual entrainment occurs physically at small
diffusive scales along the interface. This result supports the interpretation of viscous
nibbling as a small-scale process and inviscid engulfment as a large-scale one. More
recently, in Cimarelli et al. (2015) the spectral balance equation of enstrophy was used
to study the multi-scale properties of entrainment in decaying shear-less turbulence.
A strongly anisotropic cascade process is revealed to occur at the turbulent front
consisting of a transfer of enstrophy towards smaller and smaller normal-to-the-interface
scales while retaining very large parallel-to-the-interface scales. In agreement with this
picture, the scale-by-scale analysis of the turbulent kinetic energy reported in Watanabe,
da Silva & Nagata (2020) highlights the simultaneous presence of forward cascade
processes for the normal-to-the-interface scales and reverse cascade processes for the
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parallel-to-the-interface scales. These multi-scale spatially evolving cascade mechanisms
have been finally rigorously explained in Cimarelli et al. (2021) by means of the theoretical
framework provided by the generalized Kolmogorov equation.

One of the main limitations in the understanding of turbulence entrainment and mixing
is the lack of dynamical information of the process, i.e. the cause and the effect of the
elementary processes composing the flow system. Most of the studies mentioned above
deal with the analysis of flow realization snapshots, thus losing possible information
about the dynamic causality of the phenomena that naturally occur over time. In this
context, it would be important to assess the previously shown multi-scale mechanisms
of turbulent entrainment and mixing from a dynamic point of view. In the present work,
we address this issue by analysing the evolution of the process under the separate action of
large and small velocity scales. To this aim, numerical experiments are performed where
the velocity coupling of the passive scalar equation with the Navier–Stokes equations is
modified to alternatively suppress the role of large and small velocity scales in the process
of scalar mixing. Hence, this approach allows us to clearly assess their contribution from a
dynamical point of view. To the authors’ knowledge this is the first attempt to address the
dynamic causality of large and small velocity scales in turbulent mixing and entrainment
of a scalar.

The paper is organized as follows. The numerical settings and the main flow features
of the temporal planar jet are shown in § 2. Some heuristic arguments in support of the
relevance of the different scales of turbulence in the scalar mixing process are reported in
§ 3. The numerical experiments are described in § 4 and their results are presented in § 5.
In § 6, some insights into the essential processes at the basis of turbulent entrainment and
mixing are envisaged. Finally, the work is closed by concluding remarks in § 7.

2. Temporal jet

2.1. Numerical settings
The selected base flow for the numerical experiments on turbulent entrainment and
mixing is a turbulent planar temporal jet (da Silva & Pereira 2008; van Reeuwijk &
Holzner 2014; Cimarelli et al. 2021). This type of flow represents a paradigm for free
shear flows by reproducing essential flow features such as an inhomogeneous mean
shear, a turbulent/non-turbulent interface region and a simultaneous presence of two
interacting well-separated ranges of scales: the large-scale motions reminiscent of the
Kelvin–Helmholtz instability and the small-scale fluctuations of the developed turbulent
motion. The main advantage of this type of flow with respect to other paradigms, e.g.
spatially developing jets, mixing layers and wakes (Stanley, Sarkar & Mellado González
2002), is the two-dimensional statistical spatial homogeneity. Indeed, the flow develops in
time rather than in the streamwise direction thus gaining a statistical spatial homogeneity
and losing the statistical homogeneity in time.

The flow is governed by the Navier–Stokes equations coupled with the evolution of a
passive scalar:

∂ui

∂xi
= 0,

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
,

[−4pt]
∂θ

∂t
+ ∂θuj

∂xj
= 1

ReSc
∂2θ

∂xj∂xj
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)
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Equations (2.1) are written in a dimensionless form by using the initial jet width H for the
length scales, the initial jet velocity U0 for the velocity scales and the initial jet scalar
concentration C0 for the scalar scales. When not specifically stated, all the results of
the present work are reported dimensionless by using H, U0 and C0 as reference scales.
Here Re = U0H/ν is the Reynolds number, where ν is the kinematic viscosity, while
Sc = ν/α is the Schmidt number, where α is the diffusivity of the scalar. In (2.1), index
i = 1, 2, 3 corresponds to the streamwise, spanwise and cross-flow (u, v, w) velocities and
(x, y, z) directions. Equations (2.1) are solved using the open-source code Incompact3d
(Laizet & Lamballais 2009). The spatial discretization is based on a high-order compact
finite-difference scheme, sixth-order accurate, and the time integration is performed
using a third-order Runge–Kutta scheme. Periodic boundary conditions are applied in all
directions.

The initial condition is a fluid layer that is quiescent and characterized by a null
concentration of the scalar except for a thin region −H/2 < z < H/2 where the
streamwise velocity and the scalar are non-zero and homogeneously distributed in the
streamwise and spanwise directions:

u(x, y, z, 0) = U0

2

[
1 + tanh

(
H/2 − |z|

2σ0

)]
,

θ(x, y, z, 0) = C0

2

[
1 + tanh

(
H/2 − |z|

2σ0

)]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

where σ0 = H/35 is the initial momentum thickness. In order to facilitate a rapid
transition to turbulence, a perturbation is superimposed to the initial condition of all three
components of the velocity field consisting of a uniform random noise whose amplitude is
0.01U0.

The simulations have been performed for Re = 3000 and Sc = 1. The numerical domain
is a cuboid of size 36H × 36H × 24H discretized with 900 × 900 × 600 equally spaced
points, thus leading to the same resolution in all three spatial directions. The worst
condition for the resolution is reached at the centreline during the initial turbulent
transition for t = 20 where �x/ηcl ≈ 4.5 with ηcl the centreline value of the Kolmogorov
scale. As shown in the following, in the self-similar decay of the flow, the Kolmogorov
scale increases from this minimum both in time ηcl ∝ √

t and with cross-flow position,
thus highlighting that the spatial resolution employed is appropriate (see also the Appendix
where a validation of the numerical solution is reported). Finally, a constant time step
�t = 0.01 has been used leading to a Courant–Friedrichs–Lewy (CFL) number that on
average is CFL ≈ 0.3.

Averages, hereafter denoted as 〈·〉, have been computed by taking advantage of the
statistical properties of the flow, i.e. spatial homogeneity in the streamwise and spanwise
directions and symmetry in the cross-flow direction, and by using an ensemble of two
independent flow realizations obtained using different random perturbations in the initial
conditions. The customary Reynolds decomposition of the flow in a mean and fluctuating
field is adopted:

u = U + υ, (2.3)

θ = Θ + ϑ, (2.4)

where U = 〈u〉 and Θ = 〈θ〉 are the average fields and υ and ϑ are the fluctuating ones.
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Figure 1. Direct numerical simulation of a turbulent temporal jet. Iso-contours of the scalar field θ = [0, 0.4]
for t = (a) 10, (b) 35, (c) 70 and (d) 105.

2.2. Flow features and self-similarity
The evolution of the flow is shown in figure 1 by means of iso-contours of the
scalar field at different time instants. From the initial condition, the flow field exhibits
first Kelvin–Helmholtz-like instabilities and then transitional mechanisms giving rise to
turbulent fluctuations. As shown in figure 2(a), these production mechanisms of turbulent
fluctuations exceed the dissipative ones giving rise to an increase of the turbulent kinetic
energy and of the scalar variance content up to t ≈ 15 and t ≈ 20 where the maxima
of 〈ϑϑ〉cl(t) = 〈ϑϑ〉(z = 0, t) and kcl(t) = 〈υiυi〉(z = 0, t)/2 are reached, respectively.
Hence, for t > 20, turbulence starts to decay. As shown by the instantaneous behaviour
of the scalar field in figure 1, the flow, while decaying, performs entrainment and mixing
producing increasingly larger scales of motion and increasing its width. Note that also at
the latest stages of the decay, the large-scale structures of the main flow instability are still
visible.

