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1. Introduction

In (2), Holcombe investigated near-rings of zero-preserving mappings of a group F
which commute with the elements of a semigroup S of endomorphisms of F and
examined the question: under what conditions do near-rings of this type have
near-rings of right quotients which are 2-primitive with minimum condition on right
ideals? In the first part of this paper (§2) we investigate further properties of
near-rings of this type. The second part of the paper (§3) deals with those near-rings
which have semisimple near-rings of right quotients. Our results here are analogous to
those of Goldie (1); in particular, with a suitable definition of finite rank we prove that
a near-ring which has a semisimple near-ring of right quotients has finite rank.

Basic concepts for near-rings can be found in Pilz (5). All our near-rings will be
left near-rings (i.e. a(b + c) = ab + ac for all a, b, c G N) with a two-sided zero.

2. Near-rings of quotients of mapping near-rings

If S is a semigroup, a set A is an S-set if it admits the elements of S as right
operators with a(sis2) = (asi)s2 for all a G A, Si, s2G S. A mapping / : A - » B , where A
and B are S-sets, is an S-homomorphism if for each a 6 A and s G S we have
(af)s = (as)f. If X C A, an S-set, and every mapping f :X -»B, where B is an S-set,
defines a unique S-homomorphism f*:A-*B then A is the free S-set on X.

If S has a semigroup G of two-sided quotients we define AG = {ag : a e A, g G G).
Denoting by C the set of cancellative elements of S it is obvious that AG =
{as'1 : a £ A , s £ C}. In AG we define as"1 = bt~x if, and only if, for some u, v G C we
have su = tv and au = bv. Then in AG we can define an action by (ag)h = a(gh)
whenever a G A, g, h G G and AG becomes a G-set.

The following result is well known.

Lemma 0. / / a semigroup X has a semigroup of right quotients and if C denotes
the subsemigroup of X consisting of the cancellative elements then for each set
11, t2 ,tk&C there exist su s2,..., sk, t G C with t = s,f,, 1 « i =s k.

Proof. See (6; Lemma 1.4), for example.

A similar result holds if X has a semigroup of left quotients.
Now suppose that A is a group (written additively but not necessarily com-
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mutative) and that S is a semigroup of endomorphisms of A in which the cancellative
elements of S are monomorphisms of A. We suppose the zero endomorphism is not in
S. If S has a semigroup G of two-sided quotients we can define an addition in AG by
(as"1 + bt~l) = (au + bv)w~x where u, v G C with w = su = tv. It is easy to show that
AG is a group and that the elements of G act as endomorphisms of AG.

Now we introduce the two sets

M = Maps(A) = {/:A^A:0/ = 0,(a/)s =(as)f, a E A, s E S}

M* = MapG(AG) = {/: AG -* AG : 0/ = 0, ((agl)f)g2 = (aglg2)f, agi E AG, g2 E G}.

It is easy to see that both M and M* are left near-rings. Furthermore, if / E M we can
define /* E M* by (as~l)f* = (af)s~l. Since it is easily seen that the mapping / - » / * is
an injective near-ring homomorphism we see that M is embedded in M*. We identify
/ with /* in M*. We wish to introduce restrictions on A, S and AG which will lead to
M* being a near-ring of quotients of M.

We say that A is a torsion -free S-set if whenever a EA with a # 0 and s, t E S
with s # ( then as# at. Using Lemma 0 it can be shown that if A is a torsion-free
S-set then AG is a torsion-free G-set. Furthermore, we call A finitely-generated if for
some set at, a2, • • •, an E A we have A = a\S U a2S U . . . U anS. Then clearly AG =
a\G U a2G U . .. U anG. Restricting ourselves to the case when AG is a free G-set we
can choose a,-,, ai2,..., a,t with AG = a,-GU ai2GU . . . U a,,G where distinct terms in
this union are disjoint. Since A C AG, a, = akirj[Sj for some Aj e { i t , . . . , ik} and r; G C,
Sj E S. Using Lemma 0 choose ejy d EC with rjx = d~xej. Then a, Ea>,jd'lS and so
A C a(,d"'5U cij2d~lSU... U aikd~lS as a disjoint union and also .AG =
ahd'xG<J .. . Ualt<T'G. For h E G we define ixh:AG^>AG by (a^q)^,, = ahd'xhq
where q EG and 1 =£ j =£ fc. Then /u.A e M* and if h EC then /*,, has an inverse in M *
and (/x*)-' = /LA/,-1.

