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ON NEAR-RINGS OF QUOTIENTS

by A. OSWALD
(Received 1st April 1977)

1. Introduction

In (2), Holcombe investigated near-rings of zero-preserving mappings of a group I’
which commute with the elements of a semigroup S of endomorphisms of I" and
examined the question: under what conditions do near-rings of this type have
near-rings of right quotients which are 2-primitive with minimum condition on right
ideals? In the first part of this paper (§2) we investigate further properties of
near-rings of this type. The second part of the paper (§3) deals with those near-rings
which have semisimple near-rings of right quotients. Qur results here are analogous to
those of Goldie (1); in particular, with a suitable definition of finite rank we prove that
a near-ring which has a semisimple near-ring of right quotients has finite rank.

Basic concepts for near-rings can be found in Pilz (5). All our near-rings will be
left near-rings (i.e. a(b +c¢) = ab + ac for all a, b, c € N) with a two-sided zero.

2. Near-rings of quotients of mapping near-rings

If S is a semigroup, a set A is an S-set if it admits the elements of S as right
operators with a(s;s,) = (as;)s; for all a € A, s, s € S. A mapping f: A— B, where A
and B are S-sets, is an S-homomorphism if for each a €A and s €S we have
(af)s = (as)f. If X C A, an S-set, and every mapping f: X — B, where B is an S-set,
defines a unique S-homomorphism f*: A — B then A is the free S-set on X.

If S has a semigroup G of two-sided quotients we define AG ={ag:a € A, g €G}.
Denoting by C the set of cancellative elements of S it is obvious that AG =
{as':a €E A, s €C}. In AG we define as~' = bt if, and only if, for some u, v € C we
have su =tv and au = bv. Then in AG we can define an action by (ag)h = a(gh)
whenever a € A, g, h € G and AG becomes a G-set.

The following result is well known.

Lemma 0. If a semigroup X has a semigroup of right quotients and if C denotes
the subsemigroup of X consisting of the cancellative elements then for each set
ti,ta ..., € C there exist s\, 53,...,5,t EC witht =sit, 1 <i<k.

Proof. See (6; Lemma 1.4), for example.

A similar result holds if X has a semigroup of left quotients.
Now suppose that A is a group (written additively but not necessarily com-
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mutative) and that S is a semigroup of endomorphisms of A in which the cancellative
elements of S are monomorphisms of A. We suppose the zero endomorphism is not in
S. If S has a semigroup G of two-sided quotients we can define an addition in AG by
(as™ '+ bt™") = (au + bv)w™" where u, v € C with w =su = tv. It is easy to show that
AG is a group and that the elements of G act as endomorphisms of AG.

Now we introduce the two sets

M =Maps(A)={f:A—>A:0f =0,(af)s =(as)f,a€ A, s €S}
M* =Maps(AG) ={f : AG > AG :0f =0, ((ag1)f)g. = (ag.\g>)f, ag\ € AG, g, € G}.

It is easy to see that both M and M* are left near-rings. Furthermore, if f € M we can
define f* € M* by (as )f* = (af)s~". Since it is easily seen that the mapping f - f* is
an injective near-ring homomorphism we see that M is embedded in M*. We identify
f with f* in M *. We wish to introduce restrictions on A, S and AG which will lead to
M* being a near-ring of quotients of M.

We say that A is a torsion-free S-set if whenever a € A with a#0 and s, t€ S
with s# t then as# at. Using Lemma 0 it can be shown that if A is a torsion-free
S-set then AG is a torsion-free G-set. Furthermore, we call A finitely-generated if for
some set a;,d...,a, €A we have A=a,SUa,SU ... Ua,S. Then clearly AG =
a,GUa,GU ... Ua,G. Restricting ourselves to the case when AG is a free G-set we
can choose a;, gy, ..., a, with AG = a,GU a,GU ... Ua,G where distinct terms in
this union are disjoint. Since A C AG, a; = a,rj's; for some A; €{i,...,i}and r; € C,
s; € S. Using Lemma 0 choose ¢, d €C with ri'=d ‘e, Then a;Ea,d™'S and so
ACad'SUa,d'SU...Uaqd'S as a disjoint union and also AG=
a;d”'GU ... Ua,d™'G. For h € G we define u,: AG > AG by (a;d”'q)uy = a;d”'hq
where ¢ € G and 1<j=<k. Then u, € M* and if h € C then w, has an inverse in M*
and (up)™' = pp.