The decay of the flow is characterized by a self-similar behaviour. The only relevant
parameters in the self-similar regime are the volume flux Q0 ≡ ∫

U dz, the cross-sectional
scalar content C0 ≡ ∫

Θ dz and the time t. The former two are invariant for this flow
type. The conserved quantities, Q0 = const. and C0 = const., can be easily derived
from the cross-stream integration of the mean streamwise momentum equation and of
the mean scalar equation, respectively. These three relevant parameters immediately
imply that the self-similar decay is characterized by an increase of the length scales
as

√
Q0t and by a decrease of the velocity and scalar scales as

√
Q0/t and C0/

√
Q0t,

respectively. In figure 2(b), we show the behaviour of the mean centreline velocity
and scalar concentration, Ucl(t) = U(z = 0, t) and Θcl(t) = Θ(z = 0, t), and of the jet
half-widths hΩ and hθ , defined as the centreline distance where the mean enstrophy and
scalar profiles reduce to 2 % their centreline value. From the plot it is clear that the
flow has reached a dynamic equilibrium for t > 30 when all the observables start to
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Figure 2. (a) Temporal evolution of the centreline turbulent kinetic energy kcl and of the centreline scalar
variance 〈ϑϑ〉cl. The behaviour of the Taylor Reynolds number is shown in the inset. (b) Self-similar behaviour
of the jet half-widths, hΩ and hθ , and of the mean centreline velocity and scalar concentration, Ucl and Θcl
(inset).

follow a self-similar behaviour. Note that the scalar and enstrophy interfaces measured
by means of hΩ and hθ almost collapse. In accordance with these scaling of velocities and
lengths, the self-similar regime is characterized by a constant Taylor Reynolds number,
Reλ = √

2kcl/3λcl/ν = 60, where λcl = √
10νkcl/εcl is the centreline value of the Taylor

microscale and εcl the centreline turbulent dissipation (see the inset of figure 2a).

3. A heuristic view of entrainment and mixing

The evolution of scalar fields is governed by inertial and diffusive transport phenomena.
The mixing and entrainment properties of the scalar are, hence, the result of complex
dynamical interactions between these two processes. Indeed, scalar entrainment is directly
accomplished by diffusive mechanisms only, but, from a dynamical point of view, their
strength significantly depends on the properties of the inertial scalar fluxes especially in
turbulent flows. It is then reasonable to use information from both the inertial and diffusive
phenomena to argue about the rate of scalar entrainment and mixing. Based on heuristic
arguments, we try here give an estimate of these two processes by considering general
scale-dependent properties of the flow motion. Indeed, in the case of Schmidt number
close to unity, both mixing due to turbulence convection and scalar diffusion occur at
similar length and time scales. These predictions are then used to produce alternative
scalings for the rate of scalar entrainment and mixing.

The diffusive flux across iso-concentration surfaces can be generally estimated as

φα ≡ α
C
�

S�, (3.1)

where C is a characteristic scalar concentration and S� is the area of the scalar interface
indirectly induced by a turbulent motion with cutoff scale � (Catrakis, Aguirre &
Ruiz-Plancarte 2002). On the other hand, the turbulent scalar flux across iso-concentration
surfaces is directly determined by the convective action of the turbulent field and can be
estimated as

φu ≡ Cu�S�, (3.2)

where u� is the characteristic velocity difference of a turbulent motion with cutoff scale
�. Let us recall that this reasoning applies for flows of unity Schmidt number where the
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velocity and scalar cutoff length scales are similar. Equations (3.1) and (3.2) highlight
that the essential role of turbulent motion is to influence the convoluted scalar surfaces by
prescribing the interface area S� and its fluctuation u�, thus influencing both the diffusive
and inertial scalar fluxes.

Based on the assumption that iso-surfaces in turbulence are fractal-like, it is possible to
derive a useful relation for estimating the area of complex turbulence surfaces:

S� = S0

(
�

L

)2−D

, (3.3)

where S0 and L are some characteristic area and length and D is the fractal dimension
of the surface. In this context, a fundamental result has been obtained by Sreenivasan,
Ramshankar & Meneveau (1989). Indeed, by assuming that all fluxes across iso-surfaces
are independent of Reynolds number, Sreenivasan et al. (1989) found that an estimate
of the fractal dimension of turbulent interfaces is D = 7/3 in good agreement with
experimental results. By inserting the estimate of the surface area (3.3) in the models for
the diffusive and inertial scalar fluxes (3.1) and (3.2), we obtain the following relations:

φα = α
C
�

S0

(
�

L

)2−D

, (3.4)

φu = Cu�S0

(
�

L

)2−D

. (3.5)

It is useful now to introduce the relative speed of a scalar iso-concentration surface:

Vθ = Vb − Ve, (3.6)

where Vb is the boundary entrainment rate and Ve is the entrainment velocity (da Silva
et al. 2014). By considering this entrainment parametrization, the scalar concentration
flux can be globally estimated as

φ = S0VθC. (3.7)

It is now relevant to determine a scaling of Vθ by using information from the inertial and
diffusive fluxes. By equating this expression with the estimates (3.4) and (3.5), we can
define two alternative scalings of the entrainment velocity:

Vα
θ = α

�

(
�

L

)2−D

, (3.8)

Vu
θ = u�

(
�

L

)2−D

. (3.9)

Interestingly, these two relations do not depend on the characteristic scalar concentration,
thus suggesting the relevance of studying the effects of the structure of the velocity field
on the mixing properties of scalar fields as is done in the following sections.

4. Numerical experiments

As shown in the previous analysis, all the scales of the turbulent motion contribute to the
wrinkling of the scalar interface; however, of general relevance is the understanding of
the separated role played by the large (engulfment) and small (nibbling) scales. Indeed, it
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is reasonable to argue that the large-scale field is responsible for large-scale events of
scalar transport and, hence, of deformation and stretching of the scalar interface. These
large-scale phenomena are in general a result of motions related to the flow instability,
such as the Kelvin–Helmholtz instability for the case of temporal jets. On the other hand,
the small-scale motion is expected to be more universal at least for high Reynolds numbers.
It is again reasonable to argue that small turbulent scales produce a less convoluted scalar
interface but composed of smaller and smaller ripples.

It is then relevant to establish how the diffusive and convective laws of the scalar
interface (3.4) and (3.5) change under the separate deformation action of large- and
small-scale turbulent fluctuations. In the present work, we aim at dynamically establishing
the above mentioned scale dependency of turbulent mixing and entrainment by performing
numerical experiments where the scalar field is separately driven by large- and small-scale
motions. First, a filtering operator is defined and applied to the velocity field:

ū =
∫

G(x, ξ)u(ξ) dξ , (4.1)

where ∫
G(x, ξ) dξ = 1 (4.2)

and G is the kernel of a generic filter in space. The filtering formalism allows us to
decompose the turbulent motion in the space of scales as

u = ū + u′. (4.3)

This decomposition of the velocity field is used to simulate the different dynamics of two
independent scalar fields, θ̃ and θ ′′, separately driven by the large and small scales of the
turbulence motion, respectively. The system of equations solved is

∂ui

∂xi
= 0,

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
,

∂θ̃

∂t
+ ∂θ̃ ūj

∂xj
= 1

ReSc
∂2θ̃

∂xj∂xj
,

∂θ ′′

∂t
+

∂θ ′′u′
j

∂xj
+ ∂θ ′′Uj

∂xj
= 1

ReSc
∂2θ ′′

∂xj∂xj
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

thus highlighting that the evolution of the scalar field θ̃ is driven by a flow motion
composed of large-scale fluctuations, θ̃ = θ̃ [ū]. On the contrary, the scalar field θ ′′ evolves
under the action of a flow motion composed of small-scale fluctuations, θ ′′ = θ ′′[U + u′].
As can be seen, for the scalar field θ ′′ the action of the mean flow has been explicitly
added since 〈u′〉 = 0, while, for the scalar field θ̃ , the mean is implicitly included because
〈ū〉 = U . It is important to notice that the filtering operation is applied for the sole
decomposition of the velocity field in large and small scales that separately drive the
evolution of the scalar fields θ̃ and θ ′′, respectively. Hence, the two scalar fields θ̃ and θ ′′
are the result of a different dynamical evolution imposed by the separate action of large-
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Figure 3. Iso-contours of the instantaneous cross-flow velocity, [−0.2, 0.2], for t = 40. The unfiltered field
υ3 (a) is compared with the large- and small-scale fields, ῡ3 (b) and υ ′

3 (c), respectively.

and small-scale motions and should not be confused with the filtering decomposition of
the scalar field itself, i.e. θ /= θ̃ + θ ′′.

