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Abstract

Recently, the relevation transformation has received further attention from researchers,
and some interesting results have been developed. It is well known that the active redun-
dancy at component level results in a more reliable coherent system than that at system
level. However, the lack of study of this problem with relevation redundancy prevents
us from fully understanding such a generalization of the active redundancy. In this note
we deal with relevation redundancy to coherent systems of homogeneous components.
Typically, for a series system of independent components, we have proved that the life-
time of a system with relevation redundancy at component level is larger than that with
relevation redundancy at system level in the sense of the usual stochastic order and the
likelihood ratio order, respectively. For a coherent system with dependent components,
we have developed a sufficient condition in terms of the domination function to the
usual stochastic order between the system lifetime with redundancy at component level
and that at system level.

Keywords: Coherent system; copula; domination function; hazard rate order; likelihood
ratio order; series system; usual stochastic order
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1. Introduction

A primary component is to be replaced on failure by one secondary component with the age
as the failure time of the former one, and the time of the next failure is known as the relevation
transform in engineering reliability. Since its introduction by Krakowski in 1973 [11], the
relevation transform has been revisited from time to time in recent decades. In the context of
the secondary component having an exponential distribution, the relevation transform reduces
to the convolution owing to the lack-of-memory property; Grosswald et al. [8] derived the
characterization of the exponential distribution in terms of the relevation. Subsequently, Lau
and Rao [12] improved the characterization result due to [8], and Chukova and Dimitrov
[6] further obtained a characterization of almost-lack-of-memory distributions. In addition,
Baxter [3] discussed applications of the relevation transform in stochastic processes, and
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Relevation redundancy to coherent systems 105

Shanthikumar and Baxter [29] studied the closure of ageing properties under the formation of
the relevation transform.

For several years at the beginning of this century, some researchers devoted their attention
to the relevation transform from the viewpoint of stochastic processes. Pellerey et al. [25] gen-
eralized the non-homogeneous Poisson process to the so-called relevation counting process by
virtue of the relevation transform. Subsequently, based on the relevation transform, Kapodistria
and Psarrakos [10] constructed a sequence of stochastically increasing random variables, which
represent a process describing the successive failures of a component replaced on failure by
another component of equal age. In the context of the relevation replacement policy of [10],
Sordo and Psarrakos [30] presented some stochastic comparisons on the failure times and
inter-failure times of two systems. Typically, Belzunce et al. [4] conducted a comparison of
stochastic processes arising from a policy based on the replacement of a failed unit by a new
one, and from one in which the unit is being continuously subjected to a relevation policy.
Meanwhile, Psarrakos and Di Crescenzo [26] studied an inaccuracy measure related to the rel-
evation transform of two non-negative continuous random variables, and Sankaran and Kumar
[27] investigated the reliability properties of a special case of relevation transform, namely
proportional hazards relevation transform.

The relevation transform also represents the lifetime of a component equipped with one
active redundancy given that the redundant one does survive the primary component. Apart
from the above fruitful results on characterization, reliability properties, stochastic processes,
and applications, the last few years have also witnessed research on relevation transform in the
setting of engineering systems, which are usually composed of a number of components. If,
due to the limiting resource, a relevation transform can only be accomplished at component
level, then it is of genuine interest to study the optimal allocation of relevation for components
of the system. As we know, relevation redundancy includes the minimal repair policy as a spe-
cial case. Assume that the number of repairs that can be freely allocated to any component
before the system starts to work is fixed; Arriaza et al. [1] studied stochastic comparisons of
the coherent systems under different minimal repair policies, and proposed two methods to
determine the optimal repair policies. Subsequently, Navarro et al. [20] compared the resulting
system for three cases: minimal repair of the component that fails first, minimal repair of the
component that causes the system failure, and minimal repair of a fixed component in the sys-
tem. Recently, Belzunce et al. [5] discussed allocation of a relevation in redundancy problems,
Wu et al. [32] examined the reliability improvement of a coherent system through one releva-
tion and in the set-up of coherent systems, and Yan et al. [33] and Zhang and Zhang [34] further
studied the allocation of relevation transforms of two components so as to increase the system
reliability. On the other hand, some researchers devoted their attention to the optimal strategies
for active and standby redundancies. For example, Zhao et al. [35] focused on the problem of
how to optimally allocate one redundancy in a series systems, and Torrado et al. [31] stud-
ied the effect of redundancies on the reliability of coherent systems under redundancies at
component level versus redundancies at module level.

According to the seminal theorem of Barlow and Proschan [2], the active redundancy at
component level results in a stochastically larger system lifetime than the active redundancy at
system level. Compared to the discussion of allocating relevation transform at component level,
as yet no research has been reported to deal with the comparison of the reliability improvement
between the relevation transform at system level and the relevation transforms at compo-
nent level in the literature. Naturally, it is of both theoretical and practical interest to study
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whether allocating relevation redundancy to system components outperforms applying releva-
tion redundancy to the system itself. This study aims to partially fill this gap. In particular, we
start with the series system and end up with a general conclusion on coherent systems.

