ON NEAR-RINGS OF QUOTIENTS

by A. OSWALD
(Received 1st April 1977)

1. Introduction

In (2), Holcombe investigated near-rings of zero-preserving mappings of a group Γ which commute with the elements of a semigroup S of endomorphisms of Γ and examined the question: under what conditions do near-rings of this type have near-rings of right quotients which are 2-primitive with minimum condition on right ideals? In the first part of this paper (§2) we investigate further properties of near-rings of this type. The second part of the paper (§3) deals with those near-rings which have semisimple near-rings of right quotients. Our results here are analogous to those of Goldie (1); in particular, with a suitable definition of finite rank we prove that a near-ring which has a semisimple near-ring of right quotients has finite rank.

Basic concepts for near-rings can be found in Pilz (5). All our near-rings will be left near-rings (i.e. $a(b+c)=a b+a c$ for all $a, b, c \in N$) with a two-sided zero.

2. Near-rings of quotients of mapping near-rings

If S is a semigroup, a set A is an S-set if it admits the elements of S as right operators with $a\left(s_{1} s_{2}\right)=\left(a s_{1}\right) s_{2}$ for all $a \in A, s_{1}, s_{2} \in S$. A mapping $f: A \rightarrow B$, where A and B are S-sets, is an S-homomorphism if for each $a \in A$ and $s \in S$ we have (af) $s=(a s) f$. If $X \subset A$, an S-set, and every mapping $f: X \rightarrow B$, where B is an S-set, defines a unique S-homomorphism $f^{*}: A \rightarrow B$ then A is the free S-set on X.

If S has a semigroup G of two-sided quotients we define $A G=\{a g: a \in A, g \in G\}$. Denoting by C the set of cancellative elements of S it is obvious that $A G=$ $\left\{a s^{-1}: a \in A, s \in C\right\}$. In $A G$ we define $a s^{-1}=b t^{-1}$ if, and only if, for some $u, v \in C$ we have $s u=t v$ and $a u=b v$. Then in $A G$ we can define an action by $(a g) h=a(g h)$ whenever $a \in A, g, h \in G$ and $A G$ becomes a G-set.

The following result is well known.
Lemma 0. If a semigroup X has a semigroup of right quotients and if C denotes the subsemigroup of X consisting of the cancellative elements then for each set $t_{1}, t_{2} \ldots, t_{k} \in C$ there exist $s_{1}, s_{2}, \ldots, s_{k}, t \in C$ with $t=s_{i} t_{i}, 1 \leqslant i \leqslant k$.

Proof. See (6; Lemma 1.4), for example.
A similar result holds if X has a semigroup of left quotients.
Now suppose that \boldsymbol{A} is a group (written additively but not necessarily com-
mutative) and that S is a semigroup of endomorphisms of A in which the cancellative elements of S are monomorphisms of A. We suppose the zero endomorphism is not in S. If S has a semigroup G of two-sided quotients we can define an addition in $A G$ by $\left(a s^{-1}+b t^{-1}\right)=(a u+b v) w^{-1}$ where $u, v \in C$ with $w=s u=t v$. It is easy to show that $A G$ is a group and that the elements of G act as endomorphisms of $A G$.

Now we introduce the two sets

$$
\begin{gathered}
M=\operatorname{Map}_{s}(A)=\{f: A \rightarrow A: 0 f=0,(a f) s=(a s) f, a \in A, s \in S\} \\
M^{*}=\operatorname{Map}_{G}(A G)=\left\{f: A G \rightarrow A G: 0 f=0,\left(\left(a g_{1}\right) f\right) g_{2}=\left(a g_{1} g_{2}\right) f, a g_{1} \in A G, g_{2} \in G\right\} .
\end{gathered}
$$

It is easy to see that both M and M^{*} are left near-rings. Furthermore, if $f \in M$ we can define $f^{*} \in M^{*}$ by $\left(a s^{-1}\right) f^{*}=(a f) s^{-1}$. Since it is easily seen that the mapping $f \rightarrow f^{*}$ is an injective near-ring homomorphism we see that M is embedded in M^{*}. We identify f with f^{*} in M^{*}. We wish to introduce restrictions on A, S and $A G$ which will lead to M^{*} being a near-ring of quotients of M.

We say that A is a torsion-free S-set if whenever $a \in A$ with $a \neq 0$ and $s, t \in S$ with $s \neq t$ then $a s \neq a t$. Using Lemma 0 it can be shown that if A is a torsion-free S-set then $A G$ is a torsion-free G-set. Furthermore, we call A finitely-generated if for some set $a_{1}, a_{2}, \ldots, a_{n} \in A$ we have $A=a_{1} S \cup a_{2} S \cup \ldots \cup a_{n} S$. Then clearly $A G=$ $a_{1} G \cup a_{2} G \cup \ldots \cup a_{n} G$. Restricting ourselves to the case when $A G$ is a free G-set we can choose $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ with $A G=a_{i_{1}} G \dot{\cup} a_{i_{2}} G \dot{\cup} \ldots \dot{\cup} a_{i_{k}} G$ where distinct terms in this union are disjoint. Since $A \subset A G, a_{j}=a_{\lambda_{i}} r_{j}^{-1} s_{j}$ for some $\lambda_{j} \in\left\{i_{1}, \ldots, i_{k}\right\}$ and $r_{j} \in C$, $s_{j} \in S$. Using Lemma 0 choose $e_{j}, d \in C$ with $r_{j}^{-1}=d^{-1} e_{j}$. Then $a_{j} \in a_{\lambda_{j}} d^{-1} S$ and so $A \subseteq a_{i_{1}} d^{-1} S \cup a_{i_{2}} d^{-1} S \dot{\cup} \ldots \dot{\cup} a_{i_{k}} d^{-1} S$ as a disjoint union and also $A G=$ $a_{i_{1}} d^{-1} G \dot{\cup} \ldots \dot{U} a_{i_{k}} d^{-1} G$. For $h \in G$ we define $\mu_{h}: A G \rightarrow A G$ by $\left(a_{i,} d^{-1} q\right) \mu_{h}=a_{i_{i}} d^{-1} h q$ where $q \in G$ and $1 \leqslant j \leqslant k$. Then $\mu_{h} \in M^{*}$ and if $h \in C$ then μ_{h} has an inverse in M^{*} and $\left(\mu_{h}\right)^{-1}=\mu_{h^{-1}}$.