The initial conditions are taken from the unfiltered solution at t = 40 thus allowing us to
study the different evolution of θ̃ and θ ′′ in the fully turbulent self-similar conditions of the
flow. A two-dimensional Gaussian filter is employed in the two homogeneous directions,
with characteristic length Δ = 2.2λcl. Hence, the filter length increases during the flow
decay as

√
t by following the behaviour of the Taylor microscale λcl. By analysing other

values of filter lengths, we found that the selected value Δ = 2.2λcl allows us to nicely
split the large-scale motions typical of the main instability of the flow from the more
homogeneous and isotropic small-scale turbulent field (da Silva, Lopes & Raman 2015).

As shown in figure 3, the large-scale spanwise rolls reminiscent of the
Kelvin–Helmholtz instability are carried by the large-scale field ū. Superimposed to this
large-scale motion, very anisotropic turbulent fluctuations are also observed in the field
ū. On the contrary, no signature of large-scale spanwise rolls is found in the small-scale
field u′. This scenario is confirmed by the streamwise velocity spectra Ek(kx) evaluated at
the jet interface z = hθ and shown in figure 4(a). Indeed, the large-scale field ū is found
to capture the large-scale spectral behaviour including the peak at small wavenumbers,
while the small-scale field u′ reproduces the small-scale spectral behaviour. In particular,
the crossover scale between the two fields is found to take place well within the inertial
range where the turbulent spectrum follows the classic k−5/3 power law. Hence, the more
homogeneous and isotropic small-scale fluctuations of the flow find their support in the
field u′.

To better characterize the large- and small-scale fields, the probability density function
of the velocity decomposition evaluated at the jet interface is shown in figure 4(b).
The positively skewed distribution of the cross-flow velocity fluctuations at the interface
is found to be almost entirely carried by the large-scale field ū. On the contrary,
the small-scale field u′ exhibits an almost symmetric distribution with a highly
intermittent character. All these features are at the basis of the significantly different
entrainment and mixing properties of the scalar field experiments that are discussed in
the following section.

In closing this section, let us point out that other types of filter kernels, including also
the filtering in the cross-flow direction, have been considered. The detailed study of the
effects of the filter type, of the filter lengths and of the initial conditions on the evolution
of the scalar fields described by the system of (4.4) is reported in Boga (2020). For the
purpose of the present work, no physically relevant differences have been observed. In the
same work, different filter lengths for the scalar fields θ̃ and θ ′′ have also been considered
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Figure 4. (a) Streamwise energy spectrum evaluated at the jet interface z = hθ for t = 40. The unfiltered
behaviour Ek(kx) is compared with the large- and small-scale velocity decomposition Ēk and E′

k, respectively.
(b) Probability density function of the cross-flow velocity component υ3 evaluated at the jet interface z = hθ for
t = 40. The unfiltered behaviour pdf (υ3) is compared with the large- and small-scale velocity decomposition
pdf (ῡ3) and pdf (υ ′

3), respectively.

to enforce a separation of scales that due to the relatively low Reynolds number considered
is otherwise limited. Again, no physically relevant phenomena are observed.

5. Results

We start by considering the scalar field evolution under the separate action of the large-
and small-scale velocity fields. As shown in figure 5, the evolution of the scalar field θ̃

roughly resembles that of the unfiltered case θ in terms of both large-scale pattern and
spreading of the jet. Indeed, the main difference between the two fields is given by the
reduced amount of mixing, i.e. large-scale engulfment events are present but not combined
with small-scale nibbling. As a result, at the final stages of the evolution for t = 140,
the region occupied by the scalar field θ̃ is almost the same as that for θ but with the
difference that unmixed flow regions of low-concentration levels are present within it.
A completely different scenario appears for the scalar field θ ′′. In this case the large-scale
pattern is completely different with respect to that of θ , with large-scale engulfment events
being completely suppressed. The low-concentration regions initially present within the
jet for t = 50 are absorbed during the evolution by the small-scale nibbling and diffusion,
thus leading to a significantly more mixed turbulent jet at the final stage of the evolution
for t = 140. The completely different evolution of the two scalar fields θ̃ and θ ′′ is also
found to produce very distinct scalar-interface topologies for t = 140. A less convoluted
interface with small-scale wrinkling is produced by the scalar field θ ′′ in contrast to
a highly convoluted surface with almost absent small-scale wrinkling for the scalar
field θ̃ .

We analyse now the evolution of the three scalar fields θ , θ̃ and θ ′′ from a statistical
point of view. As shown in figure 6, the small-scale-driven scalar field θ ′′ shows a slower
decay of the mean centreline scalar concentration together with a more rapid decay of its
variance. On the contrary, the large-scale-driven scalar field θ̃ shows a behaviour that more
closely matches that of the unfiltered field in terms of mean scalar concentration decay, i.e.
only a slightly slower decay is observed (see figure 6a). This matching of the unfiltered
behaviour is, however, not observed when considering the scalar concentration variance.
As shown in figure 6(b), a significantly slower decay of the scalar fluctuations is indeed
observed.
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Figure 5. Temporal evolution of the scalar fields. Iso-contours [0, 0.4] of the scalar θ driven by the unfiltered
velocity field (a–c), of the scalar θ̃ driven by the large-scale velocity field (d– f ) and of the scalar θ ′′ driven by
the small-scale velocity field (g–i). Times t = 50 (a,d,g), t = 95 (b,e,h) and t = 140 (c, f ,i).
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Figure 6. Temporal evolution of the centreline scalar mean (a) and variance (b) for the scalar fields Θcl and
〈ϑϑ〉cl (solid line), Θ̃cl and 〈ϑ̃ ϑ̃〉cl (dashed line) and Θ ′′

cl and 〈ϑ ′′ϑ ′′〉cl (dashed-dotted line).

The origin of these behaviours can be studied by considering the scalar variance budgets
for θ , θ̃ and θ ′′:

∂〈ϑϑ〉
∂t

+ ∂

∂z
(ϕu + ϕα) = π − εθ , (5.1)

∂〈ϑ̃ ϑ̃〉
∂t

+ ∂

∂z
(ϕ̃u + ϕ̃α) = π̃ − ε̃θ , (5.2)

∂〈ϑ ′′ϑ ′′〉
∂t

+ ∂

∂z
(ϕ′′

u + ϕ′′
α) = π′′ − ε′′

θ , (5.3)
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Figure 7. Scalar variance budget at t = 50, 70 and 90 for the scalar fields θ (solid line), θ̃ (dashed line) and
θ ′′ (dashed-dotted line). (a) Turbulence production and dissipation (inset). (b) Turbulent flux and diffusive flux
(inset). The jet centreline distance z is normalized with hθ/2 defined as the jet centreline distance where the
mean scalar concentration reduces to half its centreline value.

where it is possible to recognize the turbulence production and dissipation terms

π = −2〈ϑυ3〉∂Θ

∂z
, εθ = − 2

ReSc

〈
∂ϑ

∂xj

∂ϑ

∂xj

〉
, (5.4a,b)