Proposition 1. The elements of M* have the form Bfx^x for some 6, n, G M.

Proof. If f E M* then / is uniquely determined by its effect upon a^d'1, 1 =£ j =s k.
Let

aijd~xf = aKjd~xpJxsh Pj EC,SjE S, ijf \j E {i , , i2,..., ik}.

Applying the symmetric form of Lemma 0 we can choose q{,...,qk, rEC with
pjx = r~'q,, 1 « j ! ^ k and then

ahd~xf = axjd'xr'xqjSi.

Then af/.d"'//^dr = <ty?/Si G A so that //xdr: a ^ ' S U . . . U aikd~xS-* A and so /^dr: A -»
A and //Ltdr G M. Also ai(.d" V</r = fl;/ G A so /idr G M and writing 0 = ffidr and t = drE
C we have f = dfjuj1 as required.

It is easy to see that if t E C and /xr G Af then /x( is cancellative in M.

Proposition 2. If f EM is cancellative then f is cancellative in M*.

Proof. Let 4>,4> E M* and /<£ = /(/,. Write a* = a^"1. If <£* •£ let a*<£ * af i/». If
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a G A and s & S with af = afs then afif/s = afstj/ = aftf/ = afcf> = af(f>s and
since AG is torsion-free and s £ G we see that aftf/ = af<f> which is false. Con-
sequently there is no a G A with af = af s for any s G S. Let A,: AG -» AG be defined
by

I af««"' if i = j

where wtT1 G G. Then A,- G M* for 1 *£/ s= k. Then for each a G A a/A, = 0 = a/0 so
that in M we have /(A,U) = /0 and A,U = 0. But then af Ay = {ahXj\A)d'x = 0 and so
f<j> = ftfi implies </> = <A- Now suppose <j>f = i/c/ and $ # i/>. Without loss of generality we
can take af <j>* a*i}t. Set af <f> = af a/3"1, af <A = af yS"1 where a/3"1, y5~' G G. Then

If i = j either a/3"1 = y8"1 or a t / = 0 since AG is torsion-free. If a/3"1 = yS"1 then
af (f> = a* a/3"1 = af y5~' = af if/ which is false. Hence aff = 0. In this case aA/ = 0 for
each a G A so that in M we have (Xi\A)f = 0/ and A,-|A = 0 which is false. Thus iV j . In
this case let a,*/ = (a*t~')s, a^ f = (a*t~x)si where s.s, G S and we have used Lemma0 to
find t G C. Then

= af/a/3-1 = af a/3"1/ = af <j>f

a^-'s.yS"1 = aJf/yS-1 = a*yS'lf = a*#

and so a^f'sap'1 = a^f 'siyS"1 G a^G n a^G and thus p — q. Hence a t / , a*/ G a^G
and so for some r, 1 =£ r « k, a?G n Im/ = <̂>. Again we have the situation where for
no a GA is af = a^s for any s &S and again we deduce that Ar = 0. Hence cf> = $ is
cancellative in Af *.

Proposition 3. If f G M* and / is cancellative then f has an inverse in M*.