Proposition 1. The elements of M^{*} have the form $\theta \mu_{t}^{-1}$ for some $\theta, \mu_{t} \in M$.
Proof. If $f \in M^{*}$ then f is uniquely determined by its effect upon $a_{i j} d^{-1}, 1 \leqslant j \leqslant k$. Let

$$
a_{i_{j}} d^{-1} f=a_{\lambda_{j}} d^{-1} p_{j}^{-1} s_{j}, p_{j} \in C, s_{i} \in S, i_{i}, \lambda_{j} \in\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}
$$

Applying the symmetric form of Lemma 0 we can choose $q_{1}, \ldots, q_{k}, r \in C$ with $p_{j}^{-1}=r^{-1} q_{j}, 1 \leqslant j \leqslant k$ and then

$$
a_{i_{j}} d^{-1} f=a_{\lambda_{j}} d^{-1} r^{-1} q_{j} s_{j} .
$$

Then $a_{i j} d^{-1} f \mu_{d r}=a_{\lambda_{j}} q_{j} s_{j} \in A$ so that $f \mu_{d r}: a_{i_{1}} d^{-1} S \dot{U} \ldots \dot{U} a_{i_{k}} d^{-1} S \rightarrow A$ and so $f \mu_{d r}: A \rightarrow$ A and $f \mu_{d r} \in M$. Also $a_{i j} d^{-1} \mu_{d r}=a_{i j} r \in A$ so $\mu_{d r} \in M$ and writing $\theta=f \mu_{d r}$ and $t=d r \in$ C we have $f=\theta \mu_{t}^{-1}$ as required.

It is easy to see that if $t \in C$ and $\mu_{t} \in M$ then μ_{t} is cancellative in M.
Proposition 2. If $f \in M$ is cancellative then f is cancellative in M^{*}.
Proof. Let $\phi, \psi \in M^{*}$ and $f \phi=f \psi$. Write $a_{i}^{*}=a_{i,} d^{-1}$. If $\phi \neq \psi$ let $a_{j}^{*} \phi \neq a_{j}^{*} \psi$. If
$a \in A$ and $s \in S$ with $a f=a_{j}^{*} s$ then $a_{j}^{*} \psi s=a_{j}^{*} s \psi=a f \psi=a f \phi=a_{j}^{*} \phi s \quad$ and since $A G$ is torsion-free and $s \in G$ we see that $a_{j}^{*} \psi=a_{i}^{*} \phi$ which is false. Consequently there is no $a \in A$ with $a f=a_{j}^{*} s$ for any $s \in S$. Let $\lambda_{j}: A G \rightarrow A G$ be defined by

$$
a_{i}^{*} u v^{-1} \lambda_{j}= \begin{cases}0 & \text { if } i \neq j \\ a_{j}^{*} u v^{-1} & \text { if } i=j\end{cases}
$$

where $u v^{-1} \in G$. Then $\lambda_{j} \in M^{*}$ for $1 \leqslant j \leqslant k$. Then for each $a \in A$ af $\lambda_{j}=0=a f 0$ so that in M we have $f\left(\left.\lambda_{j}\right|_{A}\right)=f 0$ and $\left.\lambda_{j}\right|_{A}=0$. But then $a_{i}^{*} \lambda_{j}=\left(\left.a_{i j} \lambda_{j}\right|_{A}\right) d^{-1}=0$ and so $f \phi=f \psi$ implies $\phi=\psi$. Now suppose $\phi f=\psi f$ and $\phi \neq \psi$. Without loss of generality we can take $a_{1}^{*} \phi \neq a_{1}^{*} \psi$. Set $a_{1}^{*} \phi=a_{1}^{*} \alpha \beta^{-1}, a_{1}^{*} \psi=a_{j}^{*} \gamma \delta^{-1}$ where $\alpha \beta^{-1}, \gamma \delta^{-1} \in G$. Then

$$
a_{i}^{*} f \alpha \beta^{-1}=a_{i}^{*} \alpha \beta^{-1} f=a_{i}^{*} \phi f=a_{1}^{*} \psi f=a_{i}^{*} \gamma \delta^{-1} f=a_{i}^{*} f \gamma \delta^{-1} .
$$

If $i=j$ either $\alpha \beta^{-1}=\gamma \delta^{-1}$ or $a_{i f}^{*}=0$ since $A G$ is torsion-free. If $\alpha \beta^{-1}=\gamma \delta^{-1}$ then $a_{1}^{*} \phi=a_{i}^{*} \alpha \beta^{-1}=a_{i}^{*} \gamma \delta^{-1}=a_{1}^{*} \psi$ which is false. Hence $a_{i}^{*} f=0$. In this case $a \lambda_{i} f=0$ for each $a \in A$ so that in M we have $\left(\left.\lambda_{i}\right|_{A}\right) f=0 f$ and $\left.\lambda_{i}\right|_{A}=0$ which is false. Thus $i \neq j$. In this case let $a_{i}^{*} f=\left(a_{p}^{*} t^{-1}\right) s, a_{j}^{*} f=\left(a_{q}^{*} t^{-1}\right) s_{1}$ where $s, s_{1} \in S$ and we have used Lemma 0 to find $t \in C$. Then

$$
\begin{gathered}
a_{p}^{*} t^{-1} s \alpha \beta^{-1}=a_{i}^{*} f \alpha \beta^{-1}=a_{i}^{*} \alpha \beta^{-1} f=a_{1}^{*} \phi f \\
a_{q}^{*} t^{-1} s_{1} \gamma \delta^{-1}=a_{j}^{*} f \gamma \delta^{-1}=a_{i}^{*} \gamma \delta^{-1} f=a_{j}^{*} \psi f
\end{gathered}
$$

and so $a_{p}^{*} t^{-1} s \alpha \beta^{-1}=a_{q}^{*} t^{-1} s_{1} \gamma \delta^{-1} \in a_{p}^{*} G \cap a_{q}^{*} G$ and thus $p=q$. Hence $a{ }_{1}^{*} f, a_{j}^{*} f \in a_{p}^{*} G$ and so for some $r, 1 \leqslant r \leqslant k, a_{r}^{*} G \cap \operatorname{Im} f=\phi$. Again we have the situation where for no $a \in A$ is $a f=a_{r}^{*} s$ for any $s \in S$ and again we deduce that $\lambda_{r}=0$. Hence $\phi=\psi$ is cancellative in M^{*}.