π̃ = −2〈ϑ̃ ῡ3〉∂Θ̃

∂z
, ε̃θ = − 2

ReSc

〈
∂ϑ̃

∂xj

∂ϑ̃

∂xj

〉
, (5.5a,b)

π′′ = −2〈ϑ ′′υ ′
3〉

∂Θ ′′

∂z
, ε′′

θ = − 2
ReSc

〈
∂ϑ ′′

∂xj

∂ϑ ′′

∂xj

〉
(5.6a,b)

and the turbulent and diffusive fluxes

ϕu = 〈ϑϑ υ3〉, ϕα = − 1
ReSc

∂〈ϑϑ〉
∂z

, (5.7a,b)

ϕ̃u = 〈ϑ̃ ϑ̃ ῡ3〉, ϕ̃α = − 1
ReSc

∂〈ϑ̃ ϑ̃〉
∂z

, (5.8a,b)

ϕ′′
u = 〈ϑ ′′ϑ ′′ υ ′

3〉, ϕ′′
α = − 1

ReSc
∂〈ϑ ′′ϑ ′′〉

∂z
. (5.9a,b)

As shown in figure 7(a), the turbulence production of scalar fluctuations is largely reduced
for the scalar field ϑ ′′ driven by the small-scale velocity field. This behaviour can be
easily explained by considering that turbulence production is a large-scale anisotropic
phenomenon and, hence, is largely inhibited when coupling a scalar field with an almost
isotropic small-scale velocity field. Accordingly, the scalar field ϑ̃ being driven by a
very anisotropic large-scale velocity field exhibits a turbulence production that is almost
unaltered with respect to that of ϑ . The behaviour of turbulence dissipation is shown in
the inset of figure 7(a). At the initial stages of the decay, the dissipations of both ϑ̃ and ϑ ′′
show a reduction with respect to that of the scalar field ϑ . On the other hand, for t ≥ 70
only the dissipation of the scalar field ϑ ′′ shows a reduction while the dissipation of ϑ̃ is
found to almost recover the dissipation values of ϑ .

These behaviours of turbulence production and dissipation can be used to explain
the previously observed decays of the mean and variance of the scalar concentration
(see again figure 6). By noting that the turbulence production of scalar fluctuations is a
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phenomenon that subtracts intensity from the mean field and releases it to the fluctuations,
it is immediately clear that for the scalar field θ ′′, the large reduction in the production of
scalar fluctuations leads to a significantly slower decay of the mean scalar concentration
Θ ′′(t). This reduction in the production of scalar fluctuations is not balanced by an
equivalently large decrease of dissipation thus leading to a reduction of the net source
of scalar fluctuations, i.e. π′′ − ε′′

θ < π − εθ . As a consequence, a more rapid decay of the
intensity of the scalar fluctuations 〈ϑ ′′ϑ ′′〉(t) is observed. The opposite scenario occurs for
the scalar θ̃ driven by the anisotropic large-scale velocity field. In this case the production
of scalar fluctuations is only marginally reduced, thus justifying the slightly slower decay
of the mean scalar concentration Θ̃(t). This slight reduction of production is combined
with a larger reduction of dissipation especially at the first stages of the evolution, thus
leading to an increase of the net source of scalar fluctuations, i.e. π̃ − ε̃θ > π − εθ . This
behaviour justifies the observed slower decay of the intensity of the scalar fluctuations
〈ϑ̃ ϑ̃〉(t).

The formalism of the scalar variance budget allows us also to address the inertial and
diffusive phenomena of spatial spreading of the scalar fluctuations from the production
to the dissipative regions of the flow, i.e. the turbulent and diffusive fluxes ϕu and ϕα .
As shown in figure 7(b), the scalar fluctuations are transported from the production region
towards the inner and outer regions of the jet, z/hθ/2 < 1 and z/hθ/2 > 1, respectively. This
transport is essentially performed by inertial mechanisms for both ϑ and ϑ̃ , i.e. the scalar
fluctuations driven by the unfiltered field and by the large-scale velocity field, respectively.
Indeed, the turbulent flux is always far greater than the diffusive one: ϕu 
 ϕα and
ϕ̃u 
 ϕ̃α . The scenario is, however, different for the scalar fluctuations ϑ ′′ driven by
the small-scale velocity field. Also in this case the fluctuations are mainly transported by
inertial mechanisms, ϕ′′

u > ϕ′′
α , but their intensity is markedly reduced: ϕ′′

u � ϕu. On the
contrary, the diffusion mechanisms are found to surprisingly remain almost unaltered, i.e.
ϕ′′

α ≈ ϕα . Accordingly, we argue that the reduction of the inertial transport mechanisms is
not induced by a decrease of the scalar fluctuation intensity given by the contraction of the
turbulence production but simply by a less efficient coupling of the small-scale velocity
field with the scalar fluctuations, i.e. |〈ϑ ′′ϑ ′′υ ′

3〉| � |〈ϑϑ υ3〉|. As a result, the percentage
contribution of diffusion with respect to advection in the spatial spreading of the scalar
fluctuations ϑ ′′ is largely increased.

As expected, the described different evolution of the mean and fluctuating scalar field for
the three numerical experiments also has an impact on the global mixing and entrainment
properties of the scalar jet. In figure 8(a), the entrained volume V , defined as the volume of
fluid where the scalar concentration is θ > θth with θth = 0.02Θcl, is shown as a function
of time for the three numerical experiments. During the flow decay, the entrained volume
is significantly reduced for the scalar driven by the small-scale velocity field, V ′′ < V .
On the other hand, a smaller reduction of the entrained volume is observed for the scalar
driven by the large-scale velocity field, Ṽ < V . This difference between the two scalar
fields θ̃ and θ ′′ is enhanced when considering the spreading of the scalar jet. As shown in
the inset of 8(a), the position of the scalar interface is only slightly reduced for the scalar
driven by the large-scale velocity field, h̃θ ≈ hθ , in contrast to the scalar driven by the
small-scale velocity field where the position of the scalar interface advances very slowly,
h′′
θ � hθ .
The different entrainment and propagation of the scalars θ̃ and θ ′′ can be explained by

recalling the behaviours of the turbulent and diffusive fluxes. Contrary to the scalar θ̃ , the
scalar driven by the small-scale velocity field θ ′′ is characterized by a significantly reduced
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Figure 8. (a) Temporal evolution of the entrained volume V and of the position of the interface hθ (inset) for
the scalar field driven by the unfiltered velocity field V and hθ (solid line), by the large-scale velocity field
Ṽ and h̃θ (dashed line) and by the small-scale velocity field V ′′ and h′′

θ (dashed-dotted line). (b) Probability
density function of the scalar fields θ , θ̃ and θ ′′ evaluated for t = 120 at the mean scalar interface position
z = hθ , z = h̃θ and z = h′′

θ and at the jet centreline z = 0 (inset).

inertial flux, |ϕ′′
u | � |ϕu|, thus explaining the very slow spreading of the jet, h′′

θ � hθ . We
argue that, associated with this reduction of inertial fluxes, a reduced amount/intensity of
entrapment events is experienced by the scalar θ ′′. As a result, the presence and the size of
null-concentration blobs entrapped within the scalar jet z < h′′

θ are markedly reduced. At
the same time the diffusion processes for the scalar θ ′′ remain almost unaltered, ϕ′′

α ≈ ϕα .
Hence, we argue that the time scale of the diffusion processes is small enough to effectively
complete the entrainment of the reduced amount of entrapped null-concentration blobs.
This picture is confirmed by figure 5, where the instantaneous flow patterns of the scalar
field θ ′′ show a significantly more mixed flow region within the scalar jet z < h′′