The remainder of this note is set out as follows. Section 2 recalls several important concepts,
including stochastic order, copulas and domination functions, and generalized domination
functions of coherent systems. In Section 3 we formalize the relevation redundancy model
at component and system levels. Section 4 deals with the series system of independent compo-
nents and presents the usual stochastic order and likelihood ratio order, respectively, between
the system lifetime with redundancy at component level and that at system level. In Section 5
we discuss the coherent system with relevation redundancy at both component level and sys-
tem level in the setting of statistically dependent component lifetimes. In Section 6 we close
this note by making some concluding remarks.

2. Some preliminaries

Various stochastic orders are found of nice applications in reliability, actuarial risk, and eco-
nomics, etc. The following typical orders will be employed to compare system or component
lifetimes.

Let X and Y be random variables with distribution functions F and G, survival functions F̄
and Ḡ, and probability densities f and g, respectively. The X is said to be smaller than Y in the

(i) usual stochastic order (denoted X ≤st Y) if F̄(x) ≤ Ḡ(x) for all x,

(ii) hazard rate order (denoted X ≤hr Y) if Ḡ(x)/F̄(x) is increasing in x,

(iii) reversed hazard rate order (denoted X ≤rh Y) if G(x)/F(x) is increasing in x,

(iv) likelihood ratio order (denoted X ≤lr Y) if g(x)/f (x) is increasing in x.

For comprehensive discussions and more recent advances on stochastic orders one may
refer to [15] and [28].

In engineering practice, system components usually operate under the same circumstances
and thus their lifetimes are statistically dependent. Next we recall copula functions, which are
to be utilized in modeling the dependence among component lifetimes.

For a random vector (X1, . . . , Xn) with distribution function F, survival function F̄, and
univariate marginal distribution functions F1, . . . , Fn, if there exists some

C(u1, . . . , un) : [0, 1]n �→ [0, 1] and Ĉ(u1, . . . , un) : [0, 1]n �→ [0, 1]

such that for all xi, i ∈ In,

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), F̄(x1, . . . , xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)),

then C(u1, . . . , un) and Ĉ(u1, . . . , un) are called the copula and survival copula of
(X1, . . . , Xn), respectively. In particular, the copula and survival copula corresponding to the
independence are known as

CI(u1, . . . , un) = u1 · · · un = ĈI(u1, . . . , un)

for ui ∈ [0, 1], i = 1, . . . , n.
For an n-monotone function ψ : [0,+∞) �→ [0, 1] with ψ(0) = 1 and ψ( + ∞) = 0, the

mapping
Cψ (u1, . . . , un) =ψ(ψ−1(u1) + · · · +ψ−1(un)),
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for all ui ∈ [0, 1], i = 1, . . . , n, is called an Archimedean copula with generator ψ , where ψ−1

denotes the right continuous inverse. This family comprises Clayton copulas, Frank copu-
las, Gumbel copulas, and other typical members, which are widely used in survival analysis,
dependence modeling, biostatistics, and other related areas due to the flexibility in statistics
and tractability in mathematics. For more on Archimedean copulas, readers may refer to [24].

A reliability system is said to be coherent if (i) the functioning system never fails upon
replacing a failed component with a working one, and (ii) each component is relevant to the sys-
tem, i.e. the component status affects the system functionality. The series system, the parallel
system, and the k-out-of-n system are typical examples of coherent systems. Due to mathemat-
ical complexity, researchers consider only the scenario of statistically independent component
lifetimes in most of the existing references. However, in real engineering practice, system com-
ponents usually operate under the same environment or suffer from some common stresses and
thus could have interdependent lifetimes.

For a coherent system with components having lifetimes X1, . . . , Xn, the system lifetime T ,
which is determined as the so-called structure function φ(X1, . . . , Xn), has reliability function

H̄(t) = P(T > t) = P(φ(X1, . . . , Xn)> t) for all t ≥ 0.

Take, for example, min{x1, . . . , xn} for the series system, max{x1, . . . , xn} for the parallel
system, and xk : n (the kth smallest of x1, . . . , xn) for the (n − k + 1)-out-of-n system. Evidently,
the system structure, the component lifetimes, and the statistical dependence shape the system
reliability function.