Proposition 3. If $f \in M^{*}$ and f is cancellative then f has an inverse in M^{*}.
Proof. If f is both $1-1$ and onto then the inverse mapping $f^{-1}: A G \rightarrow A G$ exists and a simple calculation shows that $f^{-1} \in M^{*}$. Suppose f is cancellative but not onto. Let $b \in A G$ with $b \notin \operatorname{Im} f$. For some $j, b=a_{j}^{*} g$ with $g \in G$ and so $a_{j}^{*} \notin \operatorname{Im} f$. But then, for $1 \leqslant i \leqslant k, a_{i}^{*} f \lambda_{j}=0$ and so $f \lambda_{j}=0$ and $\lambda_{j}=0$ since f is cancellative. Hence f is onto. Now suppose $a, b \in A G$ with $a f=b f, a \neq b$. For some $i, j, a=a_{i}^{*} g_{1}, b=a_{j}^{*} g_{2}$ with $g_{1}, g_{2} \in G$. If $i \neq j$ then $a_{i}^{*} g_{1} f=a_{j}^{*} g_{2} f$ and so $a_{1}^{*} f g_{1}=a_{\|}^{*} f g_{2}$. Also for some h, r we have $a_{1}^{*} f \in a_{h}^{*} G, a_{j}^{*} f \in a_{r}^{*} G$ and $a_{1}^{*} f g_{1} \in a_{h}^{*} G \cap a_{r}^{*} G \neq \phi$. Since $A G$ is free we have $h=r$ and thus both a_{i}^{*} and a_{i}^{*} map into $a_{h}^{*} G$. But then f cannot be onto. This contradiction establishes the result.

These results now lead to

Theorem 1. Let S be a semigroup with a semigroup G of two-sided quotients and let A be a group for which S is a semigroup of endomorphisms such that the cancellative elements of S are monomorphisms. If A is torsion-free and finitely generated as an S-set and if $A G$ is free as a G-set then M has a near-ring of two-sided quotients which is isomorphic to M^{*}.

Proof. It remains only to prove that M^{*} is a near-ring of left quotients of M. Let $f \in M^{*}$. The for some $\alpha_{i}, \bar{\alpha}_{i} \in S, \beta_{i}, d_{i} \in C a_{\lambda_{i}} d^{-1} f=a_{\lambda_{j(i)}} d^{-1} \alpha_{i} \beta_{i}^{-1}=a_{\lambda_{i(i)}} \bar{\alpha}_{i}\left(\beta_{i} d_{i}\right)^{-1}$ since G is a semigroup of two-sided quotients of S. Using Lemma 0 we have, for $1 \leqslant i \leqslant k$, $\left(\beta_{i} d_{i}\right)^{-1}=e_{i} r^{-1}$ and $d^{-1}=e r^{-1}$ for some $e_{i}, e, r \in C$. Then $a_{\lambda_{i}} d^{-1} f r=a_{\left.\lambda_{i(i}\right)} \bar{\alpha}_{i} e_{i} \in A$. But $a_{\lambda_{i}} d^{-1} f r=a_{\lambda_{i}} d^{-1} r f=a_{\lambda_{i}} d^{-1} \mu_{r} f$ and so $\mu_{r} f \in M$. Also $a_{\lambda_{i}} d^{-1} \mu_{r}=a_{\lambda_{i}} d^{-1} r=a_{\lambda_{i}} e \in A$ and so $\mu_{r} \in M$. Since $r \in C$ we have $f=\left(\mu_{r}\right)^{-i} \theta$ for some $\theta \in M$ as required.

We now turn to the structure of M^{*}. Since $A G$ is free, $A G=$ $a_{\lambda_{1}} d^{-1} G \dot{\cup} \ldots \dot{\cup} a_{\lambda_{k}} d^{-1} G$. Writing $a_{i}^{*}=a_{\lambda_{i}} d^{-1}$ we have defined $\lambda_{i}: A G \rightarrow A G$ by $a_{i}^{*} g \lambda_{i}=$ 0 if $j \neq i$ and $a_{i}^{*} g \lambda_{i}=a_{i}^{*} g$ where $g \in G$. Clearly $\lambda_{i} \in M^{*}$ and it is an easy calculation to show that, for each $i, \lambda_{i} M^{*}$ is a right ideal of M^{*} and that $M^{*}=\lambda_{1} M^{*} \oplus \ldots \oplus \lambda_{k} M^{*}$.

For the remainder of this section we will suppose that G is a group. If $X \subset N$, where N is a near-ring, we denote by $r(X)$ the set $r(X)=\{n \in N: x n=0$ for all $x \in X\}$; by $r(x)$ we mean $r(\{x\})$.

Theorem 2. M^{*} has no proper two-sided ideals and has the descending chain condition on M^{*}-subgroups.

Proof. If $\lambda_{i} g, \lambda_{i} h \in \lambda_{i} M^{*}$ with $\lambda_{i} g \neq 0 \neq \lambda_{i} h$ then $a_{i}^{*} \lambda_{i} h=a_{m}^{*} \alpha \beta^{-1}$ for some m and $\alpha \beta^{-1} \in G$ and $a_{i}^{*} \lambda_{i} h=0$ for $j \neq i$. Similarly for some p and $\gamma \delta^{-1} \in G, a_{i}^{*} \lambda_{i} g=a_{p}^{*} \gamma \delta^{-1}$, $a_{j}^{*} \lambda_{i} g=0$ if $j \neq i$. Defining $q: A G \rightarrow A G$ by $a_{p}^{*} q=a_{m}^{*} \alpha \beta^{-1} \gamma \delta^{-1}$ and $a_{i}^{*} q=0$ if $j \neq p$ we can extend q to $q^{*} \in M^{*}$ to get $\lambda_{i} h=\lambda_{i} g q^{*} \in \lambda_{i} g M^{*}$ and so $\lambda_{i} h M^{*}=\lambda_{i} g M^{*}$. Hence each $\lambda_{i} M^{*}$ is minimal. Thus M^{*} is completely reducible with identity and by (3) M^{*} has no nilpotent M^{*}-subgroups and the descending chain condition on M^{*} subgroups. Next we let $f \in r\left(\lambda_{1} M^{*}\right)$. Defining $\lambda_{i j} \in M^{*}$ by $a_{i}^{*} \lambda_{1 j}=0$ if $i \neq 1$ and $a_{1}^{*} \lambda_{1 j}=a_{j}^{*}$ we see that $f=0$. From (4; Thm 3) we can write M^{*} as a direct sum of two-sided ideals each of which is simple as a near-ring. If U, V are two such with $U \cap V=(0)$ then $U V=0$. If $U \neq 0, \lambda_{1} M^{*} U \neq 0$ so for some $f \in M^{*}, \lambda_{1} f U=\lambda_{1} M^{*}$. But then $\lambda_{1} M^{*} V=0$ so $V=0$. It follows that M^{*} is simple as a near-ring.