θ . These
behaviours are not observed for the scalar driven by the large-scale velocity field θ̃ since
in this case engulfment events are largely reproduced ϕ̃u 
 ϕ′′

u while retaining the same
intensity of the diffusion processes ϕ̃α ≈ ϕ′′

α . Indeed, the pattern of the scalar θ̃ shown
in figure 5 exhibits a number of unmixed flow regions within the scalar jet z < h̃θ . This
different behaviour of entrainment for the two scalars explains why the reduction of the
entrained volume for the scalar θ ′′, V ′′ < V , is not as large as the reduction of the spreading
of the jet, h′′

θ � hθ .
The probability density function of the three scalars ϑ , ϑ̃ and ϑ ′′ actually confirms the

above mentioned entrainment and mixing properties. As shown in the inset of figure 8(b),
the probability density function at the jet centreline highlights a symmetric distribution
of the scalar fluctuations for ϑ ′′ and a very wide and asymmetric distribution for ϑ and
ϑ̃ . In particular, this asymmetry is essentially given by an increased probability of large
negative scalar fluctuations that can be clearly associated with the presence of unmixed
flow regions of low scalar concentration even at the jet centreline due to very-large-scale
engulfment events. In this respect, it can be noticed that the probability density functions
of ϑ and ϑ̃ have a negative tail that extends up to ϑ/Θ = −1 corresponding to θ = 0 and,
hence, to completely unmixed flow regions. This behaviour is not observed for ϑ ′′, thus
confirming that this field lacks engulfment events and, at the same time, exhibits a mixed
flow in the scalar jet core.

As shown in figure 8(b), the scenario is completely different at the scalar interface,
z = hθ , z = h̃θ and z = h′′

θ . In this case, all three scalar fields ϑ , ϑ̃ and ϑ ′′ show a
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peak of probability for ϑ/Θ = −1 corresponding again to θ = 0. Indeed, the presence
of entrainment at the scalar interface is revealed by a wide positive tail of the probability
distribution. Interestingly, for the scalars ϑ and ϑ̃ this positive tail is very wide and flat,
thus revealing that at the scalar interface a wide range of scalar fluctuation intensities is
almost equally probable. We argue that this plateau is again due to large-scale engulfment
mechanisms that intersect the mean scalar interface and contain a wide range of scalar
values. On the contrary, the scalar ϑ ′′ driven by the small-scale velocity field exhibits a
positive tail characterized by a decrease of the probability with the intensity of the scalar
fluctuations. Indeed, in this case engulfment is absent and the small scales of nibbling can
contain only a fraction of the entire range of scalar values.

6. Turbulent entrainment and mixing

6.1. Theoretical framework
The different mixing and entrainment properties of the three numerical experiments
highlighted in the previous section can now be analysed in terms of heuristic arguments in
order to reveal the essential features of the process. In § 3, we have shown how the complex
dynamics of turbulent fluctuations has an impact on the entrainment and mixing rates of a
scalar field by establishing the geometrical and fluctuating properties of the scalar surface
through which a scalar concentration flux occurs following the well-established Fick’s law
of diffusion. We apply now these arguments to the three scalar concentration experiments
here developed.

In the case of a temporal planar jet and considering the scalar iso-concentration surface
θ = 0.02Θcl, a proper choice of the characteristic scales for the diffusive and inertial scalar
fluxes (3.4) and (3.5) is

L = hθ , � = ηθ
int, u� = uηint , C = Θcl, (6.1a–d)

where hθ is the jet half-width defined by the mean scalar interface itself, while ηθ
int and

uηint are the Batchelor scale and the Kolmogorov velocity evaluated at the scalar interface
z = hθ . Without loss of generality we have chosen the scalar iso-concentration surface
θ = 0.02Θcl, but let us highlight that the same theoretical framework applies for all scalar
surfaces. With these characteristic scales, the diffusive and inertial fluxes become

φα = α
Θcl

ηθ
int

S0

(
ηθ

int
hθ

)2−D

, φu = Θcluηint S0

(
ηθ

int
hθ

)2−D

(6.2a,b)

and it is easy to show that the two fluxes equal each other:

φα = φu. (6.3)

An alternative scaling is given by considering an outer velocity scale in the assumptions
(6.1a–d), i.e.

u� = υint, (6.4)

where υint is the standard deviation of the velocity fluctuations at z = hθ . In this case, the
inertial flux differs from the diffusive one and can be written as

φurms = ΘclυintS0

(
ηθ

int
hθ

)2−D

. (6.5)
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In the temporal jet, the entrainment hypothesis (3.7) can be written as

φ = S0VθΘcl, (6.6)

where S0 is the (x–y)-plane surface of the jet. Hence, the different estimates of the scalar
surface velocity become

Vα
θ = Vu

θ = α

ηθ
int

(
ηθ

int
hθ

)2−D

= uηint

(
ηθ

int
hθ

)2−D

,

Vurms
θ = υint

(
ηθ

int
hθ

)2−D

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.7a,b)

In the self-similar regime, hθ ∝ √
t, ηθ

int ∝ √
t, uηint ∝ 1/

√
t and υint ∝ 1/

√
t, thus leading

to the following scaling:

Vθ = Vα
θ = Vu

θ ∝ 1√
t
, Vurms

θ ∝ 1√
t
. (6.8a,b)

For the scalar θ̃ driven by the large-scale velocity field, the above assumptions apply by
simply replacing the characteristic scales, i.e.

L = h̃θ , � = η̃θ
int, C = Θ̃cl, u� = ũηint or u� = υ̃int, (6.9a–e)

thus leading to the following velocity scales:

Ṽα
θ = Ṽu

θ = α

η̃θ
int

(
η̃θ

int

h̃θ

)2−D

= ũηint

(
η̃θ

int

h̃θ

)2−D

,

Ṽurms
θ = υ̃int

(
η̃θ

int

h̃θ

)2−D

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.10a,b)

On the contrary, for the scalar θ ′′ driven by the small-scale velocity field, the choice of
the characteristic scales needs more attention. Indeed, due to the absence of large-scale
engulfment events, the largest characteristic length for the scalar surface is given by the
filter length Δ (see the instantaneous scalar topology shown in figure 5). Accordingly, the
characteristic scales are

L = Δ, � = ηθ ′′
int , C = Θ ′′

cl, u� = u′′
ηint

or u� = υ ′′
int (6.11a–e)

and the estimates of the scalar surface velocity become

Vα
θ

′′ = Vu
θ
′′ = α

ηθ ′′
int

(
ηθ ′′

int
Δ

)2−D

= u′′
ηint

(
ηθ ′′

int
Δ

)2−D

,

Vurms
θ

′′ = υ ′′
int

(
ηθ ′′

int
Δ

)2−D

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.12)
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Figure 9. (a) Boundary entrainment rate as a function of time for the three scalar fields θ , θ̃ and θ ′′. The
inset shows the entrainment rate scaled in self-similar variables. (b) Time evolution of the scalar surface area
computed using the fractal estimate (6.15a–c) for the three scalar fields θ , θ̃ and θ ′′.

6.2. Comparison with the numerical experiments
To verify these scalings, it is important to note that the entrainment velocity Ve is null in
the temporal jet, since

d
dt

∫
U dz = 0, (6.13)

and, hence, the relative speed of scalar interface defined in (3.6) is entirely determined
by the boundary entrainment rate Vθ = Vb. The boundary entrainment velocity can be
computed as the rate of variation of the volume of fluid entrained V :

Vb = 1
2S0

dV
dt

. (6.14)

In figure 9(a), the behaviour of the boundary entrainment velocity for the three numerical
experiments is shown. In accordance with the flow analysis reported in § 5, the scalar field
θ̃ exhibits only a slight reduction of the entrainment rate, while, for the scalar field θ ′′, this
reduction is larger. As shown in the inset of figure 9(a), after an initial transient that is
more marked for the scalar field θ ′′, a self-similar scaling Vb ∝ t−1/2 applies for t > 80.

