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ABSTRACT 

Certain stars are known to be periodic magnetic variables, and to show 
synchronous changes in line strength and radial velocity. The hypothesis has 
been made that the atmosphere of such a star is in rigid rotation, and that it 
is characterized by a permanent magnetic field and associated abundance 
irregularities. The magnetic potential and the local equivalent widths have been 
developed in spherical harmonics, and the Laplace coefficients of these expansions 
have been related to the Fourier coefficients of the observed curves. The theory 
has been applied to the star HD 125248 in an attempt to verify the original 
hypothesis and to map the magnetic fields and abundance anomalies over the 
stellar atmospheres. 

Among the stars in which H. W. Babcock has found spectroscopic 
evidence of a general magnetic field [i], there are several that show periodic 
reversals of the observed field. In addition, some of these stars exhibit 
synchronous variations in the equivalent widths of certain absorption lines, 
and in the radial velocities indicated by these lines. These phenomena are 
illustrated for the star HD 125248 (^=9*30 days) in Figs. 1, 2 and 3. 

Fig. 1 is taken from the work of Babcock [2]. He has converted the effec
tive field Hei as found from the observed Zeeman effect, into the polar field 
Hp, on the assumption that the field is that of a dipole viewed along the axis. 
The figure shows that different elements sometimes indicate significantly 
different values for Hp. Fig. 2 is based on 13 coude spectrograms at 4̂ 5 A/mm, 
obtained by Babcock and Deutsch during one cycle in 1951 and one cycle 
in 1952. The figure rests on spectrophotometric measures of 127 different 
absorption lines chosen to be relatively free from blends. When the mea
sured equivalent widths W of each line are expressed in units of its average 
equivalent width W at all observed phases, it is found that, within the errors 
of observation, all lines of a given element show nearly the same variation 
with phase. Moreover, among the nine elements discussed, each can be 
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assigned to one of three groups, within each of which the intensity variation 
is the same. Fig. 2 shows how this assignment has been made. The mean 
points have been obtained by weighting each element in the group with the 
number of its lines that were measured. 
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Fig. 1 (A). Magnetic field intensity, Hvi in kilogauss, for the rare earths, plotted against phase. 
Small open circles are of low weight. For comparison, the smooth curve for the Fe-Ti lines is 
also shown. Fig. 1 (b). Similar results for Gri and Grn. (Reproduced from the Astrophy steal 
Journal.) 

Fig. 3 is based on radial-velocity measures of the eight 1951 coude 
spectrograms. As far as possible, all lines measured for intensity were also 
measured for velocity, and no others. With the possible exception of Sr 11, 
for which only two lines could be measured, the same group behavior 
prevails in the radial velocities as in the equivalent widths. The details of 
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the observations summarized in these figures will be discussed later in 
another publication. This is also true of the mathematical developments 
to be outlined below. 

It has been proposed that the atmosphere of such a star as HD 125248 is 
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Fig. 2. Equivalent widths of 127 absorption lines. For each line, the measured equivalent width 
W has been divided by the average measured equivalent width W at all observed phases. For 
a given element at a given phase, the plotted point is the average value of W/W for all lines of 
that element. 

spectroscopicaliy non-homogeneous, and that it is in rigid rotation around 
an axis that is not a symmetry axis of the abundance irregularities or of the 
associated general magnetic field. The observed variations would then be 
attributed to the changing aspect of the star as it rotates; the observed 
period would be simply the period of rotation. The observations cannot all 
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be satisfied with such a model if the abundance irregularities and/or 
magnetic field possess symmetry axes. It appears, however, that a satis
factory representation may be possible by a more general kind of rigid 
rotator. The evidence for this type of model has recently been summarized 
elsewhere [3], 
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Fig. 3 . Radial velocities from 127 absorption lines. 

T h e systemic velocity is F 0 = —14*3 km/sec. 

Fig. 4 represents a spherical star with the pole of rotation at P0 and the 
subpolar point at S, the inclination of the rotational axis to the Kne of sight 
being x* At an arbitrary point P on the surface, the polar distance is r/r and 
the azimuth v. The latter angle is measured from a meridian that rotates 
with the star, with v = o along the meridian that passes through S at the 
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phase 0 = o. The angle between S and P is 0, and the azimuthal angle 
around S is 0, with (j> = n at P0. 