Lastly, we review two new ways to characterize coherent systems, which play a crucial role
in developing the preservation of ageing properties. Let F̄1, . . . , F̄n denote reliability functions
corresponding to component lifetimes X1, . . . , Xn, respectively. Then the system reliability
simply comes down to

H̄(t) = ϕ(F̄1(t), . . . , F̄n(t)) for all t ≥ 0,

where the multivariate ϕ(u1, . . . , un) is called the generalized domination function (GDF).
Naturally, ϕ(u1, . . . , un) is increasing on [0, 1]n and such that ϕ(0, . . . , 0) = 0, ϕ(1, . . . , 1) =
1. In the context of components with homogeneous lifetimes, i.e. F̄1 = · · · = F̄n = F̄, the
system reliability reduces to

H̄(t) = ρ(F̄(t)) for all t ≥ 0,

where the univariate ρ(u), called the domination function (DF), is such that ρ(0) = 0, ρ(1) = 1
and increasing on [0,1]. For more on DF and GDF we refer readers to [21] and [22]. It should
be mentioned here that both GDF and DF are now called distortion functions in most of the
references in this line of research.

Technically, the DF ρ(u) and GDF ϕ(u1, . . . , un) are utilized to adjust the probability dis-
tribution of random risk so as to put more emphasis on the tail area, and thus they are also
called distortion functions in the theory of risk and actuarial science. For more on the DF and
the generalized version, we refer readers to [9], [18], [19], [21], [22], and [23].

3. The models

Consider two components C and R with independent lifetimes X and Y having survival
functions F̄ and Ḡ and probability densities f and g, respectively. Assume that upon failure at
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time x> 0, the primary component C is instantly replaced by the secondary one R with exactly
the same age x as that of the failed component. Let

Yt = (Y − t | Y > t)

denote the residual lifetime of Y at time t ≥ 0. Then such a system attains the lifetime

X + YX = (Y | Y > X),

which is known as the relevation transform of X by Y . For the residual lifetime at a random
time, refer to [16]. It is easy to verify that

P(X + YX > t) = F̄(t) + Ḡ(t)
∫ t

0

f (x)

Ḡ(x)
dx for all t> 0, (3.1)

where, although the absolute continuity of F̄ and Ḡ is not necessary, it is typically reasonable
in real practice and simplifies the mathematical representation.

As was pointed out in [20], the parallel system of C and R has the lifetime

X ∨ Y = max{X, Y} = (X + YX)I(X < Y) + (Y + XY )I(Y < X),

where I(A) is the indicator of the event A. The relevation transform can also be viewed as the
generalization of the parallel structure in reliability. Thus from now on we denote X � Y ≡
X + YX for convenience. As an immediate consequence, the above equation is rewritten as

X ∨ Y = (X � Y)I(X < Y) + (Y � X)I(Y < X) = (X ∧ Y) � (X ∨ Y),

where X ∧ Y = min{X, Y} denotes the series system lifetime of X and Y . This comes up with
an interesting interpretation: a parallel system of two components with lifetimes X and Y is
stochastically equivalent to the relevation transform of their minimum X ∧ Y by the maximum
X ∨ Y , and the relevation transform X � Y is just one of the two possible realizations.

In this note we deal with a coherent system with components C1, . . . ,Cn having homo-
geneous lifetimes X1, . . . , Xn, and relevation redundancies R1, . . . , Rn having homogeneous
lifetimes Y1, . . . , Yn. From now on, for system component lifetimes X1, . . . , Xn, we let F
denote the common distribution function, F̄ the survival function, and f the density function,
and for relevation redundancy lifetimes Y1, . . . , Yn, we let G denote the common distribution
function, Ḡ the survival function, and g the density function.

In the context of allocating redundancy at component level, we apply the relevation redun-
dancy Ri to the component Ci, i = 1, . . . , n. See Figure 1(a) for an example. Thus the resulting
coherent system attains the lifetime

Tc = φ(X1 � Y1, . . . , Xn � Yn),

where φ(u1, . . . , un) is the structure function of the system. Assume that (X1 � Y1, . . . , Xn �
Yn) inherits the dependence structure of (X1, . . . , Xn). Then, according to (3.1), Tc has the
survival function

H̄c(t) = ρ

(
F̄(t) + Ḡ(t)

∫ t

0

f (x)

Ḡ(x)
dx

)
for all t ≥ 0, (3.2)

where ρ(u) is the DF of the system.
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FIGURE 1. A series system with relevation redundancy. (a) Tc: redundancy at component level. (b) Ts:
redundancy at system level.

FIGURE 2. Structures of a series system with relevation redundancy. (a) Tc: redundancy at component
level. (b) Ts: redundancy at system level.

In contrast, in the setting of redundancy at system level, we duplicate the coherent system of
components C1, . . . ,Cn by R1, . . . , Rn and then make it available as a relevation redundancy
spare to the coherent system. See Figure 1(b) for an example. Thus the resulting coherent
system gets the lifetime

Ts = φ(X1, . . . , Xn) � φ(Y1, . . . , Yn).

In accordance with (3.1), Ts attains the survival function

H̄s(t) = ρ(F̄(t)) + ρ(Ḡ(t))
∫ t

0

ρ′(F̄(x))f (x)

ρ(Ḡ(x))
dx for all t ≥ 0. (3.3)

As is mentioned in Section 1, in this note our interest lies in building the usual stochas-
tic order between Tc and Ts, and this is to be accomplished through developing the uniform
inequality between (3.2) and (3.3).