Proof. If / is both 1 — 1 and onto then the inverse mapping f'.AG^AG exists
and a simple calculation shows that Z"1 GM*. Suppose / is cancellative but not onto.
Let b G AG with b £ Im /. For some j , b = a*fg with g&G and so a*, £ Im /. But then,
for 1 =£ i ss k, af/Aj = 0 and so /A, = 0 and A, = 0 since / is cancellative. Hence / is
onto. Now suppose a, b G AG with af = bf, a # b. For some /, /, a = a?gi, fc = a^g2

with gi, g2 G G. If iV; then afgi/ = a^g-J and so af/gi = a1fg2- Also for some h, r we
have af/ G a\G, a*,f G a?G and at/gi G a£G n a*rG* <\>. Since AG is free we have
h = r and thus both a* and a* map into a*G. But then / cannot be onto. This
contradiction establishes the result.

These results now lead to

Theorem 1. Let S be a semigroup with a semigroup G of two-sided quotients and
let A be a group for which S is a semigroup of endomorphisms such that the
cancellative elements of S are monomorphisms. If A is torsion-free and finitely
generated as an S-set and if AG is free as a G-set then M has a near-ring of two-sided
quotients which is isomorphic to M*.
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Proof. It remains only to prove that M* is a near-ring of left quotients of M. Let
/ G M * . The for some ah a,•<<= S, ft, d, G Cakd-'ljr = a^d'1a,/3f' = aXKOa,(fi4iTl since
G is a semigroup of two-sided quotients of S. Using Lemma 0 we have, for 1 « i =£ k,
(ftd,)""1 = «,r~' and d'x = er'1 for some e» e, rEC. Then axd~xfr = a\maie> G A. But
ax.d~'fr = aXjd'lrf = aXjd~lfx.rf and so /xr/ G M. Also ax.d'lftr = ax.d~lr = aA,e G A and so
/xr G M. Since r G C we have / = (/xr)~'0 for some 6 G M as required.

We now turn to the structure of M*. Since AG is free, AG =
fl^-'GU . . . U aXkd

xG. Writing a* = aA,d~' we have defined A, :AG-*AG by afgA, =
0 if jV i and a*gA, = a*g where g G G. Clearly A, G M* and it is an easy calculation to
show that, for each i, A,M* is a right ideal of M* and that M* = A,M* © . . . © A*M*.

For the remainder of this section we will suppose that G is a group. If X CN,
where N is a near-ring, we denote by r(X) the set r(X) = {n G N : xn = 0 for all
x GX}; by r(x) we mean r({x}).

Theorem 2. M* has no proper two-sided ideals and has the descending chain
condition on M*-subgroups.

Proof. If Aig, A,h G A,M* with Kig^ 0 # A,h then a*A,h = a^a/3"1 for some m and
aj8~' G G and a*A,7t = 0 for jV i. Similarly for some p and yS"1 G G, a*Ajg = a^yS"1,
a*Ajg = 0 if jV i. Denning q :AG-*AG by a£q = a^,aB~ly8~l and a*q = 0 if j V p we
can extend q to q*G.M* to get A,7i = Xjgq* G AjgM* and so k,hM* = kgM*.
Hence each A,M* is minimal. Thus M* is completely reducible w-ith identity and
by (3) M* has no nilpotent M*-subgroups and the descending chain condition on M*-
subgroups. Next we let f&r(X.xM*). Defining A,yGM* by a*Al; = 0 if iV 1 and
a*Aij = a* we see that / = 0. From (4; Thm 3) we can write M* as a direct sum of
two-sided ideals each of which is simple as a near-ring. If U, V are two such with
l / n V = (0) then l/V = 0. If l / # 0 , A,M*t/#0 so for some / G M * , A,/[/ = A,M*.
But then \tM*V = 0 so V = 0. It follows that M* is simple as a near-ring.

Suppose X is a subset of the near-ring N. Set Xo = NX U X and denote by XJ the
normal subgroup of N generated by Xo. Let [X$] = {(a + x)c -ac:x G Xj , a, c G N}.
Define Xi = [XJ] U XJ and observe that NXi C Xi, We now suppose that Xk has been
constructed and we construct successively X£, [Xj] and Xk+\ = X\ U [XJ]. This leads
to a chain Xo C Xi C . . . and we then define J(X) = U Xk. A simple calculation shows
that 7(X) is the ideal generated by X.