Proposition 1. The elements of M* have the form 0u;' for some 6, u, € M.

Proof. If f € M* then f is uniquely determined by its effect upon aiid“', 1sj<k
Let

a,-‘.d"f = a)‘id_'pj_'sj, Di e C, S € S, i,', A,‘ E{il, iz, ceey ik}.
Applying the symmetric form of Lemma 0 we can choose qi,...,q, r € C with
pi'=r"'gj, 1<j<k and then
aiid_'f = aAid"r"qjs;.

Then a;d™'fus = a,q;5; € A so that fua:a,d'SU ... Ua,d'S—> A and so fus:A—>
A and fuy € M. Also a,-'.d"y.d, =ar€EAso py, EM and writing 0 = fuy, and t = dr e
C we have f = fu;’ as required.

It is easy to see that if t € C and u, € M then ., is cancellative in M.

Proposition 2. If f € M is cancellative then f is cancellative in M*.

Proof. Let ¢, € M* and f¢ = fy. Write a*=a,d™". If ¢+ ¢ let atp# aty. If

https://doi.org/10.1017/50013091500016187 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500016187

ON NEAR-RINGS OF QUOTIENTS 79

a€A and s€S with af = a}"s then a}"d/s = a}"s;/; = afy = afp = a}"q&s and
since AG is torsion-free and s € G we see that a}"z[/ = a,’-kd> which is false. Con-
sequently there is no a € A with af = a,’-"s for any s €S. Let A;: AG —> AG be defined
by

0 if i#]
a?‘uv")t,- ={ :
where uv™' € G. Then A; € M* for 1 <j <k Then for each a € A afA; =0= af0 so
that in M we have f(A;4)=f0 and Aj, =0. But then a;A; = (aAla)d ™ =0 and so
f¢é = fy implies ¢ = . Now suppose ¢f = ¢f and ¢ # . Without loss of generality we
can take af¢# ar . Set ajp = ayaB™', aty =afy5' where o', y5~' € G. Then

aifaB™ = ataB7'f = atef = atyf = aly87'f = affys".
If i=j either aB'=v8""! or a*f =0 since AG is torsion-free. If aBf™' = y5~! then
aT¢ = a?‘aB" =alys'= at ¢ which is false. Hence aif =0. In this case a\f = 0 for
each a € A so that in M we have (A;|4)f = Of and A;]4 = 0 which is false. Thus i# j. In

thiscaseleta’f = (ayt™")s,a] f = (ajt™")s, where s, s, € S and we have used Lemma0to
find t € C. Then

* - g .
a; uv ifi=j

art'sap ' =alfap' = alaB'f = ai ¢f
art's\yd '=alfys' =ays'f = a} yf

and so a%t 'saB™' = a%t7's;y6"' € a*G N a*G and thus p = g. Hence a*f, a%f € a%G
and so for some r, 1<r=<k, a*G NImf = ¢. Again we have the situation where for
no a € Ais af = a*s for any s €S and again we deduce that A, =0. Hence ¢ = ¢ is
cancellative in M *.