Suppose X is a subset of the near-ring N. Set $X_{0}=N X \cup X$ and denote by X_{0}^{+}the normal subgroup of N generated by X_{0}. Let $\left[X_{0}^{+}\right]=\left\{(a+x) c-a c: x \in X_{0}^{+}, a, c \in N\right\}$. Define $X_{1}=\left[X_{0}^{+}\right] \cup X_{0}^{+}$and observe that $N X_{1} \subseteq X_{1}$, We now suppose that X_{k} has been constructed and we construct successively $X_{k}^{+},\left[X_{k}^{+}\right]$and $X_{k+1}=X_{k}^{+} \cup\left[X_{k}^{+}\right]$. This leads to a chain $X_{0} \subseteq X_{1} \subseteq \ldots$ and we then define $I(X)=\cup X_{k}$. A simple calculation shows that $I(X)$ is the ideal generated by X.

If N has a near-ring Q of two-sided quotients and B is an N-subgroup of N then we may construct the ideal B^{*} of Q generated by $Q B Q$. In this case $B^{*}=\cup B_{k}$ where $B_{0}=Q B Q$, etc.

Lemma 1. If A is an N-subgroup with $A B=(0)$ and $A \neq(0)$ then for each k the elements of B_{k} have the form $c^{-1} t$ where c is a cancellative element in N and $A t=(0)$.

Proof. If $u \in Q B Q$ then $u=c^{-1} v b q$ where $v \in N, b \in B, q \in Q$ and c is a cancellative element of N. Then $a v b q \in A B q=(0)$ and $u=c^{-1} t$ as required. Now suppose the result is true for B_{k}. If $u \in B_{k+1}$ then $u \in B_{k}^{+}$or $u \in\left[B_{k}^{+}\right]$. In the first case $u=\Sigma\left(d_{i}^{-1} x_{i}+c_{i}^{-1} t_{i}-d_{i}^{-1} x_{i}\right)=c^{-1} \Sigma\left(y_{i}+r_{i} t_{i}-y_{i}\right)$, on applying Lemma 0 , where $y_{i}, r_{i} \in N$ and $A t_{i}=(0)$. But then $A r_{i} t_{i}=(0)$ so with $t=\Sigma\left(y_{i}+r_{i} t_{i}-y_{i}\right)$ we have $u=c^{-1} t$ and $A t=(0)$. A similar argument applies to $\left[B_{k}^{+}\right]$and the lemma follows.

Theorem 3. If N has a near-ring Q of two-sided quotients which is simple then N is strictly prime.

Proof. Let A, B be N-subgroups of N with $A B=(0)$ but $A \neq(0)$. Let B^{*} be the ideal of Q generated by $Q B Q$. Since Q is simple either $B^{*}=(0)$ or $B^{*}=Q$. If $B^{*}=(0)$ then trivally $B=(0)$. If $B^{*}=Q$ then $1 \in B^{*}$ so $1 \in B_{k}$ for some k. From Lemma 1 , $1=c^{-1} t$ with c cancellative and $A t=(0)$. Thus $A c=(0)$ contrary to $A \neq(0)$.

Corollary 1. If G is a group M is strictly prime.

3. Semisimple Near-rings of Right Quotients

We now turn to an investigation of the properties of those near-rings which have near-rings of right quotients which are semisimple. If Q is a near-ring then Q is semisimple if it has no nilpotent Q-subgroups and the minimum condition on Q subgroups. To fix our terminology, an N-subgroup A is nilpotent if $A \neq(0)$ but for some $n \geqq 2, A^{n}=\left\{a_{1} a_{2} \ldots a_{n}: a_{i} \in A\right\}=(0)$.

Most of our results are the analogues of those of Goldie. We will determine necessary conditions for the near-ring Q of right quotients of N to be semisimple. It seems most unlikely, however, that these conditions will be sufficient. Throughout this section Q will denote a near-ring of right quotients of N.

Theorem 4. If N has a near-ring Q of right quotients which is sermisimple then N has no nilpotent N-subgroups.