If N has a near-ring Q of two-sided quotients and B is an N-subgroup of N then
we may construct the ideal B* of Q generated by QBQ. In this case B* = U Bk

where Bo = QBQ, etc.

Lemma 1. / / A is an N-subgroup with AB = (0) and A^ (0) then for each k the
elements of Bk have the form c~xt where c is a cancellative element in N and At = (0).

Proof. If H E Q B Q then u = c~lvbq where uGN, bGB, q G Q and c is a
cancellative element of N. Then avbq & ABq = (0) and u = c'lt as required. Now
suppose the result is true for Bk. If u G Bk+i then u G Bt or u G [B£]. In the first case
M = 2(df'*. + cf'r,- - rfr'jCi) = c"'2(y, + /vt, - y,-), on applying Lemma 0, where y,, r, G N
and AU = (0). But then A/vf, = (0) so with i = 2(y, + r,r, - y,) we have u = c'xt and
At = (0). A similar argument applies to [Bt] and the lemma follows.
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Theorem 3. 1/ N has a near-ring Q of two-sided quotients which is simple then N
is strictly prime.

Proof. Let A, B be N-subgroups of N with AB = (0) but A* (0). Let B* be the
ideal of Q generated by QBQ. Since Q is simple either B* = (0) or B* = Q. If B* = (0)
then trivally B = (0). If B* = Q then 1 GB* so leBi , for some k. From Lemma 1,
1 =c~lt with c cancellative and At = (0). Thus Ac = (0) contrary t o A # (0).

Corollary 1. // G is a group M is strictly prime.

3. Semisimple Near-rings of Right Quotients

We now turn to an investigation of the properties of those near-rings which have
near-rings of right quotients which are semisimple. If Q is a near-ring then Q is
semisimple if it has no nilpotent Q-subgroups and the minimum condition on Q-
subgroups. To fix our terminology, an N-subgroup A is nilpotent if A 5^(0) but for
some ng2 ,A"={a i f l 2 . . . a n : a, G A} = (0).

Most of our results are the analogues of those of Goldie. We will determine
necessary conditions for the near-ring Q of right quotients of N to be semisimple. It
seems most unlikely, however, that these conditions will be sufficient. Throughout this
section Q will denote a near-ring of right quotients of N.

Theorem 4. If N has a near-ring Q of right quotients which is semisimple then N
has no nilpotent N-subgroups.

Proof. Let A be a nilpotent N-subgroup of A with A" = (0). Set P = €(NA) =
{xe.N:xNA = (0j}. If M G N ( M ^ O ) with M N # ( 0 ) and P D uN = (0) then NAD
M N V ( 0 ) SO we can take uxe.NA(luN with ux#0. For some k > I, (NA)k =(0),
(NAf-* * (0). Hence MX(NA)11"1 = (0). It follows that (uxf^NA = (O) and (uxf^ G
P n uN = (0). Thus (ux)k~l = 0. If (MJC)1-2NA# (0) then for some v eNA, (ux)k-2v*0
but (ux)k'2vNA = (0) so that (uxf~2v G P n uN = (0) which is a contradiction. Hence
P D M N ^ ( O ) and P has non-empty intersection with every non-zero JV-subgroup.
Now consider PQ. Clearly if q G Q then PQflqQ#(0) unless q = 0. In particular
PQDc,Q#(0) where eiQ is a minimal right ideal of Q and Q =
eiQ@e2Q®. • -©enQ. Hence e{Q = piQ for some p,GP. Notice that ptN+p2N +
•••+pnN is an N-subgroup of N and that (piai + P2fl2+ • • • +PnOn)b =
P\a\b +p2aib + • • • +pnanb for bG.N. Thus ptN+ p2N+ • • •+pnN C.P. However,
1 = p i a i c r ' + - • •+pnanc^ = (plaibi + - • •+pnanbn)c'] where an, bneN and we have
used Lemma 0. It follows that c G P and P contains a cancellative element. Hence
NA = (0) and A = (0) as required.

