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ON SOME CLASS NUMBER RELATIONS

FOR GALOIS EXTENSIONS

TAKASHI ONO

Introduction

Let k be an algebraic number field of finite degree over Q, the field
of rationale, and K be an extension of finite degree over k. By the use
of the class number of algebraic tori, we can introduce an arithmetical
invariant E(K/k) for the extension K\k. When k = Q and K is quadratic
over Q, the formula of Gauss on the genera of binary quadratic forms,
i.e. the formula hi = h%2tκ~\ where Λ{ = the class number of K in the
narrow sense, h% — the number of classes is a genus of the norm form
of K/Q and tκ = the number of distinct prime factors of the discriminant
Δκ of K, may be considered as an equality between E(K/Q) and other
arithmetical invariants of K.

In this paper, we shall obtain, for any galois extension K/k, an
equality between E(Kjk) and some elementary cohomological invariants
of K/k. Therefore our formula may be viewed as a generalization of the
formula of Gauss. When Kjk is cyclic, our formula for E(K/k) bears a
resemblance to a formula which gives the number of ambiguous classes
of ideals but, in my opinion, E{Kjk) is easier than the other unless
k — Q and K/Q is quadratic.^

Roughly speaking, the general formula shows that there is another
balance between the class number and the group of (local or global)
units of number fields. Our proof which depends on class number for-
mulas, isogenies and Tamagawa numbers of tori, is winding. We feel
that it should eventually be replaced by a direct proof using methods
provided, perhaps, by the algebraic l£-theory.

The main results of this paper have been summarized in Proc. Japan

Received April 7, 1986.
1) See, e.g. the formula on page 406, line 12 of [CJ. See also the 3rd paragraph of

the Introduction of [C2] where Chevalley alludes to an application of algebraic groups
to the arithmetic of number fields.
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Acad., 61A, 311-312 (1985).

§ 1. Definition of E(K/k)

To begin with, we recall the definition of the class number of a

torus. Let k be an algebraic number field of finite degree over Q, kυ be

the completion of k at a place v of k. When υ is non-archimedean, we often

put v = p and denote by op the maximal compact subring of kr We denote

by S^ the set of all archimedean places of k. For v e SL we occasionally put

oυ = kυ for notational convenience. The adele ring of k will be written

kA. In general, for a ring with 1, we denote by Rx the group of units,

i.e. the group of invertible elements of R. We write Gm for the multipli-

cative group of the universal domain.

Let T be a torus defined over k. We refer to [OJ, [02] for standard

facts on tori defined over number fields. Denote by T(k), T(kv) the sub-

groups of T of points rational over k, kv, respectively. The adele group

of T over k will be written T(k^). The unique maximal compact subgroup

of T(k9) is described as:

T(op) = {x e T(kp); ξ(x) e o? for all ξ e f(kp)}

where T = Hom(T, GTO), the character module of T, and t(kp) is the

submodule of T of characters defined over kp. Now, we put

T(kχ d=f π τ(kΏ) x π no)
veSoo P

and define the class number hτ of T over k by

^ : T(k)T(kAU,

where [A: B] means the index of a group A over a subgroup B. We

remind the reader that the group T(ok) of units of T over k is defined

by T(ok) = T(fe) Π ΓίAJ^.

Let K be a finite extension of k. When T — Rκ/1c(Gm), the torus

obtained from Gm by the restriction of the field definition from K to k,

then hτ = /ι#, the usual class number of K. It is natural to consider the

exact sequence of tori over k:

0 > R$k(Gm) > Rκ/k(Gm) Λ G , > 0

where N is the norm map for Kjk and R(κ}h(Gm) — Ker iV. As mentioned
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above, tori Gm, Rκ/k(Gm) have class numbers hk, hκ, respectively. We shall

denote by hκ/k the class number of the torus i?$ fc(GJ and put

E(K/k) = - hκ .

Trivially, we have E{kjk) = 1. As we shall see later, there are many

examples of extensions Kjk for which E(K/k) = 1.