4. Series systems of components having independent lifetimes

In this section we pay specific attention to the series system with n independent component
lifetimes X1, . . . , Xn and n relevation redundancies with lifetimes Y1, . . . , Yn. Assume that
X1, . . . , Xn has the same distribution as X, and Y1, . . . , Yn has the same distribution as Y . The
system structures corresponding to relevation redundancy at component level and at system
level are depicted in Figures 1(a) and 1(b), respectively.

Let t> 0 denote the time of the occurrence of the first component failure. The structure of
the system in Figure 1(a) is further depicted in Figure 2(a). According to [17], the reliability
function of the used series system with age t> 0 is exactly equal to that of the series system
composed of same number of used components with common age t. Therefore the structure of
the system in Figure 1(b) is stochastically equivalent to the one in Figure 2(b).
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Based on the structures of Figures 2(a) and 2(b), one naturally comes up with the idea that
Xt ≥st Yt for any t ≥ 0 implies Tc ≥st Ts. Since X ≥hr Y if and only if Xt ≥st Yt for any t ≥ 0,
motivated by this intuition we present our first main result in Theorem 4.1.

Before developing the proof of Theorem 4.1, it is worth pointing out that n independent
component lifetimes have independence copula CI(u1, . . . , un) and thus the series system with
these components has the domination function ρ(u) = un. As a consequence, based on (3.2)
and (3.3), the survival function of system lifetime Tc is further represented as

H̄c(t) =
[

F̄(t) + Ḡ(t)
∫ t

0

f (x)

Ḡ(x)
dx

]n

for all t ≥ 0, (4.1)

and the survival function of Ts is also rephrased as

H̄s(t) = F̄n(t) + Ḡn(t)
∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx for all t ≥ 0. (4.2)

Now let us present the first main result.

Theorem 4.1. For a series system with components having mutually independent lifetimes, if
X ≥hr Y then Tc ≥st Ts.

Proof. Since X ≥hr Y implies

F̄(t)

Ḡ(t)
≥ F̄(x)

Ḡ(x)
for t ≥ x, (4.3)

it follows from (4.1) and (4.2) that

H̄c(t) − H̄s(t)

=
[

F̄(t) + Ḡ(t)
∫ t

0

f (x)

Ḡ(x)
dx

]n

−
[

F̄n(t) + Ḡn(t)
∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx

]

≥ F̄n(t) + nF̄n−1(t)Ḡ(t)
∫ t

0

f (x)

Ḡ(x)
dx − F̄n(t) − Ḡn(t)

∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx

= nF̄n−1(t)Ḡ(t)
∫ t

0

f (x)

Ḡ(x)
dx − Ḡn(t)

∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx

sgn=
∫ t

0

f (x)

Ḡ(x)

[(
F̄(t)

Ḡ(t)

)n−1

−
(

F̄(x)

Ḡ(x)

)n−1]
dx

≥ 0

for all t ≥ 0, where the last inequality follows from (4.3). Owing to the arbitrary t ≥ 0, this
yields Tc ≥st Ts, the desired ordering. �

With Theorem 4.1, we confirm that relevation redundancy at component level results in a
more reliable series system than relevation at system level. This is consistent with the seminal
conclusion on active redundancy in [2]. Naturally, one may conjecture that the fact that X is
larger than Y in some stochastic sense is necessary to some extent. However, as per Figures
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2(a) and 2(b), even if X ≥hr Y is violated, Tc may still outperform Ts due to the relevation. The
next result just confirms this intuition.

Theorem 4.2. For a series system with components having mutually independent lifetimes, if
X ≤hr Y, then Tc ≥lr Ts.

Proof. Based on (4.1) and (4.2), Tc has the probability density function

hc(t) = ng(t)

[
F̄(t) + Ḡ(t)

∫ t

0

f (x)

Ḡ(x)
dx

]n−1 ∫ t

0

f (x)

Ḡ(x)
dx for all t ≥ 0,

and the probability density function of Ts is

hs(t) = ng(t)Ḡn−1(t)
∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx for all t ≥ 0.

Thus, for all t ≥ 0,

hc(t)

hs(t)
=

ng(t)

[
F̄(t) + Ḡ(t)

∫ t
0

f (x)

Ḡ(x)
dx

]n−1 ∫ t
0

f (x)

Ḡ(x)
dx

ng(t)Ḡn−1(t)
∫ t

0
nF̄n−1(x)f (x)

Ḡn(x)
dx

=
[

F̄(t)

Ḡ(t)
+

∫ t

0

f (x)

Ḡ(x)
dx

]n−1

·
∫ t

0

f (x)

Ḡ(x)
dx

/ ∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx

= [�1(t)]n−1 · �2(t).