Proof. Let A be a nilpotent N-subgroup of A with $A^{n}=(0)$. Set $P=\ell(N A)=$ $\{x \in N: x N A=(0)\}$. If $u \in N(u \neq 0)$ with $u N \neq(0)$ and $P \cap u N=(0)$ then $N A \cap$ $u N \neq(0)$ so we can take $u x \in N A \cap u N$ with $u x \neq 0$. For some $k>1,(N A)^{k}=(0)$, $(N A)^{k-1} \neq(0)$. Hence $u x(N A)^{k-1}=(0)$. It follows that $(u x)^{k-1} N A=(0)$ and $(u x)^{k-1} \in$ $P \cap u N=(0)$. Thus $(u x)^{k-1}=0$. If $(u x)^{k-2} N A \neq(0)$ then for some $v \in N A,(u x)^{k-2} v \neq 0$ but $(u x)^{k-2} v N A=(0)$ so that $(u x)^{k-2} v \in P \cap u N=(0)$ which is a contradiction. Hence $P \cap u N \neq(0)$ and P has non-empty intersection with every non-zero N-subgroup. Now consider $P Q$. Clearly if $q \in Q$ then $P Q \cap q Q \neq(0)$ unless $q=0$. In particular $P Q \cap e_{i} Q \neq(0) \quad$ where $e_{i} Q$ is a minimal right ideal of Q and $Q=$ $e_{1} Q \oplus e_{2} Q \oplus \ldots \oplus e_{n} Q$. Hence $e_{i} Q=p_{i} Q$ for some $p_{i} \in P$. Notice that $p_{1} N+p_{2} N+$ $\cdots+p_{n} N$ is an N-subgroup of N and that $\left(p_{1} a_{1}+p_{2} a_{2}+\cdots+p_{n} a_{n}\right) b=$ $p_{1} a_{1} b+p_{2} a_{2} b+\cdots+p_{n} a_{n} b$ for $b \in N$. Thus $p_{1} N+p_{2} N+\cdots+p_{n} N \subseteq P$. However, $1=p_{1} a_{1} c_{1}^{-1}+\cdots+p_{n} a_{n} c_{n}^{-1}=\left(p_{1} a_{1} b_{1}+\cdots+p_{n} a_{n} b_{n}\right) c^{-1}$ where $a_{n}, b_{n} \in N$ and we have used Lemma 0 . It follows that $c \in P$ and P contains a cancellative element. Hence $N A=(0)$ and $A=(0)$ as required.

A near-ring N is strictly semiprime if it has no nilpotent N-subgroups. Thus

Corollary 2. Q semisimple implies N strictly semiprime.

We say that an N-subgroup A of N is module-essential if, whenever X is non-zero right ideal of N, then $A \cap X \neq(0) ; A$ is N-essential if whenever X is a non-zero N-subgroup of N then $A \cap X \neq(0)$. Certainly if A is N-essential then A is
module essential. However, it is not generally true that if A is module-essential then A is N-essential.

Theorem 5. If Q is semisimple then module essential N-subgroups of N are N-essential.

Proof. Let X be module-essential and consider $X A$. If $e Q$ is a minimal right ideal of Q then $X \cap e Q \cap N \neq(0)$ so $X Q \cap e Q \neq(0)$. As in the proof of Theorem 4 we now deduce that $X Q=Q$. If $a \in N(a \neq 0)$ then $a \in Q=X Q$ so $a=x c^{-1}$ where $x \in X$ and c is cancellative. It follows that $a c \in X \cap a N \neq(0)$ and X is N-essential.

We denote by $Z(N)$ the set $\{x \in N: r(x)$ is N-essential in $N\}$. The proof of Theorem 5 can be modified to show that each N-essential N-subgroup contains a cancellative element when Q is semisimple and we deduce

Corollary 3. If Q is semisimple then $Z(N)=(0)$.
In the usual way we prove
Theorem 6. If Q is semisimple then N has the maximum condition on right annihilators.

We say that a near-ring N has finite rank if each chain $A_{1} \subset A_{2} \subset \ldots$ of N subgroups in which for each $i \geqq 2$ there is a non-zero N-subgroup $B_{i} \subset A_{i}$ with $B_{i} \cap A_{i-1}=(0)$ terminates finitely. If N is a ring this reduces to the usual definition.

Lemma 2. If Q is semisimple and $A_{1} \subset A_{2} \subset \ldots$ is a chain of N-subgroups of N such that for each $i \geqslant 2$ there is a non-zero N-subgroup $B_{i} \subset A_{i}$ with $B_{i} \cap A_{i-1}=(0)$ then B_{i} can be chosen to be a submodule of the N-module A_{i}.

Proof. Let X be a right ideal of N maximal subject to the condition $A_{i-1} \cap X=$ (0). Then $A_{i-1}+X$ is module-essential in N so by Theorem $5, A_{i-1}+X$ is N-essential. Now $A_{i} \cap\left(A_{i-1}+X\right)=A_{i-1}+(A \cap X)$ and $B_{i} \cap A_{i} \cap\left(A_{i-1}+X\right) \neq(0)$ so that $A_{i} \cap$ $X \neq(0)$. Clearly $A_{i} \cap X$ is a submodule of A_{i} with $A_{i} \cap X \cap A_{i-1}=(0)$.

We wish to prove that a near-ring with a semisimple near-ring of right quotients has finite rank. Because the form of a Q-subgroup generated by an N-subgroup of N does not have a simple representation in the form $I Q$, say, we have to adopt a more indirect approach. We begin by showing that there are essentially two different problems to be solved.

From (4; Thm 3) a semisimple near-ring Q with identity is the direct sum of finitely many two-sided ideals each of which is simple as a near-ring. We divide these direct summands into two classes, those which are rings and those which are non-rings i.e. near-rings which are not rings. Write $Q=R \oplus T$ where R, T are ideals of Q, R is the sum of those direct summands which are rings and T the sum of those which are non-rings. Clearly R is a ring. Define $N_{1}=N \cap R, N_{2}=N \cap T$. Then N_{1}, N_{2} are ideals of N and N_{1} is a ring. Clearly

Lemma 3. As a right ideal $N_{1} \oplus N_{2}$ is N-essential in N.
Lemma 4. As near-rings R and T are each semisimple with an identity.
We now prove the following result.
Theorem 7. Let Q be a semisimple near-ring of right quotients of the near-ring N and suppose that I is an ideal of Q. Then I is a semisimple near-ring of right quotients of the near-ring $J=I \cap N$.