§ 2. Statement of results

Let K/k be a finite galois extension of an algebraic number field k

and g be the galois group of K\k: g = G(K/k). For each place v of k,

we denote by zi; any place of K which lies above v (written w ] v) and by

gw the galois group of KJkΌ. We denote by €)κ the ring of integers of

K and so O£ means the group of units of if. For a finite group G and

a left G-module A, H°(G, A) will denote the 0-th the Tate cohomology

group H°(G, A) = AG/NGA where AG = {xeA; xa = x for all σ e G}, iVGA

THEOREM. Notation being as above, we have

(2 1) E(Klk) = [K

where Kf\k is the maximal abelian subextension of Kjk and in the product

Y\v [H°(qw, O^)] we choose, for each v, any w such that w\v.2)

COROLLARY. When Kjk is cyclic, we have

(2.2) E(Klk) - ΓL ev(κ>kl ,
[Kk][H\qm]

where eΌ(K/k) means the ramification index for Kw/kv, w \ v.

% 3. Isogeny of tori

Here we shall recall a formula due to Shyr on the relative class

number of two isogenous tori in terms of their Tamagawa numbers and

certain indices. Let T9 T* be tori defined over k and λ: T* -> T be an

1) If x e A and a e G, then the action of a on x will be denoted by σx or xσ. in
the latter case, note that xaτ=(xτ)σ, τ e G.

2) Since K/k is galois, the groups H°(Qω, O*), w \ v, are all isomorphic. We denote
by [*] the cardinality of a set *.
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isogeny, i.e. a surjective homomorphism with finite kernel, over k. This

isogeny induces the following homomorphisms:

for all υ,

In general, let A, B be abelian groups. A homomorphism a: A -> B
will be called admissible if Ker a and Cok a are both finite. When that
is so, following Tate, we put

, x [Cok a]

[Ker a]

From a general theory of tori, we know that all maps λ(k), λ(oυ), λ(ok)

are admissible and q(λ(ov)) = 1 for almost all v. In this situation, we have

ί31) Jh^=

hτ τ(T)q(λ(k))q(λ(ok)) '

where r(Γ) is the Tamagawa number of T.

Remark. Using the Weil functor Rk/Q, we may assume that k = Q

to prove (3.1). For a torus T over Q, there is a formula which expresses

hτ in terms of other arithmetical invariants of T which generalizes the

well-known class number formula of Dedekind for an algebraic number

field (cf. [SJ, [O3]). The relation (3.1) follows from that formula for hτ

(cf. [S1], Theorem 3.1.1). All these appeared implicitly in [OJ where the

relative Tamagawa number of two isogenous tori was the main object of

study rather than the class numbers,

§ 4. Proof of Theorem

Let K\k be a finite galois extension of number fields. Let n denote

the degree [K:k], As in Section 1, consider the exact sequence of tori

over k:

(4.1) 0—>T'^T~^Gm—-*0,

where T = Rx/k(Gm), T' = B%)k(Gm) = Ker N and c is the embedding map.

The dual of (4.1) is the following exact sequence of g-modules:

(4.2) 0< J<^Z[Q]J^Z< 0,
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where J = T = Z[q]/Zs, s = Σ<re9tf> N(z) = zs, c(ϊ) = r modZs. Call ε the

homomorphism over k: Gm—> Γ such that έ(Γ) = S(7) = Σ*eιzσ for Γ =

ΣσecιzσG £ Z[Q\- Since έ is surjective, e is injective and from now on we

shall embed Gm in T by ε which induces the natural embedding of kx in

Kx. Since έN(z) = e(zs) = 712;, we have Nε(x) = xw, i.e. iVx = xTC, for xe

Gm.

The sequence (4.1) yields the following isogeny of tori over k:

(4.3) λ: T'χGm >T,

with λ(u, v) = uv, ue T', v e Gm. Applying (3.1) with T* = T' X GTO, we

get

(4.4)

We shall determine q(λ(k)\ q(λ(ov))9 q(λ(ok)) and r(T7) successively,

(i) q<ί(*)).

The dual of (4.3) is

(4.5) λ: Z[β] > J X Z

with i(r) = (Γ mod Zs, S(r)). Since Z[g]« = Zs and J 9 = {0}, the map X

induces on the g-invariant parts the map X(k): Zs -> Z given by X(k)(zs)

= 712. Therefore [Ker i(£)] = 1 and [Cok ,}(£)] = n and so

(4.6) <$(*)) = τι.