We shall call £(^r, i>) the distribution function for a given spectrum line. 
Its value is the local equivalent width of the line at P in light emergent 
normally, and its variation reflects the abundance irregularities over the 
surface of the star. In general, we may represent £(^, v) as the real part 
of a Laplace series, 

E(i/r,v)=(W)2 S ASexp(imv) P\?i (co&f), (i) 
n=0 w=—n 

Fig. 4. Geometry of an oblique rotator. See text. 

where (W) is the observed equivalent width averaged over the cycle of 
variation. To the extent that we can approximate the curve of growth by 
a straight line, it can be shown that all lines originating in a given group of 
elements will be characterized by the same set of Laplace coefficients A%. 
Our first object will now be to compute the observed equivalent width W> 
in the integrated light from the visible hemisphere, as a function of the 
coefficients A% and the phase O. We shall then compute the integrated 
radial velocity and Zeeman effect. Finally, we shall invert the argument 
and find the A% from the observations of HD 125248. 

We shall suppose that in the continuum the intensity is distributed over 
the stellar disk in the usual way, with the limb-darkening law 

A = 1 —fi+[i cos d. (2) 
We shall also take account, in an approximate way, of the variation of 
equivalent width with angle of emergence at a given point. We suppose 
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that the local equivalent width in the direction d can be written in the 
form £(^, v) J(0), where 

J=I—K + KCOS0. (3) 

The quantity K is then a coefficient of line-weakening toward the limb, 
analogous to the coefficient fi of limb-darkening in the continuum. 

In order to find the observed equivalent width Win the integrated light 
from the visible hemisphere, we must weight the local equivalent width 
£J with the local surface brightness A and the projected element of area 
at P, and then integrate over the visible hemisphere. Similarly, the ob
served radial velocity V (relative to the systemic radial velocity V0) will 
be obtained by inserting the local radial velocity of rotation as an addi
tional weighting factor, and integrating over the visible hemisphere. If 
Ve is the equatorial speed of rotation, the line-of-sight component of the 
local rotational velocity is Ve sin x sin 6 sin </> at P. Again, to find the 
effective magnetic field, we must insert the line-of-sight component Hz of 
the local magnetic field H as the additional weighting factor. We then find 
that the observed quantities W, V and He can be taken as the real parts 
of the following expressions: 

far/2 f 2TT 
(SJ) A sin 6 cos 6d<pd6 

^ _ J o _ J o / v 
" ~* fW2f27r > V*) 

A sin 6 cos 0d<f>d6 
Jo Jo 

f TT/2 f 2n 
(Ve sin x sin 6 sin <j>) (EJ) A sin 6 cos 6d<fi dd 

(&/) A sin d cos 6d<f>dd 
Jo Jo 

T f 7T/2 f 2* 
- # , [ (3 + 2) J ] A sin 6 cos 0<ty<0 

.2J° J° 
f w/2 f 2TT 

(gj) A sin 6 cos 6d<f>dd 
Jo Jo 

(6) 

To evaluate these integrals, it is necessary to express the distribution 
function S in the alternative Laplace series 

S f o M = < W > S S ^ e x p ( ^ ) P i r ' ( c o s 0 ) , (7) 
n=Om=-n 

in which the coefficients B% are functions of x and O, and of the coefficients 
^4^. This transformation has recently been fully discussed by Sato [4], 

214 

https://doi.org/10.1017/S0074180900237807 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900237807


With his results, it is possible to show that the integrals of interest can be 
put in the form of Fourier series in the phase, as follows: 

i = £i)_mexp(-^0), (8) 

iwy)r= (Ve sin x)nSoE~m exp (~im^' (9) 

/ W \ °° 
\W>) ^m—ao6"1^ ( " " 0 ) ' (l<>) 

The Fourier coefficients in these expressions are related to the Laplace 
coefficients by the equations 

D_m = i^AZ ( I I ) 
71 = 0 

£-»=S.2?M?, (12) 
w=0 

Gm= 2 H MttF1A;«-' + FaAf+fi). (13) 
n = l a=0y?=0 

In these equations, the quantities ^™, J?™, /^(w, a, m, /?), and i^fa* a, m, /?) 
depend only on the indicated indices, and upon the limb-coefficients ft 
and K. They have been obtained explicitly by a term-by-term integration 
of Eqs. (4), (5) and (6), after substitution of Eq. (7) into these integrals. 
The coefficients M% characterize the complex magnetic field 34?, which we 
suppose can be obtained from a scalar potential, 

<* = * ! : £ T O » + 1 ^ exp (*/?») P£(cosf), (14) 

where R is the stellar radius. In obtaining Eqs. (11), (12) and (13), it has 
been assumed that A%==o for m<o. This assumption entails no loss of 
generality for the real distribution function g(i/r9 u). 