Proposition 3. If f € M* and f is cancellative then f has an inverse in M*,

Proof. If f is both 1 —1 and onto then the inverse mapping f': AG - AG exists
and a simple calculation shows that f~' € M*. Suppose f is cancellative but not onto.
Let b € AG with b& Im f. For some j, b = a*g with g € G and so a* € Im f. But then,
for 1=i=<k, a%fA;=0 and so fA; =0 and A; =0 since f is cancellative. Hence f is
onto. Now suppose a, b € AG with af = bf, a# b. For some i, j, a =a%g;, b = a%g,
with g1, 8, € G. If i# j then a¥g.f = a*g.f and so a*fg, = a*fg,. Also for some h, r we
have a*f € a%G, a*f € a*G and a*fg,€atG Na*G# ¢. Since AG is free we have
h=r and thus both a% and a* map into a}G. But then f cannot be onto. This
contradiction establishes the result.

These results now lead to

Theorem 1. Let S be a semigroup with a semigroup G of two-sided quotients and
let A be a group for which S is a semigroup of endomorphisms such that the
cancellative elements of S are monomorphisms. If A is torsion-free and finitely
generated as an S-set and if AG is free as a G-set then M has a near-ring of two-sided
quotients which is isomorphic to M*.
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Proof. It remains only to prove that M * is a near-ring of left quotients of M. Let
f € M*. The for some a;, &€ S, B;, d;€ Cayd™'f = a,, d”'aB;" = a,,@(Bid;)”" since
G is a semigroup of two-sided quotients of S. Using Lemma 0 we have, for 1 <i <k,
(Bid)'=er™' and d”'=er”' for some e, e, r € C. Then a,d”'fr = a),,@e; € A. But
a,d”'fr=a,d”'rf = a,d”'n.f and so p,f € M. Also a,d”'u, = a,d”'r = a,e € A and so
i, € M. Since r € C we have f = (u,)”'0 for some 8 € M as required.

We now turn to the structure of M* Since AG is free, AG=
a,d'GU...Ua,d™'G. Writing a} = a,d™' we have defined A;: AG > AG by afgh =
0if j# i and a*gA; = a%g where g € G. Clearly A; € M* and it is an easy calculation to
show that, for each i, A;M* is a right ideal of M* and that M*=AM*®...® AM*.

For the remainder of this section we will suppose that G is a group. If X CN,
where N is a near-ring, we denote by r(X) the set r(X)={n €N :xn =0 for all
x € X}; by r(x) we mean r({x}).

Theorem 2. M?* has no proper two-sided ideals and has the descending chain
condition on M*-subgroups.

Proof. If Ajg, A:h € AM* with Aig# 0# A;h then a*Ah = a%aB™! for some m and
aB™'€ G and a*A;h =0 for j# i. Similarly for some p and y6 '€ G, a*tAg = a%ys~',
atrg =0 if j#i. Defining q:AG — AG by a*q =a%aB 'y6 ' and a%q =0if j#p we
can extend g to g*€M* to get Ah=Agq*€AgM* and so AhM*=AgM*.
Hence each A;M* is minimal. Thus M* is completely reducible with identity and
by (3) M* has no nilpotent M*-subgroups and the descending chain condition on M*-
subgroups. Next we let f € r(A,M*). Defining A; €E M* by atr;=0 if i#1 and
aiArj = a% we see that f =0. From (4; Thm 3) we can write M* as a direct sum of
two-sided ideals each of which is simple as a near-ring. If U, V are two such with
UNV=(@) then UV=0. If U#0, AAM*U #0 so for some fEM*, A, fU =A,M*.
But then A\M*V =0s0 V =0. It follows that M * is simple as a near-ring.

Suppose X is a subset of the near-ring N. Set Xy = NX U X and denote by X§ the
normal subgroup of N generated by X,. Let [ X§]={(a +x)c —ac:x € X§,a,c EN}.
Define X; = [X§] U X§ and observe that NX,; C X,, We now suppose that X, has been
constructed and we construct successively X3, [X%] and Xi+1 = X U [X%]. This leads
to a chain X, C X, C ...and we then define I(X) = U X,. A simple calculation shows
that I(X) is the ideal generated by X.