(ii) q(λ(kv))y veS^

Case 1. &„ = C. In this case, we have

T(kv) - RK/k(GJ(kv) =\\K*= (Cx)» = Γ ,

= {u = (uu , un) e Γ Nu = uγ . un = 1} = Γ' ,

, λ(kv)(u, υ) = uv, ue Γ', υe C x .1}

Now, (M, U) 6 Ker λ(*O Φ=) M = v'1 and AΓw = 1 & (u, v) = ((IT1, , u'1), ^)

and vn = 1. Hence, [Ker /l(/O] = ^ On the other hand, for any xe Γ,

take veCx such that ι>w = Nx and put w = v~1x, then iVw = 1 and x — uv,

i.e. x = λ(kv)(u9 ϋ). Hence [Cok λ(kv)] = 1 and we get

1) Note that Cx is embedded in Γ diagonally.
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(4.7) q(λ(kυ)) = n-\

Case 2. kυ — R, Kw = R, w\v. In this case, we have

T(kv) = χ\κ* = (RXY = r,

λ(kv): Γ X J?x -> Γ, λ(kv)(u, v) = uυ, ue Γ\ υeRx.

Now, (u, v) e Ker λ(kυ) ̂ u = υ~' and Nu = l& (u, v) = ((v~\ , u"1), u) and

u" = 1 ̂  (u, v) = ((1, , 1), 1) when τi is odd and (u, v) = ±((1, ••-,!), 1)

where π is even. Hence,

1, n: odd,

2, n: even.

On the other hand, when n is odd, the same argument as in Case 1 shows

that λ(kυ) is surjective. However, when n is even, that argument shows that

lmλ{kυ) = {xeΓ; Nx > 0} which implies that Γβmλ(kΌ) ~ 2?/#+. Hence,

[ , 7i: even.

Therefore, we get

(4.8) q(λ(kυ)) = 1 .

Case 3. kυ = R, Kw = C, w\v. In this case, n is even and so we

put n = 2τn. We have

T'(kΌ) = {ueΓ;Nu = Nvu, • Nυum = 1} = Γ,

where ^ α = aa, for α e Kw = C,

: Γ 7 X # x -> Γ, λ(Aβ)(M, v) = uυ, ue Γ', ve Rx.

Now, (u, υ) e Ker λ(kv) ξ=$ u = u"1 and Â w = 1 ̂  (w, u) = ((υ~\ •• , u ' 1 ) , u)

and ι;2m = 1 & (u, v) = ±((1, , 1), 1). Hence, [Ker λ(kv)] = 2. On the

other hand, since Nx = Nυxt Nvxm > 0 for all x e Γ, we see as before

that [Cok λ(kυ)] = 1. Therefore we get

(4.9) q(λ(kv)) = 1 .
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For k, denote by rt (resp. r2) the number of real (resp. complex) places

and by p the number of real places which ramify for K/k. From (4.7),

(4.8), (4.9), we get

(4.10) Π q(λ(kΌ)) = n-"2->=:n-" Π e^K/k)'1 = n'^ Π [ ^ . O ^ ) ] - 1

veSoo tίβSoo veSoo

where ev(K/k) means the ramification index of Kx/kv, w | v.

(iii) q(λ(op)).

Consider the localization K^k9 of K/k, ψ \ p. Put g* = G(K^kp). We

h a v e n = [K: k] = epfpgp, np = epfp = [K% : kp]9 w h e r e βp = ep(Klk) = t h e r a m -

ification index for K%jk^ fp — fp{Kjk) — the residue class degree for i£y&p

and gp = gp(K/k) — the number of distinct prime factors of p in JRΓ. For

simplicity, we often write g for gp, etc. Since ϋΓ/A is galois, all K^jkp,

, are isomorphic over kp and we use Np for the norm for K^jkp for all

Now we have

T(o,) = ^ / t ( G J(o,) = Π Oϊ = Γ ,

Γ'(op) = {M = (Mi, , ug) e Γ; Nu = iVp^ . . . jv p^ = 1} = Γ',

λ(op): Γ/ X op

x -> Γ, ^(OV)(M, ϋ) = MU, we Γ ;, ue op

x .