The observed curves corresponding to Eqs. (8), (9) and (10) can be 
reasonably well represented by Fourier series of the second degree. Accord
ingly, we shall suppose that we can obtain an adequate representation of 
the large-scale structure of the field and the abundance irregularities by 
considering only terms to the second degree in the Laplace expansions for 
S and 6. When this is done, we find that the total number of real Laplace 
coefficients required to specify the magnetic potential, and the distribution 
functions for elements of groups A, B and C, is 35. Additional free para
meters that must be specified to determine the observed curves are the 
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inclination x of the rotational axis to the line of sight; the equatorial velocity 
of rotation Ve; and the systemic velocity V0. On the other hand, the second-
degree Fourier representations of the observations summarized in Figs, (i), 
(2) and (3) give us directly a total of 42 Fourier coefficients. Through 
Eqs. (11), (12) and (13), it therefore becomes possible, at least in prin
ciple, to solve uniquely for the 35 Laplace coefficients and the additional 
unknown parameters #, Ve, and V0. 

A first approximation to this solution has been carried out for HD 125248, 
with the results that are given in Table 1. As a check upon the solution, we 
must require that the radius of the star, as computed in the relation 
R = PFc/27r, be appropriate for a main-sequence star near spectral type A 0. 
In addition, if we suppose that the variations in local equivalent width 
are due primarily to abundance irregularities and not to transfer differences 
over the surface of the star, we must obtain distribution functions that are 
non-negative over the whole Surface. The first of these conditions is well-
satisfied by the solution in Table 1. The computed radius is 2-5 0, which is 
normal for a B 9 dwarf. Moreover, the solution yields Ve sin x — 6*9 km/sec, 

Table 1. Adopted constants for HD 125248 
Epoch of zero phase, 0 = o. JD 2430143-07. Period, P = 9-2983 days. 
Systemic velocity, V0— —14-3 km/sec. Stellar radius, /?=2*5 i?®. 
Rotational velocity, Ve— 13-7 km/sec. Inclination, X=3°°-
Limb coefficients: /* = o-62 in the continuum; /c=o-i8 in the lines. 
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which is consistent with the widths of the relatively non-variable lines in 
the spectrum of this object [5]. The condition that £ must be non-negative 
is not satisfied; for groups A and B> the distribution functions do go slightly 
negative over certain small areas. It would seem, however, that relatively 
small changes in some of the Laplace coefficients could remedy these defects 
in the solution, without appreciably changing its character. 

In Figs. 5, 6 and 7, the observations are compared with the solution of 
Table 1. Only the mean points for each group of elements have been plotted 
on these figures. In the case of Fig. 6, the observed quantities differ slightly 
from those in Fig. 2, because the average equivalent widths W at the 
observed phases have been replaced by the averages < W) over the whole cycle. 

The geometry of the resulting configuration is illustrated by the maps in 
Figs. 8, 9 and 10. The first two figures give the contours of the distribution 
functions, on an Aitoff equal-area projection. Fig. 9 also gives the contours 
of I H |, the magnitude of the local magnetic field. The solution has the 
property that it will satisfy the observations equally well if the contours are 
reflected in the equator, together with the path of the subsolar point. 
Fig. 10 gives an orthographic projection in the plane of the sky. It illustrates 
the aspect changes with phase. 

The probable errors of the observations in Figs. 5, 6 and 7 are such that 
many of the residuals from the computed curves are undoubtedly significant. 
These residuals could presumably be somewhat improved by a least squares 
adjustment of the Laplace coefficients to the observations. The method of 
solution that has been actually used is a crude one, and is not entirely 
systematic. On the other hand, some of the discrepancies between the 
computed curves and the observations may be attributable to the effects 
of the higher-order terms that have been neglected. In particular, the 
second-order Laplace coefficients are sufficiently large in some cases as to 
indicate that, in a systematic scheme of approximation, it would be neces
sary to consider certain higher-order terms that have been neglected in 
this treatment. 