A near-ring N is strictly semiprime if it has no nilpotent N-subgroups. Thus

Corollary 2. Q semisimple implies N strictly semiprime.

We say that an N-subgroup A of N is module-essential if, whenever X is
non-zero right ideal of N, then A n X ^ ( 0 ) ; A is N-essential if whenever X is a
non-zero N-subgroup of N then A (IX?5 (0). Certainly if A is N-essential then A is
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module essential. However, it is not generally true that if A is module-essential then A
is N-essential.

Theorem 5. / / Q is semisimple then module essential N-subgroups of N are
N-essential.

Proof. Let X be module-essential and consider XA. If eQ is a minimal right ideal
of Q then X n eQ n N # (0) so XQ DeQ* (0). As in the proof of Theorem 4 we now
deduce that XQ = Q. If a e. N(a # 0) then a&Q = XQ so a = xc"1 where x G X and c
is cancellative. It follows that ac E X H a N ^ (0) and X is N-essential.

We denote by Z(AT) the set {x e N : r(x) is JV-essential in N}. The proof of
Theorem 5 can be modified to show that each N-essential N-subgroup contains a
cancellative element when Q is semisimple and we deduce

Corollary 3. / / Q is semisimple then Z(N) = (0).

In the usual way we prove

Theorem 6. / / Q is semisimple then N has the maximum condition on right
annihilators.

We say that a near-ring N has finite rank if each chain A i C A 2 C . . . o f N -
subgroups in which for each i S 2 there is a non-zero N-subgroup B, C A, with
B, D Ai-i = (0) terminates finitely. If N is a ring this reduces to the usual definition.

Lemma 2. / / Q is semisimple and A\C A2C ... is a chain of N-subgroups of N
such that for each i ^ 2 there is a non-zero N-subgroup B, CAt with B, f l A H = (0)
then B, can be chosen to be a submodule of the N-module A,.

Proof. Let X be a right ideal of N maximal subject to the condition A,_i D X =
(0). Then A,_i + X is module-essential in N so by Theorem 5, A,_i + X is N-essential.
Now A, D (A,-, + X) = A,_, + (A(1X) and B, D A, n (A,-_, + X) # (0) so that A, (1
X # (0). Clearly A, n X is a submodule of A, with A,- n X n A,_, = (0).

We wish to prove that a near-ring with a semisimple near-ring of right quotients
has finite rank. Because the form of a Q-subgroup generated by an N-subgroup of N
does not have a simple representation in the form IQ, say, we have to adopt a more
indirect approach. We begin by showing that there are essentially two different
problems to be solved.

From (4; Thm 3) a semisimple near-ring Q with identity is the direct sum of finitely
many two-sided ideals each of which is simple as a near-ring. We divide these direct
summands into two classes, those which are rings and those which are non-rings i.e.
near-rings which are not rings. Write Q = R@T where R, T are ideals of Q, R is the
sum of those direct summands which are rings and T the sum of those which are
non-rings. Clearly R is a ring. Define N, = N n R, N2 = N n T. Then N{, N2 are ideals
of N and Ni is a ring. Clearly
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Lemma 3. As a right ideal Nt © N2 is N-essential in N.

Lemma 4. As near-rings R and T are each semisimple with an identity.

We now prove the following result.

Theorem 7. Let Q be a semisimple near-ring of right quotients of the near-ring N
and suppose that I is an ideal of Q. Then I is a semisimple near-ring of right quotients
of the near-ring J = I HN.