For a field F, we shall denote by W(F) (resp. Wn{F)) the group of roots

of 1 in F (resp. the group of n-th roots of 1 in F) and by w(F) (resp.

wn(F)) the order of the group W(F) (resp. Wn(F)). Since (M, V) e Ker A(op)

^ M = U"J and Nu= l& (u, v) = ((ir1, , u"1), υ), u^ n p = vn = 1, we have

[Ker^(θp)] = wn(kp)- On the other hand, in view of the diagram:

Γ - ^ opx
U U , v = iV| I m, ( V,

we have

[Cok^(op)] = [ImiV: Im^][KeriV: Ker^] = [ImiV: Imι/|[F': Γ]

= [ImiV: Imv] = 1 } [iVpOJ: (opx« - [o?: (op

x)«]/[o?

because [op

x: (op

x)w] = a ; ^ ) ! ^ ! - 1 ^ Hence we get

1) Note that NΓ = iVpOl for any
2) See [Li] p. 47, Proposition 6.
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(4.11) q(λ(op)) = 4 ^ ' "

Since ^ [ A , : QJ = [A: Q] = n0 and ΠPP 0 I d ' (" ' = ». multiplying (4.11) for all

ί?'s, we get

(4.12) Π q(*(o,)) = n"° Π K : ^ O * ] " 1 = »"' Π
P P P

(iv) q(λ(θk)).

We have

Γ(o») = Rκ/t(G J(ok) = D i = Γ ,

λ(ok): Tr X o£ -» Γ, λ(oΛ)(w, v) = uυ, ue Γ', υ e o£ .

Since (w, u) e Ker ^(ofc) Φ=) u = t;"1 and Λ̂w = 1 Φ=̂  (w, ι;) = (v~\ v), υn — 1, we

have [KerΛ(ofc)] = wn(h). On the other hand, in view of the diagram:

U U , ^ J V ^ t , ) ,

we have

[Cok λ(ok)] = [ImN: Im v][Keτ N: Ker v] = [iVOέ : (o?)w]

= [o? : (o?)"]/[o? :.

Now, by the Dirichlet's theorem, we have o£ = W(A) X Zr*, r« = rt + r2 — 1,

and so we get [o? : (o?)n] = [u>(A): w(k)n]nr" = wn(k)nr" because

'!. Hence,

(4.13) q(λ(ok)) =

From (4.6), (4.10), (4.12), (4.13), we have

because n0 = rx + 2r2. Substituting this in (4.4), we get
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(v) τ(T').

It remains to determine the Tamagawa number r(Γ'), where Tf =

R^/kiGyr)' Consider, as before, the exact sequence of tori defined over k:

o-^τ>-Uτ -^>σm —> o, T = RUGJ .

Applying to this sequence Theorem 4.2.1 of [O2], we get

where μ is the natural homomorphism

μ: kx/NKx •

H\q,Kx) H%6,Kϊ).

Since Cok μ ~ k$lkxNK% ~ g/g' by the class field theory, where g' being

the commutator subgroup of g, we have

K'\k being the maximal abelian subextension of Kjk. On the other hand,

since T'9 = (Z[g]/Zs)9 = 0, ?β is the zero map and so [Cok ?] = 1. We

have therefore

(4.15) [ R / : ®

Our formula (2.1) in the Theorem follows from (4.14) and (4.15). q.e.d.

When Kjk is cyclic, we have K' — K and, by Hasse's norm theorem,

[Ker(fl°(e, KX)-+H°(Q, K$] = 1. Furthermore, we have H°(q^ O|) = ep(K/k),2)

and (2.2) of the Corollary is proved.

§ 5. Miscellaneous examples

EXAMPLE 1. (K/k: cyclic of prime degree)

Suppose that the extension K/k is cyclic of prime degree p. Then,

two non-negative integers τ(Klk) and ε(Klk) can be introduced by the

equations

1) I want to take this opportunity to make the following corrections in my paper
[O2]: For "<?&)" read " [ C o k y on p. 63, line 8 and line 7 from the bottom, For "q(ίφ
read "[Cokίfl]" on p, 66, line 11 and p. 67, line 3. Suppress "g(?e) = " on p. 66, line 2
from the bottom,

2) Cf. [LJ, p. 188, Lemma 4.
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Π ee(Kjk) = p*«">\ H\Q, Oi) = (Z/pZ)'™
V

where τ{Kjk) means the number of places of k ramified for Kjk. In this

situation, the formula (2.2) can be written as

(5.1) E(K/k) = pΠKΠO^iK/U)-! ^

EXAMPLE 2. (K/Q: quadratic)

Suppose that k = Q and p = 2 in Example 1. Then, we have

, Δκ>0,

where tκ is the number of distinct prime factors of Δκ. On the other

hand, since #°(g, £)£) = {±l}/iV€£, we have

= (1, Δκ < 0 or J x > 0 and iVOί = {1},

\θ, Δκ > 0 and JVO£ = {±1}.