Proof. From (4; Corollary 6) there is an ideal X of Q with $I \cap X=(0), I \oplus X=$ Q. As before $J \oplus X \cap N$ is essential as a right ideal in N. Clearly $J \subseteq I$ and I has an identity. Write $Y=X \cap N$. Let $d \in J$ be cancellative in J and $g \in Y$ be cancellative in Y. Suppose $u \in N$ with $(d+g) u=0$. There is a cancellative $c \in N$ with $u c \in J \oplus Y$ (unless $u=0$). Also $u c=n_{1}+n_{2} ; n_{1} \in J, n_{2} \in Y$ and $0=(d+g)\left(n_{1}+n_{2}\right)=d n_{1}+g n_{2}$ so $d n_{1}=0=g n_{2}$ and $n_{1}=n_{2}=0$ from which we deduce $u c=0$ and $u=0$. It follows that $d+g$ is right cancellative in N and $r_{Q}(d+g)=0$. Write $p=d+g$. Then $p Q \supseteq p^{2} Q \supseteq$ \ldots and thus $p^{n} Q=p^{n+1} Q$ for some n. But then $p^{n}=p^{n+1} q$ for some $q \in Q$ and $p^{n-1}-p^{n} q \in r_{Q}(p)=(0)$. Continuing in this way we get $1=p q$ for some $q \in Q$. If u_{1}, $u_{2} \in N$ with $u_{1}(d+g)=u_{2}(d+g)$ then, in $Q, u_{1} p=u_{2} p$ and $u_{1} p q=u_{1}=u_{2} p q=u_{2}$. We see that $d+g$ is cancellative in N. In $Q,(d+g)^{-1}=\alpha+\beta$ where $\alpha \in I, \beta \in X$ and $1=(d+g)(\alpha+\beta)=d \alpha+g \beta$. Thus $d \alpha$ is the identity of I and $d^{-1}=\alpha \in I$. Now let $r \in I$. For some $a, b \in N$ with b cancellative $r=a b^{-1}$ and $r b=a \in I \cap N=J$. For some cancellative $c_{1} \in N, b c_{1} \in J \oplus Y$ so $b c_{1}=u_{1}+v_{1}, u_{1} \in J, v_{1} \in Y$. Since $b c_{1}$ is cancellative in N, u_{1} is cancellative in J and $c_{1}^{-1} b^{-1}=u_{1}^{-1}+v_{1}^{-1}, u_{1}^{-1} \in I, v_{1}^{-1} \in X$. But then $a c_{1} c_{1}^{-1} b^{-1}=a c_{1} u_{1}^{-1}+a c_{1} v_{1}^{-1}$ and $a c_{1} \in I$ so $a c_{1} v_{1}^{-1}=(0)$. Thus $r=a c_{1} u_{1}^{-1}$ where $a c_{1}, u_{1} \in J$ and u_{1} is cancellative in J. Hence I is a near-ring of right quotients of J and clearly I is semisimple with identity.

Corollary 4. $\quad N_{1}$ has R as a semisimple ring of right quotients and N_{2} has T as semisimple near-ring of right quotients.

Now let $A_{1} \subset A_{2} \subset \ldots$ be a chain of N-subgroups in which, for each $i \geqq 2$, there is a non-zero N-subgroup $B_{i} \subset A_{i}$ with $A_{i-1} \cap B_{i}=(0)$. Since $N_{1} \oplus N_{2}$ is N-essential in N as a right ideal we can suppose that $A_{i} \subset N_{1} \oplus N_{2}$ for each i and for convenience we take $N=N_{1} \oplus N_{2}$. There are then the following possibilities:-
(i) infinitely many $A_{i} \subset N_{2}$;
(ii) only finitely many $A_{i} \subset N_{2}$;
(a) for infinitely many i, B_{i} can be chosen with $B_{i} \cap N_{2} \neq(0)$,
(b) for only finitely many i can we choose B_{i} with $B_{i} \cap N_{2} \neq(0)$.

In the case (ii) (a) we can consider the chain $A_{1} \cap N_{2} \subset A_{2} \cap N_{2} \subset \ldots$ and we are back with case (i).

Lemma 5. If case (ii) (b) arises then the chain $A_{1} \subset A_{2} \subset \ldots \subset A_{n} \subset \ldots$ is finite.
Proof. For convenience we suppose that for each possible choice of B_{i} we have
$B_{i} \cap N_{2}=(0)$. Then $A_{i} \cap N_{2}$ is N-essential in $A_{i+1} \cap N_{2}$ for each i. Pass to $\bar{N}=N / N_{2} \cong$ N_{1}. Then $\bar{A}_{i} \subset \bar{A}_{i+1}, \bar{B}_{i+1} \subset \bar{A}_{i+1}$ and if $\bar{u} \in \bar{A}_{i} \cap \bar{B}_{i+1}$ then $u \in\left(A_{i}+N_{2}\right) \cap\left(B_{i+1}+N_{2}\right)$ and so $u=a+n=b+n^{\prime}$ where $a \in A_{i}, b \in B_{i+1}, n, n^{\prime} \in N_{2}$. Now $-b+a=n^{\prime}-n \in$ $N_{2} \cap A_{i+1}$ so for some cancellative $c \in N,(-b+a) c \in A_{i} \cap N_{2}$. In view of Lemma 2, we can choose B_{i+1} to be a submodule of A_{i+1} and then $(-b+a) c-a c \in$ $B_{i+1} \cap A_{i} \cap N_{2}=(0)$. Hence $b=0$ and $\bar{u}=\overline{0}$. But then $\bar{B}_{1} \oplus \bar{B}_{2} \oplus \ldots$ is a direct sum of right ideals of a ring with a semisimple ring of right quotients so by Goldie's Theorem the sum is finite. It follows that the chain $A_{1} \subset A_{2} \subset \ldots$ terminates finitely.

For case (i) we will need the following results.
Theorem 8. If R is a semisimple near-ring with identity and A is a maximal right annihilator then $A=r(e)$ for some :dempotent e with $e R$ a minimal R-subgroup of R.