If N has a near-ring Q of two-sided quotients and B is an N-subgroup of N then
we may construct the ideal B* of Q generated by QBQ. In this case B*= U B,
where By = QBQ, etc.

Lemma 1. If A is an N-subgroup with AB = (0) and A# (0) then for each k the
elements of B, have the form c ™'t where ¢ is a cancellative element in N and At = (0).

Proof. If u € QBQ then u=c 'vbq where vEN, bEB, q€Q and ¢ is a
cancellative element of N. Then avbq € ABq = (0) and u = c¢”'t as required. Now
suppose the result is true for B;. If u € B, then u € B} or u € [B}]. In the first case
u=3d;'x; +ci't; —di'x)) = ¢ 'S(y; + rit;— y;), on applying Lemma 0, where y;, ; €N
and At; = (0). But then Art; =(0) so with t =3(y; +rit; —y;) we have u=c™ 't and
At = (0). A similar argument applies to [B:] and the lemma follows.
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Theorem 3. If N has a near-ring Q of two-sided quotients which is simple then N
is strictly prime.

Proof. Let A, B be N-subgroups of N with AB = (0) but A# (0). Let B* be the
ideal of Q generated by QBQ. Since Q is simple either B* = (0) or B* = Q. If B* = (0)
then trivally B = (0). If B*=(Q then 1€ B* so 1€ B, for some k. From Lemma 1,
1 = ¢ 't with ¢ cancellative and At = (0). Thus Ac = (0) contrary to A # (0).

Corollary 1. If G is a group M is strictly prime.

3. Semisimple Near-rings of Right Quotients

We now turn to an investigation of the properties of those near-rings which have
near-rings of right quotients which are semisimple. If Q is a near-ring then Q is
semisimple if it has no nilpotent Q-subgroups and the minimum condition on Q-
subgroups. To fix our terminology, an N-subgroup A is nilpotent if A3 (0) but for
some n =2, A" ={a1a;...a,:a; € A} = (0).

Most of our results are the analogues of those of Goldie. We will determine
necessary conditions for the near-ring Q of right quotients of N to be semisimple. It
seems most unlikely, however, that these conditions will be sufficient. Throughout this
section Q will denote a near-ring of right quotients of N.

Theorem 4. If N has a near-ring Q of right quotients which is sermisimple then N
has no nilpotent N-subgroups.

Proof. Let A be a nilpotent N-subgroup of A with A" =(0). Set P = ¢(NA) =
{xEN:xNA=@)}. If ue Nu0) with uN#(0) and P NuN =(0) then NAN
uN # (0) so we can take ux € NANuN with ux#0. For some k> 1, (NA)* =(0),
(NAY' # (0). Hence ux(NA)*!'=(0). It follows that (ux)*"'NA =(0) and (ux)*'e
P NuN = (0). Thus (ux)*"'= 0. If (ux)*"2NA# (0) then for some v € NA, (ux)*2v#0
but (ux)2uNA = (0) so that (ux)*"?>v € P NuN = (0) which is a contradiction. Hence
P NuN#(0) and P has non-empty intersection with every non-zero N -subgroup.
Now consider PQ. Clearly if g € Q then PQ N qQ# (0) unless g = 0. In particular
PQNeQ#(0) where eQ is a minimal right ideal of Q and Q=
e QP e QP...De,Q. Hence eQ = p:Q for some p; € P. Notice that p,N +p,N +
-+++p,N is an N-subgroup of N and that (pa,+pa;+---+ppa,)b=
piaib +prab + - - - +pua.b for b €N. Thus piN +p,N +---+p,N C P. However,
1=piaci'+- - -+ paascy;' = (pra1by + - - - + paasb,)c™' where a,, b, € N and we have
used Lemma 0. It follows that c € P and P contains a cancellative element. Hence
NA = (0) and A = (0) as required.