The heuristic approach defined in the previous section is based on the idea that
iso-surfaces are determined by the structure of turbulence and are fractal-like (Sreenivasan
et al. 1989). The estimate of the corresponding iso-surface area for the three numerical
experiments is reported in figure 9(b). Let us recall that for the assumptions made in the
previous section, the fractal-like surfaces read

S� = S0

(
ηθ

int
hθ

)2−D

, S̃� = S0

(
η̃θ

int

h̃θ

)2−D

, S′′
� = S0

(
ηθ ′′

int
Δ

)2−D

, (6.15a–c)

respectively, for the scalar fields θ , θ̃ and θ ′′. As shown in figure 9(b), both the scalar
fields θ̃ and θ ′′ experience a reduction of the scalar interface area. In the θ̃ scalar field,
this reduction is given by the lack of small-scale wrinkles at the scalar interface due to
the absence of small-scale nibbling. Conversely, in the θ ′′ scalar field, this reduction is
caused by the lack of large-scale convolutions of the scalar interface due to the absence of
large-scale engulfment. Since this reduction is larger for the scalar field θ ′′, S′′

� < S̃� < S�,
we argue that large-scale engulfment more efficiently increases the interface area than
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u

Vθ
urms

Vθ
urms′′

Ṽθ
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Figure 10. (a,b) Predictions of the boundary entrainment rate based on (6.7a,b), (6.10a,b) and (6.12),
respectively, for the three scalar fields θ , θ̃ and θ ′′. (c,d) Refined predictions of the boundary entrainment
rate based on (6.20) and (6.25).

small-scale nibbling. Let us notice that we have verified these scalings by measuring the
actual iso-surface area of θ = θth and a good agreement has been found. The behaviour of
the scalar interface areas supports the observed reduction of entrainment rate for the scalar
fields θ̃ and θ ′′ (see again figure 9a). But, actually, the physics at the basis of the rate of
entrainment is more complex and eludes the simple indication given by the interface area.
Indeed, the heuristic models for the entrainment rate (6.7a,b), (6.10a,b) and (6.12), despite
being based on the fractal surface area, actually show a completely different behaviour.
Let us try to grasp the essential reasons.

In figure 10(a,b), the predictions of the entrainment velocity given by (6.7a,b), (6.10a,b)
and (6.12) are shown. For the scalars θ and θ̃ , respectively driven by the unfiltered and
large-scale velocity fields, the predictions are reasonable in terms of both behaviour and
reduction of the entrainment rate for the scalar θ̃ . Compare these behaviours with the
measurements reported in figure 9(a). On the other hand, the prediction for the scalar θ ′′
lacks in capturing the reduction of the entrainment rate that, on the contrary, is estimated
to be the largest one. Despite being characterized by the largest predicted reduction of the
scalar iso-surface area, see figure 9(b), equations (6.12) predict a large entrainment rate
because of a smaller value of the Batchelor scale and of a larger value of the velocity
fluctuation intensity, i.e.

ηθ ′′
int � ηθ

int and υ ′′
int 
 υint. (6.16a,b)

These inequalities are simply due to the lower propagation rate of the scalar field θ ′′
with respect to θ and θ̃ . As a result, the interface of the scalar field θ ′′ experiences a
velocity field associated with a much more inner location with respect to that experienced
by the other two scalar interfaces since h′′

θ � h̃θ ≈ hθ . At inner positions, the variance and
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dissipation of velocity fluctuations are larger than those at the outer regions of the jet (see
(Cimarelli et al. 2021)) and the operation of filtering out the large-scale fluctuations is not
able to balance this flow inhomogeneity thus justifying inequalities (6.16a,b). Overall, we
have that the scalar θ ′′ driven by the small-scale velocity field experiences a reduction of
the scalar interface area S′′

� < S̃� < S� that is overcome by a larger increase of the diffusion
velocity α/ηθ ′′

int 
 α/η̃θ
int ≈ α/ηθ

int and of the velocity fluctuations υ ′′
int 
 υ̃int ≈ υint. For

this reason, (6.7a,b), (6.10a,b) and (6.12) actually predict a larger entrainment rate for the
scalar θ ′′.

6.3. Heuristic refinement of the entrainment and mixing assumptions
Evidently, the heuristic assumptions at the basis of (6.7a,b), (6.10a,b) and (6.12) miss some
relevant physical processes. We try here to grasp the essential aspects.

Let us start with the scalar diffusion. The hypothesis (6.2a,b),

φα = α
Θcl

ηθ
int

S�, (6.17)

certainly works for the scalar fields θ and θ̃ but not for θ ′′. Indeed, for the latter, the
decrease in the scalar surface area, S′′

� < S̃� < S�, is overcome by a larger increase of the
characteristic scalar gradient,

Θ ′′
cl

ηθ ′′
int


 Θ̃cl

η̃θ
int

≈ Θcl

ηθ
int

, (6.18)

due both to a slower decay of the mean scalar concentration Θ ′′
cl 
 Θ̃cl ≈ Θcl (see

figure 6a) and to an inner location of the scalar interface that in turn leads to ηθ ′′
int �

η̃θ
int ≈ ηθ

int. It appears that the mean scalar concentration is a valid indicator of the scalar
fluctuation intensity for the fields θ and θ̃ but not for θ ′′. Indeed, the increase of mean scalar
concentration Θ̃cl is associated with an increase also of the scalar fluctuation intensity
〈ϑ̃ ϑ̃〉cl (see figure 6(a,b). On the contrary, the increase of mean scalar concentration
Θ ′′

cl is associated with a decrease of the scalar fluctuation intensity 〈ϑ ′′ϑ ′′〉cl (see again
figure 6a,b). In practical applications, this different behaviour could be ascribed for
example to the presence of external agents or chemical reactions. Accordingly, since the
scalar fluctuation intensity could not be directly related to the behaviour of the mean
scalar concentration, it is important to directly take it into account in the scalar diffusion
expression:

φα = α

√〈ϑϑ〉cl

ηθ
int

S�. (6.19)

This expression leads to the following velocities:

Vα
θ = α

√〈ϑϑ〉cl/Θcl

ηθ
int

S�

S0
,

Ṽα
θ = α

√
〈ϑ̃ ϑ̃〉cl/Θ̃cl

η̃θ
int

S̃�

S0
,

Vα
θ

′′ = α

√〈ϑ ′′ϑ ′′〉cl/Θ
′′
cl

ηθ ′′
int

S′′
�

S0
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.20)
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respectively, for the scalar fields θ , θ̃ and θ ′′. As shown in figure 10(c), these are actually
able to predict the reduction of entrainment for both the scalar fields θ̃ and θ ′′.

We consider now the inertial scalar flux. The hypothesis (6.5),

φurms = ΘclυintS�, (6.21)

certainly works for the scalar fields θ and θ̃ but not for θ ′′. Indeed, for the latter, the
decrease in the scalar surface area, S′′

� < S̃� < S�, is overcome by a larger increase of the
velocity fluctuations,

υ ′′
int 
 υ̃int ≈ υint, (6.22)

due to the inner location of the scalar interface for θ ′′. Hence, contrary to measurements,
a larger velocity of propagation of the scalar θ ′′ is predicted. This behaviour actually
suggests that the global intensity of the velocity fluctuations is not a complete indicator
for the transport of scalar fluctuations. Evidently, the scalar transport is not accomplished
efficiently by all the scales of the turbulent spectrum. The main difference between the
intensity of the velocity fluctuations υ̃int and υ ′′

int is given by the velocity scales involved.
The intensity υ̃int is produced by an anisotropic field of motion characterized by large-scale
engulfment events while the intensity υ ′′

int is produced by essentially isotropic small-scale
fluctuations. It is then possible to argue that only the anisotropic part of the velocity field
significantly contributes to the net propagation of scalars in agreement with a number of
recent works (Cimarelli et al. 2015, 2021; Buxton, Breda & Dhall 2019). Accordingly, we
introduce the isotropy indicator