The solution that has been obtained here is further impaired by the 
neglect of the brightness variation that is known to occur over the surface 
of the star[6]. The amplitude of the observed light curve is only 0-05 magni
tude, but this could imply relatively large local variations of brightness. 
If these are accompanied by temperature changes in the reversing layer, 
the assumption that all lines can be represented by a single linear curve of 
growth might also require modification. 

Even without these complications, the solution must still be investigated 
with respect to its stability. In these circumstances, it seems reasonable to 
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Fig. 5 Fig. 6 
Fig. 5. Effective magnetic field, Hei in kilogauss. From the measures of H. W. Babcock[2]. 
The smooth curves have been computed from the constants of Table 1. 
Fig. 6. Equivalent widths of 127 absorption lines. The mean_points are the same as in Fig. 2, 
except that a small correction has been applied to change W to <W), the equivalent width 
averaged over the whole cycle. The smooth curves have been computed from the constants of 
Table 1. 
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suppose that only the principal large-scale features of the solution can be 
considered as established. More detailed discussions, based on more 
extensive observations, may be indicated for the future. 

Fig. 8. Curves of constant local equivalent width for the lines of Group A (Eu n, Gd n, and Ge n; 
full curves) and Group B (Gr i, Gr n, and Sr n; broken curves). The subsolar point describes 
the heavy curve in the direction indicated; it lies at longitude y = o a t phase <£ = o. The plus and 
minus signs mark the axis of the magnetic dipole. Aitoff equal-area projection. 

Fig. 9. The dashed curves are curves of constant local equivalent width for the lines of Group C 
(Fe 1, Fe n, Ti 11). The full curves are the contours of | H |. The heavy curve and the plus and 
minus signs have the same significance as in Fig. 8. 

An interesting feature of the solution is the situation of all three abund
ance maxima in the unobserved zone of the star. A calculation has shown 
that if this configuration were observed under an inclination of x = 150°, 
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instead of 30°, all three groups of lines would be about four times stronger 
when averaged over the cycle. The amplitudes of the curves giving He and 
Fas a function of phase would be comparable with the values actually 
observed. But the amplitudes of the curves for W/(W) would be less than 

0 = 0 o = i 8 0 

O=90 0=270 
Fig. 10. Orthographic projections of the visible hemisphere on the plane of the sky at four phases. 
The light curves are the contours of Fig. 8. The poles of the dipole are indicated. The heavy 
curve is the locus where Ht=o. 

one-third as great, because of the increase in { W}. It is possible that aspect 
effects of this kind could account for some of the magnetic variable stars 
that do not show conspicuous spectrum variation. 

There is some evidence for secular changes in this star, in addition to 
the short-period effects that have been attributed here to mere aspect 
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changes associated with rigid rotation. In all probability, these additional 
changes represent actual distortions of the configuration derived above. 
If so, they will have to be discussed within the theoretical framework of 
hydromagnetics. Such changes may also give rise to the acceleration 
phenomena that are required if nuclear processes occur in the atmosphere, 
as envisaged by Fowler and the Burbidges[7]. Meanwhile, we require a 
physical interpretation of the large-scale semi-rigid configuration derived 
above. 
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Discussion 

Schatzman: I apologize for suggesting a slight increase in complications to the 
scheme of Dr Deutsch. It seems necessary to take into account the process of 
line formation in the expression of the weight functions used in numerator and 
denominator. In the more simple case of pulsating variable stars, Mile Duquesne 
and myself have found that the ratio of the observed radial velocity to the 
material radial velocity is not 17/24 as usually assumed but is smaller by about 
3 0 % 

Deutsch: I was aware that I have used a very approximate relation for the 
limb-weakening of lines, but in this context it seems adequate. It is surprising 
to find out how large the effect is for a scattering atmosphere on a Milne-
Eddington model. It comes out that for an A-type star you can expect moder
ately strong lines to be something like 20 % weaker at the limb than they are at 
the centre of the disk. 
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