A near-ring N is strictly semiprime if it has no nilpotent N-subgroups. Thus

Corollary 2. Q semisimple implies N strictly semiprime.
We say that an N-subgroup A of N is module-essential if, whenever X is

non-zero right ideal of N, then AN X# (0); A is N-essential if whenever X is a
non-zero N-subgroup of N then A N X # (0). Certainly if A is N-essential then A is
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module essential. However, it is not generally true that if A is module-essential then A
is N-essential.

Theorem 5. If Q is semisimple then module essential N-subgroups of N are
N-essential.

Proof. Let X be moduie-essential and consider XA. If eQ is a minimal right ideal
of Q then X NeQ N N # (0) so XQ N eQ# (0). As in the proof of Theorem 4 we now
deduce that XQ=Q.If aEN(a#0)thena € Q =XQ soa =xc ' where x € X and ¢
is cancellative. It follows that ac € X NaN # (0) and X is N-essential.

We denote by Z(N) the set {x € N:r(x) is N -essential in N}. The proof of
Theorem 5 can be modified to show that each N-essential N-subgroup contains a
cancellative element when Q is semisimple and we deduce

Corollary 3. If Q is semisimple then Z(N) = (0).

In the usual way we prove

Theorem 6. If Q is semisimple then N has the maximum condition on right
annihilators.

We say that a near-ring N has finite rank if each chain A,CA,C ...of N-
subgroups in which for each i=2 there is a non-zero N-subgroup B;C A; with
B; N A;—; = (0) terminates finitely. If N is a ring this reduces to the usual definition.

Lemma 2. If Q is semisimple and A\ C A,C... is a chain of N-subgroups of N
such that for each i =2 there is a non-zero N-subgroup B; C A; with B; N A;-, =(0)
then B; can be chosen to be a submodule of the N-module A..

Proof. Let X be a right ideal of N maximal subject to the condition A;_; N X =
(0). Then A;_; + X is module-essential in N so by Theorem 5, A;_; + X is N-essential.
Now A,' ﬂ(A,--1+X)= A,'_|+(A ﬂX) and B,‘ ﬂA, ﬂ(A,_|+X)#(0) so that A,ﬂ
X # (0). Clearly A; N X is a submodule of A; with A; N X N A;_; = (0).

We wish to prove that a near-ring with a semisimple near-ring of right quotients
has finite rank. Because the form of a Q-subgroup generated by an N-subgroup of N
does not have a simple representation in the form IQ, say, we have to adopt a more
indirect approach. We begin by showing that there are essentially two different
problems to be solved.

From (4; Thm 3) a semisimple near-ring Q with identity is the direct sum of finitely
many two-sided ideals each of which is simple as a near-ring. We divide these direct
summands into two classes, those which are rings and those which are non-rings i.e.
near-rings which are not rings. Write Q = R@® T where R, T are ideals of Q, R is the
sum of those direct summands which are rings and T the sum of those which are
non-rings. Clearly R is a ring. Define N,= N N R, N>, = N NT. Then N,, N, are ideals
of N and N, is a ring. Clearly
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Lemma 3. As a right ideal Ny@® N, is N-essential in N.
Lemma 4. As near-rings R and T are each semisimple with an identity.
We now prove the following result.

Theorem 7. Let Q be a semisimple near-ring of right quotients of the near-ring N
and suppose that I is an ideal of Q. Then I is a semisimple near-ring of right quotients
of the near-ring J =1 N N.