On one hand,

[�1(t)]′ =
[

F̄(t)

Ḡ(t)
+

∫ t

0

f (x)

Ḡ(x)
dx

]
′

= −f (t)Ḡ(t) + g(t)F̄(t)

Ḡ2(t)
+ f (t)

Ḡ(t)

= g(t)F̄(t)

Ḡ2(t)

≥ 0 for all t ≥ 0.

This implies that �1(t) is non-negative and increasing in t ∈ [0,∞). On the other hand, the
hazard rate order X ≤hr Y implies that F̄(t)/Ḡ(t) is decreasing. Thus

[�2(t)]′ =
[∫ t

0

f (x)

Ḡ(x)
dx

/ ∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx

]
′

sgn= f (t)

Ḡ(t)

∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx − nF̄n−1(t)f (t)

Ḡn(t)

∫ t

0

f (x)

Ḡ(x)
dx

≥ nf (t)

Ḡ(t)

(
F̄(t)

Ḡ(t)

)n−1 ∫ t

0

f (x)

Ḡ(x)
dx − nF̄n−1(t)f (t)

Ḡn(t)

∫ t

0

f (x)

Ḡ(x)
dx

= 0 for all t ≥ 0,
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and then

�2(t) =
∫ t

0

f (x)

Ḡ(x)
dx

/ ∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx

is non-negative and increasing in t ≥ 0.
As a consequence, we now conclude that hc(t)/hs(t) is increasing, and this invokes

Tc ≥lr Ts. �

It is worth mentioning that the relevation X � Y not only preserves the IFR (increasing
failure rate) property of the redundant Y in the context of Theorem 4.2 (see Theorem 3.5 of
[29]) but also upgrades the Tc ≥st Ts of Theorem 4.1 to Tc ≥lr Ts. Technically, it is of natural
interest to check whether the hazard rate ordering X ≤hr Y can be relaxed to X ≤st Y in Theorem
4.2. In what follows, we attempt to answer this question for series systems with only two
components.

Theorem 4.3. For a series system with two components having independent lifetimes, Tc ≥st Ts

whenever

Ḡ(t) ≥ F̄(t) ≥ 1

2
[Ḡ(t) + Ḡ2(t)] for all t ≥ 0. (4.4)

Proof. Denote

a(t) ≡
∫ t

0

f (x)

Ḡ(x)
dx for all t ≥ 0.

By (4.1) we have

H̄c(t) = F̄2(t) + 2F̄(t)Ḡ(t)a(t) + Ḡ2(t)a2(t) for all t ≥ 0.

Based on (4.2) and the first inequality of (4.4), we have

H̄s(t) = F̄2(t) + Ḡ2(t)
∫ t

0

2F̄(x)f (x)

Ḡ2(x)
dx ≤ F̄2(t) + 2Ḡ2(t)a(t).

In view of

a(t) −→
∫ ∞

0

f (x)

Ḡ(x)
dx> 1 as t → ∞,

we consider the following two cases individually.
For t ≥ 0 such that a(t)> 1, it follows from the second inequality of (4.4) that

H̄c(t) − H̄s(t) ≥ 2F̄(t)Ḡ(t)a(t) + Ḡ2(t)a2(t) − 2Ḡ2(t)a(t)

≥ [2F̄(t) − Ḡ(t)]Ḡ(t)a(t)

≥ 0,

which gives rise to H̄c(t) ≥ H̄s(t).
For t ≥ 0 such that a(t) ≤ 1, owing to the first inequality of (4.4), we have

2F̄(t) ≥ Ḡ(t) + Ḡ2(t) ≥ Ḡ(t) + F̄(t)Ḡ(t).

Equivalently,
F(t) ≥ 2[1 − F̄(t)/Ḡ(t)].
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(a) (b)

FIGURE 3. Difference curves of H̄c(1/t − 1) − H̄s(1/t − 1). (a) Series system. (b) Parallel system.

Thus

a(t) =
∫ t

0

f (x)

Ḡ(x)
dx ≥ F(t) ≥ 2[1 − F̄(t)/Ḡ(t)].

Equivalently,
2F̄(t) − 2Ḡ(t) + Ḡ(t)a(t) ≥ 0.

As a result,

H̄c(t) − H̄s(t) ≥ [2F̄(t) − 2Ḡ(t) + Ḡ(t)a(t)]Ḡ(t)a(t) for all t ≥ 0.

This implies H̄c(t) − H̄s(t) ≥ 0 and hence H̄c(t) ≥ H̄s(t) again.
Now, based on the above, we conclude with H̄c(t) ≥ H̄s(t) for all t ≥ 0, i.e. Tc ≥st Ts. �

As for Theorem 4.1, one referee suggested the possibility of extending such a conclusion to
the case of the series system with independent but heterogeneous components. Here we present
an example showing that relevation redundancy at component level also results in a more
reliable series system than relevation at system level. However, it remains an open problem
in a general context.