Proof. Since $A \neq R$ we let U be a right ideal of R with $A \cap U=(0), A+U=R$. If $\ell(A) \cap U=(0)$ then $U \ell(A) \subseteq U \cap \ell(A)=(0)$ so if $m \in \ell(A)$, $U m=(0)$ and hence $(m U)^{2}=(0)$. It follows that $m U=(0)$ and $U \subseteq r \ell(A)=A$. Since $A \cap U=(0)$ this contradiction establishes that $\ell(A) \cap U \neq(0)$. Let $0 \neq u \in \ell(A) \cap U$. Now $A \subseteq$ $r(u) \neq R$ so $A=r(u)$. Clearly $u^{k} x=0$ yields $u^{k-1} x \in r(u) \cap U=A \cap U=(0)$, for any positive integer k, and hence $u x=0$. Hence $r(u)=r\left(u^{2}\right)=\cdots$. Now let I be a right ideal of R with $I \cap(u R+r(u))=(0)$. For each k set $T_{k}=u I+u^{2} I+\cdots+u^{k} I$ and observe that T_{k} is an N-subgroup. By (3; Thm 6) R has maximum condition on R-subgroups so for some $n, T_{n}=T_{n+1}$. Then $u^{n+1} I \subseteq u I+u^{2} I+\cdots+u^{n} I$ and $x \in I$ implies $u^{n+1} x=u t_{1}+u^{2} t_{2}+\cdots u^{n} t_{n}$ where $t_{i} \in I$. We see that $t_{1}+u t_{2}+\cdots+u^{n-1} t_{n} \in$ $r(u)+u R$ and hence $t_{1} \in I \cap(r(u)+u R)=(0)$. Similarly $t_{2} \in\left(r\left(u^{2}\right)+u R\right) \cap I=$ $(r(u)+u R) \cap I=(0)$ and $t_{1}=t_{2}=\cdots=t_{n}=0$. Thus $u^{n+1} I=(0)$ and $I \subseteq r\left(u^{n+1}\right)=r(u)$ from which it follows that $I=(0)$. We then have $r(u)+u R$ module-essential in N and hence $r(u)+u R=R$. Write $1=u t+v, u t \in u R, v \in r(u)$. Then $u=(u t+v) u=u t u+v^{\prime}$ for some $v^{\prime} \in r(u)$ and so $-u t u+u \in u R \cap r(u)=(0)$. Hence $u(1-t u)=0$ and $1-$ $t u \in r(u)$. We see that $R=t u R+r(u)$ and $1=t u+w, w \in r(u)$. Writing $e=t u$ we let $s \in e R \cap r(u)$. Then $s=e y=t u y$ so $u s=u t u y=0$. Using $u=u t u$ we see that $u y=0$ and hence $s=0$ so that $e R \cap r(u)=(0)$. Also if $u a=0$ then $t u a=e a=0$ and $r(u) \subseteq$ $r(e) \neq R$. We see, therefore, that $A=r(e)$. Next we have $e-e^{2}=(e+w) e-e^{2} \in$ $e R \cap r(u)=(0)$ and $e=e^{2} \neq 0$. To prove that $e R$ is minimal we observe that, as an R-module, $e R$ is completely reducible so if $e R$ is not minimal we can take non-zero submodules B, C of $e R$ with $e R=B \oplus C$. Then $e=b+c$. If $e x=0$ then $(b+c) x=$ $b x+c x=0$ and thus $b x=0$. Then $r(e) \subseteq r(b) \neq N$ so that $r(e)=r(b)$. If we take B to be minimal then $B=b R$ and $b^{2}=b \neq 0$. Also, $b R \cap r(b)=(0)$ so $b R+r(b)=R$. For $c \in C$ we have $c=b n+z$ where $z \in r(b)$ and $-b n+c \in e R \cap r(b)=e R \cap r(e)=(0)$. Thus $c=b n \in B \cap C=(0)$ and $C=(0)$. Hence we have $e R$ minimal as required.

Lemma 6. If R is semisimple with identity and A is a maximal right annihilator and if I is an R-subgroup with $A \neq A+I$ then $A+I=R$.

Proof. From Theorem 8, $A=r(e)$ with $e R$ minimal. Then $R=r(e)+e R=$ $r(e)+I+e R$. Thus if $x \in r(e)+I$ then $x=v+e u(v \in r(e))$ and $e u=-v+x \in$ $e R \cap(A+I)$. If $e R \cap(A+I)=(0)$ then $e u=0$ so $x \in A$ and $A+I \subseteq A$ which is false. Hence $e R \subseteq(A+I)$ so $A+I=R$.

Theorem 9. Let R be a semisimple near-ring with identity which is the direct sum of ideals each of which is a simple non-ring. Then R has only finitely many maximal right annihilators.

Proof. Let A be a maximal right annihilator and write $R=I_{1} \oplus I_{2} \oplus \ldots \oplus I_{k}$ where each I_{j} is an ideal of R and a simple non-ring. Furthermore, each I_{j} is a direct sum of minimal right ideals of R. For one of these minimal right ideals, say $e_{1} R$, we must have $A \cap e_{1} R=(0)$. Without loss of generality we can suppose $e_{1} R \subseteq I_{1}$. If $f R$ is a minimal right ideal contained in I_{j} for some $\mathrm{j}>1$ then $A \cap\left(e_{1} R \oplus f R\right) \neq(0)$ so $0 \neq e_{1} u+f v \in A$ and $f v \neq 0$. Also, since $I_{p} I_{q}=(0)$ if $p \neq q$ we see that for each $j>1$, $\left(e_{1} u+f v\right) I_{j}=f v I_{j} \subseteq A$ and since $f v I_{1}=(0) \subseteq A$ we have $f R \subseteq A$. Thus for $j \geqslant 1, I_{j} \subseteq A$. Next we see from Lemma 6 that $A+e_{1} R=R$ so $\left(A \cap I_{1}\right)+e_{1} I_{1}=I_{1}, A \cap I_{1} \cap e_{1} I_{1}=(0)$. From (4; Lemma 8), $A \cap I_{1} \subseteq r_{1}\left(e_{1}\right)$. It follows that $A \subseteq r\left(e_{1}\right) \neq R$ and thus $A=r\left(e_{1}\right)$. Now we can prove

Theorem 10. If N has a semisimple near-ring of right quotients then N has finite rank.