Proof. From (4; Corollary 6) there is anideal X of Q with INX =(0), I® X =
Q. As before J @ X N N is essential as a right ideal in N. Clearly J C I and I has an
identity. Write Y = X N N. Let d €J be cancellative in J and g € Y be cancellative in
Y. Suppose u € N with (d + g)u = 0. There is a cancellative c EN with uceJ @Y
(unless u =0). Also uc=n,+n;; €J, €Y and 0=(d +g)(n,+ny)=dn,+gn; so
dn,=0=gn, and n,=n, =0 from which we deduce uc =0 and u = 0. It follows that
d + g is right cancellative in N and ro(d +g)=0. Write p =d + g. Then pQ 2 p*Q 2
...and thus p"Q=p"*'Q for some n. But then p" =p"*'q for some q € Q and
p"'—p"q € ro(p) = (0). Continuing in this way we get 1= pq for some q € Q. If u,,
u, €N with u\(d + g) = uy(d + g) then, in Q, u\p = u,p and u\pq = u, = Uupq = u,. We
see that d +g is cancellative in N. In Q, (d+g)'=a +8 where a €1, B € X and
1=(d+g)a+B)=da+gB. Thus da is the identity of I and d™'=a €1 Now let
rel For some a, b € N with b cancellative r=ab™ and rb =a€INN =J. For
some cancellative ¢;EN, bci€EJPY so bc,=u;+vy,, uy€J, v,EY. Since bc, is
cancellative in N, u; is cancellative in J and c¢i'b '=ui'+ 07", ui' €1, v;i'€ X. But
then ac,ci'b™'=acui'+ac,v7' and ac, €I so ac,vi'=(0). Thus r = ac,u;' where
acy, uy €J and u, is cancellative in J. Hence I is a near-ring of right quotients of J and
clearly I is semisimple with identity.

Corollary 4. N, has R as a semisimple ring of right quotients and N, has T as
semisimple near-ring of right quotients.

Now let A;C A,C...be a chain of N-subgroups in which, for each i = 2, there is
a non-zero N-subgroup B; C A; with A;_; N B; = (0). Since N; @ N is N-essential in N
as a right ideal we can suppose that A; C N, @ N, for each i and for convenience we
take N = N; @ N,. There are then the following possibilities:—
(i) infinitely many A; C N;;
(ii) only finitely many A; C N,;
(a) for infinitely many i, B; can be chosen with B; N N, # (0),
(b) for only finitely many i can we choose B; with B; N N, # (0).
In the case (ii) (a) we can consider the chain A, N N, C A; NN, C...and we are back
with case (i).

Lemma 5. If case (ii) (b) arises then the chain A\C A, C...CA,C...is finite.

Proof. For convenience we suppose that for each possible choice of B; we have
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B; N N, =(0). Then Ain N, is N-essential in A;+; N N; for each i. Pass to N = N/N, =
N.. Then A; C A4y, Bix) C Aiyy and if i € A; N B;,, then u € (A; + N2) N (Bi+1 + N,) and
so u=a+n=b+n’ where a€A;, bEB;;;, n, "EN,. Now —-b+a=n"—n€
N:;N A4 so for some cancellative ¢ €N, (=b + a)c € A; N N,. In view of Lemma 2,
we can choose B, to be a submodule of A;:;, and then (—b+a)c—ac€E
BisiN A;N N, =(0). Hence b =0 and & =0. But then B(@B,®. . . is a direct sum of
right ideals of a ring with a semisimple ring of right quotients so by Goldie’s Theorem
the sum is finite. It follows that the chain A, C A, C... terminates finitely.
For case (i) we will need the following results.

Theorem 8. If R is a semisimple near-ring with identity and A is a maximal right
annihilator then A = r(e) for some idempotent e with eR a minimal R-subgroup of R.