Proof. From (4; Corollary 6) there is an ideal X of Q with I D X = (0), / © X =
Q. As before J © X ON is essential as a right ideal in N. Clearly J C.I and / has an
identity. Write Y = X n N. Let d G J be cancellative in J and g E V b e cancellative in
Y. Suppose u £ N with (d + g)u = 0. There is a cancellative c E.N with uc G J © Y
(unless u =0). Also uc = nx + n2; ni G J, n2E.Y and 0 = (d + g)(n\ + n2) = dnt + gn2 so
dn\ = 0 = gn2 and n{ = n2 = 0 from which we deduce uc =0 and M = 0. It follows that
d + g is right cancellative in N and rQ(d + g) = 0. Write p = d + g. Then pQ D p2Q D
.. .and thus p"Q = p"+lQ for some n. But then pn=pn+xq for some q G Q and
p"'x — p"q G ro(p) = (0). Continuing in this way we get 1 = pq for some q G Q. If «i,
u2 G N with «i(d + g) = M2(d + g) then, in Q, U\p = «2p and «ipq = u, = «2pq = u2. We
see that d + g is cancellative in N. In Q, (d + g)~' = a + )3 where a G I, /3 G X and
1 =(d+g)(a +/3) = da +g/3. Thus da is the identity of I and d~' = a G l . Now let
r G /. For some a, b E.N with b cancellative r = ab~' and rb = aGlDN = J. For
some cancellative ctG.N, bc}&J@Y so feci = Mi + ui, MiGJ, D|6y. Since bci is
cancellative in N, Mi is cancellative in J and cjlb~l = MT' + UT1, U 7 ' G / , D T ' G X . But
then acicT'b"1 = aciu\l + acivj1 and aciGJ so ac\V~ix = (0). Thus r = aci«7! where
aci, Mi G / and «i is cancellative in J. Hence I is a near-ring of right quotients of J and
clearly J is semisimple with identity.

Corollary 4. N] has R as a semisimple ring of right quotients and N2 has T as
semisimple near-ring of right quotients.

Now let A\ C A2 C . . . be a chain of N-subgroups in which, for each i I£ 2, there is
a non-zero N-subgroup B, C A; with A,_i nB, = (0). Since N\®N2 is N-essential in N
as a right ideal we can suppose that A, C Ni © N2 for each i and for convenience we
take N = Nt®N2. There are then the following possibilities :-

(i) infinitely many A, C N2;
(ii) only finitely many A, CN2;

(a) for infinitely many i, B, can be chosen with Bf n N2 # (0),
(b) for only finitely many i can we choose B, with Bi<lN29

t (0).
In the case (ii) (a) we can consider the chain At n N2C A2l~l N2C . . . and we are back
with case (i).

Lemma 5. If case (ii) (b) arises then the chain A\ C A2 C . . . C An C . . . is finite.

Proof. For convenience we suppose that for each possible choice of B, we have
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Bi r\N2 = (0). Then A,- n N2_is N-essential_in A.-+, n N2 for each i. Pass to N = N/JV2 =
N,. Then A, C Ai+U Bi+I C Ai+, and if u G A, D Bl+i then « G (A, + N2) n (B1+, + N2) and
so u = a + « = b + n' where aE\At, bE.Bi+u n, n'GN2. Now -b+a=n' — n£
N2 D Aj+i so for some cancellative c G N, (—b + a)c G A, n JV2. In view of Lemma 2,
we can choose Bi+i to be a submodule of Ai+i and then (— b + a)c - ac £.
B,+i D A, PiN2 = (0). Hence 6 = 0 and u = 6. But then B|©B2©.. . is a direct sum of
right ideals of a ring with a semisimple ring of right quotients so by Goldie's Theorem
the sum is finite. It follows that the chain At C At C . . . terminates finitely.

For case (i) we will need the following results.

Theorem 8. / / R is a semisimple near-ring with identity and A is a maximal right
annihilator then A = r(e) for some idempotent e with eR a minimal R-subgroup of R.