γ =
√〈υ3υ3〉√〈υ1υ1〉 + √〈υ2υ2〉 + √〈υ3υ3〉

. (6.23)

This parameter tends to 1 when the intensity of the fluctuations is increasingly contained
in the cross-flow component and diminishes when the anisotropic state departs from
the one-component condition by reaching 1/3 corresponding to isotropic conditions. In
velocity fields characterized by large-scale engulfment events, γ > 1/3, and, hence, it can
be used to identify the portion of the intensity of the velocity fluctuations that is active in
the scalar propagation. Accordingly, the inertial scalar flux can be rewritten as

φurms = Θcl(γ − 1
3)υintS� (6.24)

and the entrainment velocities read

Vurms
θ =

(
γ − 1

3

)
υint

S�

S0
,

Ṽurms
θ =

(
γ̃ − 1

3

)
υ̃int

S̃�

S0
,

Vurms
θ

′′ =
(

γ ′′ − 1
3

)
υ ′′

int
S′′
�

S0
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.25)

respectively, for the scalar fields θ , θ̃ and θ ′′. As shown in figure 10(d), these predictions
of the scalar entrainment velocity are actually able to predict the reduction of entrainment
for both the scalar fields θ̃ and θ ′′. Let us finally notice that these predictions are based
on scaling arguments and, hence, are intended to give a good qualitative rather than a
quantitative description of the boundary entrainment rate of figure 9(a).
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7. Conclusions

The entrainment and mixing processes of scalar fields are investigated for the symmetries
of an incompressible temporal planar jet. For Schmidt numbers close to unity, both
mixing due to turbulence and scalar diffusion occur with similar time scales. In particular,
scalar diffusion processes create a flux through scalar iso-concentration surfaces whose
geometrical and fluctuating properties are prescribed by the complex dynamics of
turbulence, thus forming coupled mechanisms of entrainment which elude a clear
understanding. The definition of two scalar fields separately driven by large- and
small-scale fluctuations is a sound starting point to address this issue. To this aim,
numerical experiments have been conducted in order to establish from a dynamical
point of view the scale dependency of turbulence mixing and entrainment of a passive
scalar. Three independent scalar fields have been solved, θ , θ̃ and θ ′′, respectively driven
by the unfiltered motion and by the large- and small-scale velocity fields defined by
the filter length Δ = 2.2λcl. The large-scale field is found to capture the large-scale
anisotropic engulfment events while the small-scale field retains only the small-scale
motions commonly associated with nibbling.

We found that the evolution of the scalar field θ̃ is almost unaltered with respect to that
of θ . The propagation of the scalar field is only slightly reduced h̃θ ≈ hθ and the main
difference is given by an increased number of unmixed flow regions within the jet core
that leads to a reduced amount of entrained volume, Ṽ < V . Accordingly, it is found that
both the inertial and diffusive scalar fluxes are almost unaltered, ϕ̃u ≈ ϕu and ϕ̃α ≈ ϕα ,
thus showing that anisotropic large-scale fluctuations are responsible for almost the entire
mechanism of scalar mixing. On the contrary, the small-scale velocity field driving the
scalar θ ′′ does not capture engulfment events. In this case, the inertial fluxes are markedly
reduced, ϕ′′

u � ϕu, thus showing that small-scale isotropic fluctuations do not contribute
significantly to the process. As a result, the spreading of the jet is markedly reduced,
h′′
θ � hθ . On the other hand, the diffusive mechanisms are almost unaltered, ϕ′′

α ≈ ϕα , and,
together with the absence of large-scale engulfment, allows for a more complete mixing of
the scalar jet core by diffusion thus leading to a reduction of the entrained volume V ′′ < V
that is less pronounced than the reduction of the spreading of the jet h′′

θ � hθ .
Overall, we found that inertial fluxes guided by large-scale anisotropic phenomena of

engulfment initiate the processes of scalar entrainment and mixing and essentially commit
their strength to be further processed through a cascade process by nibbling mechanisms
at small scales. Hence, this last stage does not prescribe the amount of entrainment
and mixing, but essentially adapts itself to the conditions imposed by the large-scale
features of the velocity field. This is also demonstrated by the fact that the evolution
of the scalar fields θ̃ and θ ′′ diverges from the very beginning, t = 40, where only the
velocity field is significantly changed. We also argue that the velocity stirring of the scalar
iso-concentration surfaces is more effectively accomplished by large-scale engulfment
events than by small-scale nibbling. Indeed, we estimate that large-scale convolutions of
the scalar iso-surface are responsible for a larger increase of the iso-surface area than
small-scale wrinkles.

From a heuristic point of view, classical arguments lead to an entrainment velocity that
is proportional to the intensity of the velocity fluctuations measured at the scalar surface
times its area. These arguments actually fail in predicting the behaviour of the scalar field
θ ′′. Indeed, due to the lower rate of propagation, the scalar interface for θ ′′ experiences
very large velocity fluctuations, υ ′′

int 
 υ̃int ≈ υint, but the velocity of entrainment is
actually reduced. This phenomenon actually suggests that only the large-scale portion of
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Dataset Re Sc Lx, Ly, Lz Nx, Ny, Nz

(
�x
ηcl

)
max

(
�y
ηcl

)
max

(
�z
ηcl

)
max

�t

Present 3000 1 36H, 36H, 24H 900, 900, 600 4.5 4.5 4.5 0.01
Reference 2000 1 48H, 48H, 24H 2304, 2304, 960 1.66 1.66 2 0.02

Table 1. Numerical settings of the present simulation compared to those of the reference simulation by
Cimarelli et al. (2021). For the simulation by Cimarelli et al. (2021), the time step is variable and prescribed by
the condition CFL < 0.3; hence, the value reported is the average time step used. It is important to note that the
values of the Reynolds number and of the domain extension here reported for the simulation of Cimarelli et al.
(2021) differ from those reported in their work because the reference length H used for non-dimensionalization
was defined as half the initial jet width contrary to the entire initial width considered here (see § 2.1).

the turbulent spectrum is actually active for scalar propagation. Accordingly, we found that
the small-scale isotropic structure of the velocity field driving the scalar θ ′′ is essentially
inactive for the scalar entrainment despite its intensity being large. On the contrary, the
large-scale anisotropic motion driving the scalar θ̃ is almost entirely active, thus leading
to a larger velocity of propagation even if the intensity of its fluctuations is smaller.
The adoption of a simple isotropy indicator to model the active fraction of the velocity
fluctuations confirms this conjecture. The large-scale coherent structure of engulfment
imposes the rate of entrainment more efficiently with respect to small-scale eddies by
activating intense inertial fluxes and by setting the geometry and the area of the scalar
surface.

It is worth noting that the present results are relevant also for reduced-order approaches
to scalar mixing, in particular for large-eddy simulation where only the large scales of
the velocity field are resolved. The present numerical experiments show that the scalar
mixing processes are almost unaltered when driven solely by the large scales of the
velocity field. Only a lack of scalar mixing in the jet core is observed that, however, can
be recovered by simply adding a turbulent diffusivity to the scalar equation using classical
gradient-diffusion hypothesis.