Proof. Since A#¥ R we let U be a right ideal of R with ANU =(0), A+ U =R.
If ¢(A)NU =(0) then U6(A)C UNE(A)=(0) so if m € ¢(A), Um = (0) and hence
(mU)?* = (0). It follows that mU = (0) and U Cré(A)= A. Since ANU =(0) this
contradiction establishes that €(A)NU#(0). Let 0#¥uecé(A)NU. Now AC
r(u) # R so A =r(u). Clearly u*x =0 yields u*"'x €r(u)NU = AN U =(0), for any
positive integer k, and hence ux =0. Hence r(u) = r(u®>)=---. Now let I be a right
ideal of R with I N(uR + r(u)) =(0). For each k set Ty = ul +u*l +- -+ u*I and
observe that T, is an N-subgroup. By (3; Thm 6) R has maximum condition on
R-subgroups so for some n, T, =T,,;. Then u"' I Cul +u*l+---+u"l and xE1I
implies u"*'x = ut,+ u’t,+-- - u"t, where t;,€I. We see that t,+ut,+---+u""'t, €
r(u)+uR and hence t, €I N (r(u)+uR)=(0). Similarly t,€(r(u?)+uR)NI =
(r)+uR)NI=@) and t,;=t,=---=1,=0. Thus u""'I=(0) and I Cr(u"*") = r(u)
from which it follows that I = (0). We then have r(u) + uR module-essential in N and
hence r(u) + uR = R. Write 1 = ut + v, ut € uR, v € r(u). Then u = (ut + v)u = utu + v’
for some v'€r(u) and so —utu +u € uRNr(u)=0). Hence u(1—tu)=0 and 1—
tu € r(u). We see that R=tuR + r(u) and 1 =tu+w, w € r(u). Writing e = tu we let
s€eR Nr(u). Then s =ey = tuy so us = utuy =9. Using u = utu we see that uy =0
and hence s =0 so that eR N r(u) = (0). Also if ua =0 then tua = ea =0 and r(u) C
r(e) # R. We see, therefore, that A = r(e). Next we have e—e’*=(e +w)e—e’€E
eRNr(u)=(0) and e =e?# 0. To prove that eR is minimal we observe that, as an
R-module, eR is completely reducible so if eR is not minimal we can take non-zero
submodules B, C of eR with eR = B@®C. Then e=b +c. If ex=0 then (b +¢)x =
bx + cx = 0 and thus bx = 0. Then r(e)C r(b) # N so that r(e) = r(b). If we take B to
be minimal then B = bR and b%>=0b+0. Also, bR Nr(b) = (0) so bR +r(b)=R. For
c €C we have ¢ =bn + 2z where z€r(b) and —bn +c € eR Nr(b)=eR Nr(e) = (0).
Thus ¢ =bn € BN C =(0) and C =(0). Hence we have e¢R minimal as required.

Lemma 6. If R is semisimple with identity and A is a maximal right annihilator
and if I is an R-subgroup with A# A + 1 then A+ I =R.

Proof. From Theorem 8, A =r(e) with eR minimal. Then R =r(e)+¢eR =
r(e)+I+eR. Thus if x€Er(e)+I then x=v+eu(v€r(e)) and eu=-v+x€E
eRNA+I).IfeRN(A+I)=(0) then eu =0s0o xEA and A+ 1 C A which is false.
Hence eRC(A+I)so A+I=R.
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Theorem 9. Let R be a semisimple near-ring with identity which is the direct sum
of ideals each of which is a simple non-ring. Then R has only finitely many maximal
right annihilators.

Proof. Let A be a maximal right annihilator and write R=I1,@L®...®IL
where each I; is an ideal of R and a simple non-ring. Furthermore, each I; is a direct
sum of minimal right ideals of R. For one of these minimal right ideals, say ¢;R, we
must have A N e;R = (0). Without loss of generality we can suppose ¢,R CI,. If fR is
a minimal right ideal contained in I; for some j>1 then AN(e;,R@ fR)# (0) so
0#eu+fv €A and fo#0. Also, since LI, =(0) if p # q we see that for each j>1,
(e u + fv)lj = fvl; C A and since fvl, = (0) C A we have fRC A. Thus forj=1, I; C A.
Next we see from Lemma 6that A+e, R=Rso(ANI)+el,=1,ANI Nel =(0).
From (4; Lemma 8), A NI, C r(ey). It follows that A C r(e;) # R and thus A = r(e)).

Now we can prove

Theorem 10. If N has a semisimple near-ring of right quotients then N has finite
rank.