Proof. Since A * R we let U be a right ideal of R with AHU = (0), A + U = R.
If €{A) D U = (0) then U€(A) C U D €(A) = (0) so if m G €(A), Urn = (0) and hence
(mC7)2 = (0). It follows that mU = (0) and UQr€{A) = A. Since A n 17 = (0) this
contradiction establishes that S(A)nU*(0). Let 0 * u G €{A) D L7. Now AC
r(w) * R so A = r(u). Clearly ukx = 0 yields u^x G r(«) DU = A(1U = (0), for any
positive integer k, and hence MX =0 . Hence r(u) = r(u2) = • • •. Now let / be a right
ideal of R with / D (uR + r(u)) = (0). For each k set Tt = «J + uH + • • • + ukl and
observe that Tk is an N-subgroup. By (3; Thm 6) R has maximum condition on
R-subgroups so for some n, Tn = Tn+1. Then un+ll C ul + u2l + ••• + «"/ and x G /
implies M"+IJC = uf, + M2f2+ • • • u"tn where t, G /. We see that ti + ut2 + - • • + un~Hn e
r(u) + uR and hence r, G / n (r(«) + uJ?) = (0). Similarly i2G(r(«2) + u i ? ) n / =
(r(«) + uR)C\I = (0) and f, = r2 = • • • = tn = 0. Thus un+il = (0) and I C r(un+l) = r(«)
from which it follows that / = (0). We then have r(u) + uR module-essential in N and
hence r(u) + uR = R. Write 1 = ut + v, ut G uR, v G r(u). Then « = (ut + v)u = «/« + v'
for some c ' e r ( u ) and so -utu + u G uR n r(u) = (0). Hence M(1- (M) = 0 and 1 -
tu G r(«). We see that R = tuR + r(u) and 1 = tu + w, w G r(«). Writing c = tu we let
sGeJ?fl r(«). Then s = ey = fwy so MS = utuy = 0. Using u = U(M we see that uy = 0
and hence s = 0 so that eR D r(«) = (0). Also if ua = 0 then t«a = ca = 0 and r(«) C
r(e) T̂  I?. We see, therefore, that A = r(e). Next we have e — e2 = {e 4- w>)e — e2 G
ei? D r(u) = (0) and e = e2 ¥• 0. To prove that eR is minimal we observe that, as an
R-module, eR is completely reducible so if eR is not minimal we can take non-zero
submodules B, C of eR with eR =B®C. Then e = b + c. If ex = 0 then (b + c)x =
fcx + ex = 0 and thus bx = 0. Then r{e) C r(f>) ^ N s o that r(e) = r(b). If we take B to
be minimal then B = bR and b2 = b*O. Also, kR nr(b) = (0) so bR + r(b) = R. For
c G C we have c = bn + z where z G r(fc) and -bn + c G eR fl r(b) = eR (1 r(e) = (0).
Thus c = bn G B n C = (0) and C = (0). Hence we have eR minimal as required.

Lemma 6. // R is semisimple with identity and A is a maximal right annihilator
and if I is an R-subgroup with A^A +1 then A + I = R.

Proof. From Theorem 8, A = r(e) with eR minimal. Then R = r(e) + eR =
r(e) + I + eR. Thus if xer(e) + I then x = v + eu(v E r(e)) and e« = - c + x £
eR D (A +1). If eR n (A + / ) = (0) then eu = 0 so x G A and A + / C A which is false.
Hence cR C (A +1) so A + / = R.
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Theorem 9. Let R be a semisimple near-ring with identity which is the direct sum
of ideals each of which is a simple non-ring. Then R has only finitely many maximal
right annihilators.

Proof. Let A be a maximal right annihilator and write R = I\ ® I2 ®... ® Ik

where each 7; is an ideal of JR and a simple non-ring. Furthermore, each I, is a direct
sum of minimal right ideals of R. For one of these minimal right ideals, say etR, we
must have A D etR = (0). Without loss of generality we can suppose e\R C It. If fR is
a minimal right ideal contained in Ij for some j > 1 then A D (e^R ®fR) 5* (0) so
0 # exu +fv G A and fv # 0. Also, since IpIq = (0) if p # q we see that for each j > 1,
(d« +fv)Ij = fvlj C A and since fvh = (0) C A we have fR C A. Thus for j 2* 1, I, C A.
Next we see from Lemma 6 that A + e\R = R so (A D Ji) + etli = Iu A (1 It D e\Ix = (0).
From (4; Lemma 8), A D 7, C rh{ex). It follows that A C r(e,) ^ J? and thus A = r(ei).