Example 4.1. Consider the system of two components in series. Assume that the component
lifetimes X1 ∼ E(1), the exponential distribution with hazard rate 1, and X2 ∼ E(2) are inde-
pendent, and the relevation redundancy lifetimes Y1 ∼W(0.5, 2), Weibull distribution with
survival function e−0.5t2 , and Y2 ∼W(1, 3) are independent. It is not difficult to check that for
all t ≥ 0,

H̄c(t) =
(

e−t + e−0.5t2
∫ t

0
e−x+0.5x2

dx

)
·
(

e−2t + 2e−t3
∫ t

0
e−2x+x3

dx

)
and

H̄s(t) = e−3t + 3e−0.5t2−t3
∫ t

0
e−3x+0.5x2+x3

dx.

As is seen in Figure 3(a), H̄c(1/t − 1) ≥ H̄s(1/t − 1) for all t ∈ [0, 1], where we use the time
transform 1/t − 1 to map the positive half of the real line to the unit interval. Markedly, this
leads to Tc ≥st Ts.

Also, for the parallel system with independent and homogeneous component lifetimes and
relevation redundancy lifetimes, Example 4.2 shows that relevation redundancy at component
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level also results in a more reliable system than relevation at system level. Likewise, we have
no idea for any general conclusion of the parallel structure at this moment.

Example 4.2. Consider the parallel system of two components. Assume that the component
lifetimes Xi ∼W(1, 3), i = 1, 2, are independent, and the relevation redundancy lifetimes Yi ∼
W(0.5, 2), i = 1, 2, are independent. It is routine to check that for all t ≥ 0

H̄c(t) = 1 −
(

1 − e−t3 − 2e−0.5t2
∫ t

0
xe−x3+0.5x2

dx

)2

and

H̄s(t) = 1 − (
1 − e−t3)2 + 6

[
1 − (

1 − e−0.5t2)2] ∫ t

0

xe−x3
(1 − e−x3

)

1 − (1 − e−0.5x2 )2
dx.

Figure 3(b) shows that H̄c(1/t − 1) ≥ H̄s(1/t − 1) holds for all t ∈ [0, 1]. Thus Tc ≥st Ts.

5. Coherent systems of components having dependent lifetimes

In traditional reliability theory, system components are usually assumed to be of mutually
independent lifetimes for mathematical tractability. However, this is far from the truth in engi-
neering practice because components of a complex system usually suffer common stresses and
share load and thus their lifetimes are statistically dependent in the final analysis. As a study
in depth, in this section we pay attention to coherent systems with components having statis-
tically dependent lifetimes, and we attempt to gain some insight on relevation redundancy at
both system and component level.

As is seen in Section 4, there is no guarantee that relevation redundancy at component level
outperforms that at system level even in the context of the series system with independent and
identically distributed component lifetimes. As the second main result of this note, Theorem
5.1 presents a sufficient condition for the stochastic order between the lifetime of system with
relevation redundancy at component level and that at system level.

Theorem 5.1. Suppose that the DF ρ(u) is convex and uρ′(u)/ρ(u) is decreasing in u ∈ [0, 1].
If X ≥hr Y, then Tc ≥st Ts.

Proof. Since the domination function ρ is convex, it follows from (3.2) and (3.3) that for all
t ≥ 0,

H̄c(t) − H̄s(t)

= ρ

(
F̄(t) + Ḡ(t)

∫ t

0

f (x)

Ḡ(x)
dx

)
− ρ(F̄(t)) − ρ(Ḡ(t))

∫ t

0

ρ′(F̄(x))f (x)

ρ(Ḡ(x))
dx

≥ ρ′(F̄(t))Ḡ(t)
∫ t

0

f (x)

Ḡ(x)
dx − ρ(Ḡ(t))

∫ t

0

ρ′(F̄(x))f (x)

ρ(Ḡ(x))
dx

= ρ(Ḡ(t))
∫ t

0

f (x)

Ḡ(x)

[
Ḡ(t)ρ′(F̄(t))

ρ(Ḡ(t))
− Ḡ(x)ρ′(F̄(x))

ρ(Ḡ(x))

]
dx. (5.1)

The convexity of ρ(u) implies that ρ′(u) is non-negative and increasing. Since uρ′(u)/ρ(u)
is decreasing in u ∈ [0, 1], the u/ρ(u) is decreasing, and thus

uρ′(u)

ρ(u)
− 1 ≥ 0 for all u ∈ [0, 1]. (5.2)
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Also, X ≥hr Y implies that

f (x)

F̄(x)
≤ g(x)

Ḡ(x)
, F̄(x) ≥ Ḡ(x) for all x ≥ 0. (5.3)

Owing to the decreasing property of uρ′(u)/ρ(u), we have

u[ρ′(u)]2 − ρ(u)ρ′(u) − uρ′′(u)ρ(u) ≥ 0 for all u ∈ [0, 1] (5.4)

and
F̄(x)ρ′(F̄(x))