Using notation in (4.1), we have, by (5.1),

hκ (2"-\ J ^ O o r J ^ O and NO*K = {±1},
(5.2) E(KIQ) = p ,

Λ \2 ί κ-2 ^ > 0 and iV£>£ = {1}.

Denote by h*κ the class number of K in the narrow sense, then

_ ί hκ, Δκ < 0 or Δκ > 0 and iVOέ = {±1},
κ ~ [2hκ, Δκ>0 and NQ'K = {1}.

Therefore (5.2) yields

(5.3) hk 2 .

Now, observe that T" ^ O2

+(ΛΓ), the special orthogonal group of the

quadratic form N = Λ (̂x + 3̂ ω), O^ = Z + Zω, and that hτ. = ΛJ = the

number of classes in the principal genus of the quadratic form N.l) Hence,

(5.3) is nothing but the well-known formula of Gauss:

(5.4) hϊ = 2^h*.

EXAMPLE 3. (Hubert class fields)

Let p be a prime such that p = 3 (mod 4) and let k = Q(V— p).

1) Cf. [OβL § 1 , §11, § I Π .
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Since Δk — — p, we have tk = 1. By (5.4) with K = k, we have hk — hk = Λ^

which is known to an odd number. Assume that the ideal class group

Hk of k is cyclic. By the way, this is the case for all p < 100:

P

K

3

1

7

1

11

1

19

1

23

3

31

3

43

1

47

5

59

3

67

1

71

7

79

5

83

3

97

4

Let K be the Hubert class field over k. Note that N£)% = {±1} since

— l e θ £ and N( — 1) = (— l)Λfc = —1. Excluding the trivial case p = 3,

we have o£ = {±1} and so H°(q, ©£) = 0. Since we have ev(K/k) = 1 for

all u, the formula (2.2) yields

E(K/k) =
K '

which implies that hκ = hκ/k for such an extension.

EXAMPLE 4. (CM-fields)

Let if be a totally imaginary quadratic extension of a totally real

number field k. It is well-known that hk divides hk.
2) The quotient h~

is called the relative class number. From (5.1) we have

(5.5) hr =

Here, we have τ{KjK) = d/2 + t{K\k) where d — [K: Q] and t(Kjk) — the

number of finite places of k ramified for Kjk. On the other hand, ε(Kjk)

is determined by the relation

(5.6) [o% : N£)κ] = 2ε{K/lc).

As is well-known, [©£: W(K)o%] = 1 or 2. Assume that this index = 1,

i.e. O£ = WXSQojί. Since iVw; = ww = |^ | 2 = 1 for w e W(ίΓ), we have

}* = (o?)2. Since k is totally real, o,x = {±1} X Z ^ " 1 , and so [o,x : (ox)2]

Hence ε{Kjk) = d/2 and we get

(5.7) Λ- = hκ/k2"κ™-\ or

The above assumption is satisfied when K — Q(ζpa)9 k = Q(ζpa + ζpϊ) where

1) Cf. [TJ, p. 404.
2) As for standard facts on CM-fields, see [WJ, Chapter 4.
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ζpα, a ;Ξ> 1, denotes a primitive pa-th root of 1, p an odd prime. Since p

is the only prime which is ramified for K/Q and it is totally ramified

for KjQ, we have t(K/k) = 1. Therefore (5.7) yields h" — hκ/lc; and so

E(Kjk) = 1. In view of recent progresses in the theory of cyclotomic

fields, it is nice to know that h~ becomes the class number of the algebraic

group R{κ)k(G^) which makes sense for an arbitrary galois extension.

EXAMPLE 5. (K: CM-field, K/Q: cyclic)

Let KjQ be a cyclic extension of degree d such that K is a CM-field.

Let k be the maximal real subfield of K. Then, the formula (2.2) yields

(5.8) E(KIQ) =

As in Example 4, assume that £>£ = W(K)o%. Then, we see easily that

N(W(K)) = No* = 1. Hence, by (5.8), we have

(5.9) E(KIQ) = d~ι Π ep(KlQ).

If there is only one prime p which is ramified for K/Q and this p is

totally ramified for K/Q, then we have, by (5.9),

(5.10) E(KIQ) = 1.

This is, of course, the case where K = Q{ζpa) for an odd prime p.
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