In closing this work, let us mention that the considered Reynolds number is rather low,
Reλ = 60. By increasing the Reynolds number, the ratio between inviscid and viscous
phenomena may change as long as a larger separation of scales is achieved. This aspect
should be taken into account for future investigations.
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Appendix. Dataset validation

To validate the dataset used in the present work, a comparison with recent direct numerical
simulation data of a turbulent temporal jet by Cimarelli et al. (2021) is here reported. The
initial and boundary conditions are the same for both simulations with the exception of
the Reynolds number: Re = 2000 in Cimarelli et al. (2021) and Re = 3000 in the present
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Figure 11. Temporal evolution of the mean centreline velocity Ucl and of the mean scalar concentration Θcl
for the present dataset (black lines) and for the reference dataset from Cimarelli et al. (2021) (red lines).
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Figure 12. Velocity and scalar self-similar scalings for the present dataset (black lines) and for the reference
dataset from Cimarelli et al. (2021) (red lines). (a) Mean velocity and turbulent kinetic energy profiles.
(b) Scalar mean and variance profiles.

work. The two simulations differ in the numerical schemes, the domain extension and
the spatial and temporal resolution adopted. The numerical code used in Cimarelli et al.
(2021) is less accurate being based on a fourth-order-accurate spatial discretization and a
third-order Adams–Bashforth scheme for time integration (see Craske & van Reeuwijk
2015; Verstappen & Veldman 2003). On the other hand, the domain lengths in the
streamwise and spanwise directions and the spatial resolution are improved with respect
to the present settings (see table 1). Despite these differences, the agreement between the
two numerical datasets is very good. As shown in figure 11, the temporal behaviours of the
mean centreline velocity Ucl and of the mean centreline scalar concentration Θcl predicted
by the two simulations are essentially the same. A very good agreement is also observed
in the cross-flow distribution of the numerical solutions as shown in figure 12 where the
mean and variance profiles of velocity and scalar concentration are reported in self-similar
variables, i.e. by re-scaling velocity with Ucl, scalar concentration with Θcl and cross-flow
position with the jet half-width z1/2 defined as the centreline distance at which the mean
velocity profile reduces to half its centreline value.

927 A34-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.779


A. Cimarelli and G. Boga

REFERENCES

BOGA, G. 2020 Numerical experiments on turbulent entrainment. Master’s thesis, University of Bologna.
Available at: http://amslaurea.unibo.it/20559/.

BORRELL, G. & JIMÉNEZ, J. 2016 Properties of the turbulent/non-turbulent interface in boundary layers.
J. Fluid Mech. 801, 554–596.

BUXTON, O.R.H., BREDA, M. & DHALL, K. 2019 Importance of small-scale anisotropy in the
turbulent/nonturbulent interface region of turbulent free shear flows. Phys. Rev. Fluids 4 (3), 034603.

CATRAKIS, H.J., AGUIRRE, R.C. & RUIZ-PLANCARTE, J. 2002 Area-volume properties of fluid interfaces
in turbulence: scale-local self-similarity and cumulative scale dependence. J. Fluid Mech. 462, 245–254.

CIMARELLI, A., COCCONI, G., FROHNAPFEL, B. & DE ANGELIS, E. 2015 Spectral enstrophy budget in a
shear-less flow with turbulent/non-turbulent interface. Phys. Fluids 27, 125106.

CIMARELLI, A., MOLLICONE, J.-P., VAN REEUWIJK, M. & DE ANGELIS, E. 2021 Spatially evolving
cascades in temporal planar jets. J. Fluid Mech. 910, A19.

CRASKE, J., DEBUGNE, A.L.R. & VAN REEUWIJK, M. 2015 Shear-flow dispersion in turbulent jets. J. Fluid
Mech. 781, 28–51.

CRASKE, J. & VAN REEUWIJK, M. 2015 Energy dispersion in turbulent jets. Part 1. Direct simulation of
steady and unsteady jets. J. Fluid Mech. 763, 500–537.

DA SILVA, C.B., HUNT, J.C.R., EAMES, I. & WESTERWEEL, J. 2014 Interfacial layers between regions of
different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567–590.

DA SILVA, C.B., LOPES, D.C. & RAMAN, V. 2015 The effect of subgrid-scale models on the entrainment of
a passive scalar in a turbulent planar jet. J. Turbul. 16 (4), 342–366.

DA SILVA, C.B. & PEREIRA, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and
rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20, 055101.

DIMOTAKIS, P.E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356.
ESWARAN, V. & POPE, S.B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar.

Phys. Fluids 31 (3), 506–520.
HOLZER, M. & SIGGIA, E.D. 1994 Turbulent mixing of a passive scalar. Phys. Fluids 6 (5), 1820–1837.
HOLZNER, M. & LÜTHI, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13),

134503.
JAHANBAKHSHI, R. & MADNIA, C.K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid

Mech. 797, 564–603.
LAIZET, S. & LAMBALLAIS, E. 2009 High-order compact schemes for incompressible flows: a simple and

efficient method with quasi-spectral accuracy. J. Comput. Phys. 228 (16), 5989–6015.
MATHEW, J. & BASU, A.J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary.

Phys. Fluids 14 (7), 2065–2072.
MISTRY, D., PHILIP, J., DAWSON, J.R. & MARUSIC, I. 2016 Entrainment at multi-scales across the

turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech. 802, 690–725.
OVERHOLT, M.R. & POPE, S.B. 1996 Direct numerical simulation of a passive scalar with imposed mean

gradient in isotropic turbulence. Phys. Fluids 8 (11), 3128–3148.
PHILIP, J., MENEVEAU, C., DE SILVA, C.M. & MARUSIC, I. 2014 Multiscale analysis of fluxes at the

turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids 26 (1), 015105.
PUMIR, A. 1994 A numerical study of the mixing of a passive scalar in three dimensions in the presence of a

mean gradient. Phys. Fluids 6 (6), 2118–2132.
SCHUMACHER, J. & SREENIVASAN, K.R. 2005 Statistics and geometry of passive scalars in turbulence. Phys.

Fluids 17 (12), 125107.
SCHUMACHER, J., SREENIVASAN, K.R. & YEUNG, P.K. 2005 Very fine structures in scalar mixing. J. Fluid

Mech. 531, 113–122.
SHRAIMAN, B.I. & SIGGIA, E.D. 2000 Scalar turbulence. Nature 405 (6787), 639–646.
SREENIVASAN, K.R. 1996 The passive scalar spectrum and the Obukhov–Corrsin constant. Phys. Fluids 8

(1), 189–196.
SREENIVASAN, K.R. 2019 Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116 (37), 18175–18183.
SREENIVASAN, K.R., RAMSHANKAR, R. & MENEVEAU, C. 1989 Mixing, entrainment and fractal

dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421, 79–108.
STANLEY, S., SARKAR, S. & MELLADO GONZÁLEZ, J.P. 2002 A study of the flow-field evolution and

mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377–407.
VAN REEUWIJK, M. & HOLZNER, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739,

254–275.
VERSTAPPEN, R.W.C.P. & VELDMAN, A.E.P. 2003 Symmetry-preserving discretization of turbulent flows.

J. Comput. Phys. 187, 343–368.

927 A34-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://amslaurea.unibo.it/20559/
https://doi.org/10.1017/jfm.2021.779


Numerical experiments on turbulent entrainment and mixing

WARHAFT, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203–240.
WATANABE, T., DA SILVA, C.B. & NAGATA, K. 2020 Scale-by-scale kinetic energy budget near the

turbulent/nonturbulent interface. Phys. Rev. Fluids 5 (12), 124610.
WATANABE, T., SAKAI, Y., NAGATA, K., ITO, Y. & HAYASE, T. 2015 Turbulent mixing of passive scalar

near turbulent and non-turbulent interface in mixing layers. Phys. Fluids 27 (8), 085109.
WESTERWEEL, J., FUKUSHIMA, C., PEDERSEN, J.M. & HUNT, J.C.R. 2005 Mechanics of the

turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.
WESTERWEEL, J., FUKUSHIMA, C., PEDERSEN, J.M. & HUNT, J.C.R. 2009 Momentum and scalar

transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199–230.

927 A34-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.779

	1 Introduction
	2 Temporal jet
	2.1 Numerical settings
	2.2 Flow features and self-similarity

	3 A heuristic view of entrainment and mixing
	4 Numerical experiments
	5 Results
	6 Turbulent entrainment and mixing
	6.1 Theoretical framework
	6.2 Comparison with the numerical experiments
	6.3 Heuristic refinement of the entrainment and mixing assumptions

	7 Conclusions
	Appendix. Dataset validation
	References