Now we can prove

Theorem 10. If N has a semisimple near-ring of right quotients then N has finite
rank.

Proof. There remains the case where A, C N2 for an infinite number of /. Clearly
we may assume that A, C N2 for all i. Furthermore, T is a semisimple near-ring of
right quotients of N2 and is the direct sum of ideals each of which is a simple
non-ring. Apply Lemma 2 to choose B, to be a submodule of A; and consider AiT.
Since AiT contains T-subgroups it contains minimal T-subgroups and these have the
form eT where e is a non-zero idempotent. Let e{T be a minimal T-subgroup
contained in AXT and el = pxvTt where piE.A{ and vte.N2 is cancellative. Since
etT + rT(et) = T we see that p\N2 + r(e\) is N2-essential in N2 (here and for the
remainder of the proof r(x) denotes the right annihilator of JC in N2 i.e. r(x) = rT(x) D
N2). Furthermore, A2T (1 rT(ex) # (0). Let e2T be a minimal T-subgroup of T con-
tained in A2T n rT(ei). Suppose now that we have constructed e\ = p\v\x e AiT,
e2 = p2v J1 G A2T n rT(e ,) , . . . , ek = pkvlx G AkT D rT(C]) . . . D rT(cfc-,) where each c, is
a non-zero idempotent and e,T is a minimal T-subgroup. Suppose Ak+i n r(ci) n . . . n
r(et) = (0). Since pkN2+r(ek) is N2-essential in N2 we see that (Ak D r(C)) n . . . n
r(gt_|)) + r(et) is iV2-essential in N2 and thus Ak D r(c,) D . . . n r(«t_,) is JV2-essential
in A*+i n r(e,) n . . . n r(ek_,). Let 0 # JC G Bfc+i. There is a cancellative element
c G N2 with JCC G(piN2+r(c,))n At+, =p,N2 +At +, D r(€0. Hence for some
s,GJV2 we have 0 * pis, + xc G At+) D r(et). Then (p,5, + jcc)d, -p,s ,d, + p,Sid| G
Ak+i D r(et) (1 (p2N2 + r(e2)) = p2N2 + Ak+l (1 r(e,) n r(e2) for some cancellative d, G N 2 .
Le t X\ = (j)iS\ + xc)d\ — p\S\d\E.Bk+\. Then X i ^ O and for some s2E.N2 we have
O = p2s2 + P\Si + x, G Afc+i D r ( e i ) n r(c2) so with ai = piS|di G Ak and a2 =
P2s2 + P\S\d\ G A2 we have, for some cancellative d2G.N2, (a2 + X\)d2 — a2d2 + a2d2E.
A*+i D r(ei) D r(e2) n (p3N2 + r(c3)) and we find x2 = (a2 + JC|)d2 - a2d2 G Bk+U x2 ^ 0 and
a3 G A3 with a3 + x2 G Ak+i D r(ci) D r(e2) n r(c3). Continuing in this way we arrive at
at_, GAt_i, JC*_2G.Bjk+i and ak-t + xk-2E Ak+l D r ( e i ) D . . . D r(et_i) and at each stage
JC,#O. For some cancellative d'GN2 we now have (afc-i + jc*-2)d'it-i G
Ak D r(ei) D . . . n r(ek-i) C Ak. Hence (at_, + xk-2)d' - ak-td' G Ak n B t + 1 = (0). But then
jct_2 = 0 which is false. Thus if the chain At C A2 C . . . does not terminate finitely then
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for each m, Am D r{e{) D . . . D r(em-\) ^ (0). However, rT(e,) is a maximal right anni-
hilator in T, T has only finitely many such and their intersection is zero. This
contradiction establishes the result.
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