ρ(F̄(x))
− Ḡ(x)ρ′(Ḡ(x))

ρ(Ḡ(x))
≤ 0 for all x ≥ 0. (5.5)

Note that[
Ḡ(x)ρ′(F̄(x))

ρ(Ḡ(x))

]
′ sgn= − g(x)

Ḡ(x)
− f (x)ρ′′(F̄(x))

ρ′(F̄(x))
+ g(x)ρ′(Ḡ(x))

ρ(Ḡ(x))

= g(x)

Ḡ(x)

[
Ḡ(x)ρ′(Ḡ(x))

ρ(Ḡ(x))
− 1

]
− f (x)ρ′′(F̄(x))

ρ′(F̄(x))

≥ f (x)

F̄(x)

[
Ḡ(x)ρ′(Ḡ(x))

ρ(Ḡ(x))
− 1

]
− f (x)ρ′′(F̄(x))

ρ′(F̄(x))

≥ f (x)

F̄(x)

[
F̄(x)ρ′(F̄(x))

ρ(F̄(x))
− 1

]
− f (x)ρ′′(F̄(x))

ρ′(F̄(x))

sgn= F̄(x)[ρ′(F̄(x))]2 − ρ(F̄(x))ρ′(F̄(x)) − F̄(x)ρ′′(F̄(x))ρ(F̄(x))

≥ 0 for x ≥ 0,

where ‘
sgn= ’ means both sides have the same sign, the first inequality follows from (5.2) and

(5.3), the second one stems from (5.5), and the last is due to (5.4). As a consequence, we
conclude that Ḡ(x)ρ′(F̄(x))/ρ(Ḡ(x)) is increasing in x, and hence

Ḡ(t)ρ′(F̄(t))

ρ(Ḡ(t))
≥ Ḡ(x)ρ′(F̄(x))

ρ(Ḡ(x))
for all t ≥ x ≥ 0.

Now, from (5.1) it follows immediately that H̄c(t) ≥ H̄s(t) for all t ≥ 0. That is, Tc ≥st Ts,
the desired ordering. �

It is postulated in Theorem 5.1 that the DF ρ(u) is convex and uρ′(u)/ρ(u) is decreasing
in u ∈ [0, 1]. Evidently, this assumption is fulfilled for series systems with independent com-
ponent lifetimes, and thus Theorem 4.1 follows immediately as a special case from Theorem
5.1. In addition, such an assumption integrates both the system structure and the statistical
dependence among component lifetimes. It is worth pointing out the following conditions due
to [13], which are sufficient to this assumption:

• a series system with system component lifetimes linked by Archimedean survival copula
Cψ such that −ψ ′(ex) is log-concave and −ψ ′(ex)/ψ(ex) is log-concave, e.g. ψ(y) =
1 − y1/θ with θ ≥ 1;
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• a parallel system with component lifetimes linked by Archimedean copula Cψ such that

−ψ ′(ex) is log-convex and −ψ ′(ex)/[1 −ψ(ex)] is log-convex, e.g. ψ(y) = e−y1/θ
with

θ ≥ 1;

• the series-parallel system max{min{X1, X2, X3},min{X2, X3, X4}} composed of iden-
tically distributed component lifetimes X1, . . . , X4, which are linked by the Ali–
Mikhail–Haq (AMH) survival copula generated by ψ(y) = (1 − θ )/(ey − θ ) with θ ∈
[0, 0.15].

Naturally, one may speculate that the usual stochastic order between Tc and Ts can be
upgraded to either the hazard rate or the reversed hazard rate order in the context of Theorem
5.1. On the other hand, due to Theorems 5.1 and 4.2, one may also conjecture that for a
series system X1: n with independent component lifetimes X1, . . . , Xn, the likelihood ratio
order between Tc and Ts holds whenever X ≥hr Y . However, Example 5.1 below serves as a
negative answer to both conjectures.

Example 5.1.

(i) For the series system X1: 3 with independent component lifetimes X1, X2, X3, the DF
ρ(u) = u3 for u ∈ [0, 1]. Since

ρ′′(u) = 6u ≥ 0,
uρ′(u)

ρ(u)
= 3,

the ρ(u) is convex and uρ′(u)/ρ(u) is a constant for u ∈ [0, 1].

Assume that X ∼ E(1), the standard exponential distribution, and Y has survival function

Ḡ(t) =
⎧⎨⎩e−t, 0< t< 1,

e−t2 , t> 1.

It is routine to verify that X ≥hr Y . Thus all assumptions in Theorem 5.1 are fulfilled.

Even now, as is seen in Figure 4(a), H̄c(t)/H̄s(t) is not monotone at all, and this negates
the hazard rate order between Tc and Ts in the setting of Theorem 5.1.