Proof. There remains the case where $A_{i} \subset N_{2}$ for an infinite number of i. Clearly we may assume that $A_{i} \subset N_{2}$ for all i. Furthermore, T is a semisimple near-ring of right quotients of N_{2} and is the direct sum of ideals each of which is a simple non-ring. Apply Lemma 2 to choose B_{i} to be a submodule of A_{i} and consider $A_{1} T$. Since $A_{1} T$ contains T-subgroups it contains minimal T-subgroups and these have the form $e T$ where e is a non-zero idempotent. Let $e_{1} T$ be a minimal T-subgroup contained in $A_{1} T$ and $e_{1}=p_{1} v_{1}^{-1}$ where $p_{1} \in A_{1}$ and $v_{1} \in N_{2}$ is cancellative. Since $e_{1} T+r_{T}\left(e_{1}\right)=T$ we see that $p_{1} N_{2}+r\left(e_{1}\right)$ is N_{2}-essential in N_{2} (here and for the remainder of the proof $r(x)$ denotes the right annihilator of x in N_{2} i.e. $r(x)=r_{T}(x) \cap$ N_{2}). Furthermore, $A_{2} T \cap r_{T}\left(e_{1}\right) \neq(0)$. Let $e_{2} T$ be a minimal T-subgroup of T contained in $A_{2} T \cap r_{T}\left(e_{1}\right)$. Suppose now that we have constructed $e_{1}=p_{1} v_{1}^{-1} \in A_{1} T$, $e_{2}=p_{2} v_{2}^{-1} \in A_{2} T \cap r_{T}\left(e_{1}\right), \ldots, e_{k}=p_{k} v_{k}^{-1} \in A_{k} T \cap r_{T}\left(e_{1}\right) \ldots \cap r_{T}\left(e_{k-1}\right)$ where each e_{i} is a non-zero idempotent and $e_{i} T$ is a minimal T-subgroup. Suppose $A_{k+1} \cap r\left(e_{1}\right) \cap \ldots \cap$ $r\left(e_{k}\right)=(0)$. Since $p_{k} N_{2}+r\left(e_{k}\right)$ is N_{2}-essential in N_{2} we see that $\left(A_{k} \cap r\left(e_{1}\right) \cap \ldots \cap\right.$ $\left.r\left(e_{k-1}\right)\right)+r\left(e_{k}\right)$ is N_{2}-essential in N_{2} and thus $A_{k} \cap r\left(e_{1}\right) \cap \ldots \cap r\left(e_{k-1}\right)$ is N_{2}-essential in $A_{k+1} \cap r\left(e_{1}\right) \cap \ldots \cap r\left(e_{k-1}\right)$. Let $0 \neq x \in B_{k+1}$. There is a cancellative element $c \in N_{2} \quad$ with $\quad x c \in\left(p_{1} N_{2}+r\left(e_{1}\right)\right) \cap A_{k+1}=p_{1} N_{2}+A_{k+1} \cap r\left(e_{1}\right)$. Hence for some $s_{1} \in N_{2}$ we have $0 \neq p_{1} s_{1}+x c \in A_{k+1} \cap r\left(e_{1}\right)$. Then $\left(p_{1} s_{1}+x c\right) d_{1}-p_{1} s_{1} d_{1}+p_{1} s_{1} d_{1} \in$ $A_{k+1} \cap r\left(e_{1}\right) \cap\left(p_{2} N_{2}+r\left(e_{2}\right)\right)=p_{2} N_{2}+A_{k+1} \cap r\left(e_{1}\right) \cap r\left(e_{2}\right)$ for some cancellative $d_{1} \in N_{2}$. Let $x_{1}=\left(p_{1} s_{1}+x c\right) d_{1}-p_{1} s_{1} d_{1} \in B_{k+1}$. Then $x_{1} \neq 0$ and for some $s_{2} \in N_{2}$ we have $0=p_{2} s_{2}+p_{1} s_{1}+x_{1} \in A_{k+1} \cap r\left(e_{1}\right) \cap r\left(e_{2}\right) \quad$ so \quad with $\quad a_{1}=p_{1} s_{1} d_{1} \in A_{5} \quad$ and $\quad a_{2}=$ $p_{2} s_{2}+p_{1} s_{1} d_{1} \in A_{2}$ we have, for some cancellative $d_{2} \in N_{2},\left(a_{2}+x_{1}\right) d_{2}-a_{2} d_{2}+a_{2} d_{2} \in$ $A_{k+1} \cap r\left(e_{1}\right) \cap r\left(e_{2}\right) \cap\left(p_{3} N_{2}+r\left(e_{3}\right)\right)$ and we find $x_{2}=\left(a_{2}+x_{1}\right) d_{2}-a_{2} d_{2} \in B_{k+1}, x_{2} \neq 0$ and $a_{3} \in A_{3}$ with $a_{3}+x_{2} \in A_{k+1} \cap r\left(e_{1}\right) \cap r\left(e_{2}\right) \cap r\left(e_{3}\right)$. Continuing in this way we arrive at $a_{k-1} \in A_{k-1}, x_{k-2} \in B_{k+1}$ and $a_{k-1}+x_{k-2} \in A_{k+1} \cap r\left(e_{1}\right) \cap \ldots \cap r\left(e_{k-1}\right)$ and at each stage $x_{i} \neq 0$. For some cancellative $d^{\prime} \in N_{2}$ we now have $\left(a_{k-1}+x_{k-2}\right) d^{\prime}{ }_{k-1} \in$ $A_{k} \cap r\left(e_{1}\right) \cap \ldots \cap r\left(e_{k-1}\right) \subseteq A_{k}$. Hence $\left(a_{k-1}+x_{k-2}\right) d^{\prime}-a_{k-1} d^{\prime} \in A_{k} \cap B_{k+1}=(0)$. But then $x_{k-2}=0$ which is false. Thus if the chain $A_{1} \subset A_{2} \subset \ldots$ does not terminate finitely then
for each $m, A_{m} \cap r\left(e_{1}\right) \cap \ldots \cap r\left(e_{m-1}\right) \neq(0)$. However, $r_{T}\left(e_{i}\right)$ is a maximal right annihilator in T, T has only finitely many such and their intersection is zero. This contradiction establishes the result.

REFERENCES

(1) A. W. Goldie, Some aspects of ring theory, Bull. London Math. Soc. (2) 1 (1969), 129-154.
(2) W. M. L. Holcombe, Near-rings of quotients of endomorphism near-rings, Proc. Edinburgh Math. Soc. 19, (1975), 345-352.
(3) A. OSwALD, Semisimple near-rings have maximum condition on N-subgroups, J. London Math. Soc. (2) 11 (1975), 408-412.
(4) A. Oswald, Completely reducible near-rings, Proc. Edinburgh Math. Soc. 20 (1976), 187-197.
(5) G. Pilz, Near-rings (North-Holland, 1977).
(6) L. W. Small, Orders in Artinian Rings, J. Algebra 4 (1966), 13-41.

Department of Mathematics

Teesside Polytechnic
Middlesbrough
Cleveland
England