(ii) Consider the parallel-series system max{min{X1, X2, X3},min{X2, X3, X4}} with inde-
pendent component lifetimes X1, X2, X3, X4. It is easy to check that ρ(u) = 2u3 − u4 for
u ∈ [0, 1]. Then

ρ′′(u) = 12u(1 − u) ≥ 0,
uρ′(u)

ρ(u)
= 6 − 4u

2 − u
,

∂

∂u

[
uρ′(u)

ρ(u)

]
= −2.

That is, ρ(u) is convex and uρ′(u)/ρ(u) is decreasing in u ∈ [0, 1].

For Y ∼ E(1) and X with survival function

F̄(t) =
⎧⎨⎩e−0.5t2 , 0< t< 1,

e0.5−t, t> 1,

it is routine to verify that X ≥hr Y . Thus all assumptions of Theorem 5.1 are verified.
Again, as depicted in Figure 4(b), the ratio Hc(t)/Hs(t) is not monotone either.
Consequently, the reversed hazard rate order between Tc and Ts in the setting of
Theorem 5.1 is invalidated.
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(a) (b)

FIGURE 4. Two curves of ratios concerned with system lifetimes Tc and Ts. (a) Ratio of survival
functions. (b) Ratio of distribution functions.

6. Some remarks

For coherent systems, due to the complexity incurred by the statistical dependence and het-
erogeneity of component lifetimes, it is unfeasible to build the usual consistent stochastic order
between the system lifetime with relevation redundancy at system level and that with relevation
redundancy at component level. Apart from the results developed in previous sections, further
in-depth research is needed in order to provide more insight into such a fundamental problem
in reliability. Finally, we close this note by presenting two propositions, illuminating future
research on series systems of independent components.

As an immediate consequence of Theorems 4.1 and 4.2, we present the first proposition.

Proposition 6.1. For a series system with components having independent and homoge-
neous lifetimes X1, . . . , Xn and relevation redundancies having independent and homogeneous
lifetimes Y1, . . . , Yn, if X1 and Y1 are of proportional hazard rates, then Tc ≥st Ts.

It is of natural interest to further check whether Tc ≥st Ts still holds whenever Xi and Yi

are of proportional hazard rates, i = 1, . . . , n, for mutually independent but heterogeneous
X1, . . . , Xn in further research.

Recall that a non-negative random variable X is said to be smaller than another one Y in the
stochastic tail order (denoted as X ≤sto Y) if F̄(x) ≤ Ḡ(x) for all x> x0 and some threshold x0 >

0. For more on this order we refer readers to [7] and [14]. As for Theorem 4.3, we speculate that
the X ≤st Y of (4.4) itself is not sufficient. Although we come up with the following stochastic
tail order, further discussions are expected to clarify the mechanism in future.

Proposition 6.2. For a series system with components having mutually independent lifetimes,
if X ≤st Y then Tc ≥sto Ts.

Proof. Recall that

a(t) =
∫ t

0

f (x)

Ḡ(x)
dx for t ≥ 0.

For t ≥ 0 such that a(t) ≥ 1, it stems from (4.1) that

H̄c(t) = [F̄(t) + Ḡ(t)a(t)]n

= F̄n(t) +
n∑

k=1

(
n

k

)
F̄n−k(t)Ḡk(t)ak(t)
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≥ F̄n(t) +
n∑

k=1

(
n

k

)
F̄n−k(t)Ḡk(t)a(t).

On the other hand, X ≤st Y implies F̄(x) ≤ Ḡ(x) for all x ≥ 0, and thus it follows from (4.2) that

H̄s(t) = F̄n(t) + Ḡn(t)
∫ t

0

nF̄n−1(x)f (x)

Ḡn(x)
dx

≤ F̄n(t) + nḠn(t)a(t).

Then we have

H̄c(t) − H̄s(t) ≥
[

nF̄n−1(t) +
n∑

k=2

(
n

k

)
F̄n−k(t)Ḡk−1(t) − nḠn−1(t)

]
Ḡ(t)a(t)

sgn=
n∑

k=1

(
n

k

)
F̄n−k(t)Ḡk−1(t) − nḠn−1(t)

=
n∑

k=1

n

k

(
n − 1

k − 1

)
F̄n−k(t)Ḡk−1(t) − nḠn−1(t)

= nḠn−1(t)

[
n−1∑
l=0

1

l + 1

(
n − 1

l

)(
F̄(t)

Ḡ(t)

)n−l−1

− 1

]

≥ nḠn−1(t)

[
n−1∑
l=0

(
F̄(t)

Ḡ(t)

)n−l−1

− 1

]
≥ 0 for all t ≥ 0,

where the second to the last inequality is due to

1

l + 1

(
n − 1

l

)
= 1

l + 1
· n − 1

n − l − 1
· · · · · l + 2

2
· l + 1

1
> 1 for l = 0, 1, . . . , n − 1.

This gives rise to H̄c(t) ≥ H̄s(t) for all t ≥ 0 such that a(t) ≥ 1. That is, Tc ≥sto Ts. �
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