Proof. There remains the case where A; C N, for an infinite number of i. Clearly
we may assume that A; C N, for all i. Furthermore, T is a semisimple near-ring of
right quotients of N, and is the direct sum of ideals each of which is a simple
non-ring. Apply Lemma 2 to choose B; to be a submodule of A; and consider A,T.
Since AT contains T-subgroups it contains minimal T-subgroups and these have the
form eT where e is a non-zero idempotent. Let ¢;T be a minimal T-subgroup
contained in A;T and e, = p,v;! where p,€ A, and v, E N, is cancellative. Since
eyT +rr(e))=T we see that pN,+r(e;) is Nr-essential in N, (here and for the
remainder of the proof r(x) denotes the right annihilator of x in N i.e. r(x) = rr(x) N
N,). Furthermore, A,T Nrr(e) # (0). Let e,T be a minimal T-subgroup of T con-
tained in A,T Nrrle;). Suppose now that we have constructed e, =pywi'€ AT,
ex=pw7' €EATNrr(e),. .., e =pwi' € AT Nrre) ... Nrr(e,) where each ¢ is
a non-zero idempotent and ¢T is a minimal T-subgroup. Suppose A, Nr(e)N...N
r(e.) = (0). Since p,N,+ r(e;) is Nr-essential in N, we see that (A, Nr(e)N...N
r(e._,)) + r(e) is Ny-essential in N, and thus A, Nr(e)N...Nr(e_;) is N,-essential
in Ay Nrie)N...Nr(e-;). Let 0#x€ B,,,. There is a cancellative element
cEN, with xc€e(@ N,+r(e))N A, =p N2+ A, Nr(e). Hence for some
S1EN, we have 0#p;si+xc € Ay.yNr(e). Then (p;s,+xc)d,—psid,+ pisid, €
AN r(e) N(p2Ny+ r(ey)) = paNa+ Aviy N r(ey) Nr(ey) for some cancellative d, € N,.
Let x;=(pisi+xc)d,—ps,d; € Bys1. Then x,#0 and for some s, €N, we have
0=p2s2+p1s|+x|EAH.ﬂr(e.)ﬂr(ez) SO with a|=p|s|d1€AL and a=
p2s,+ pi1sidy € A, we have, for some cancellative d, € N,, (a;+x)d>— a:d,+ a,d, €
AN r(e) Nrie)) N(psN,+ r(e;3)) and we find x, = (a, + x)d, — azd, € By, x2# 0 and
a3 € Ay with a3+ x; € Ags1 Nr(e)) Nr(e;) Nr(es). Continuing in this way we arrive at
Q€ Ay, Xk2E€ By and a1+ xx2€E A Nr(e)N...Nr(e-) and at each stage
x;#0. For some cancellative d'€N, we now have (a_i+x-2)d'x1E
Ak N r(e,) Nn...N r(ek_l) C A.. Hence (ak_, +xk_2)d’ - ak_.d’ (= Ak NBy= (0) But then
xx-2 = 0 which is false. Thus if the chain A, C A, C...does not terminate finitely then
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for each m, A, Nr(e)N...N r(e,-) # (0). However, rr(e¢;) is a maximal right anni-
hilator in T, T has only finitely many such and their intersection is zero. This
contradiction establishes the result.

REFERENCES
(1) A. W. GOLDIE, Some aspects of ring theory, Bull. London Math. Soc. (2) 1 (1969),
129-154.

(2) W. M. L. HOLCOMBE, Near-rings of quotients of endomorphism near-rings, Proc.
Edinburgh Math. Soc. 19, (1975), 345-352.

(3) A. OSswWALD, Semisimple near-rings have maximum condition on N-subgroups, J.
London Math. Soc. (2) 11 (1975), 408—412.

(4) A. OswaLD, Completely reducible near-rings, Proc. Edinburgh Math. Soc. 20 (1976),
187-197.

(5) G. PiLz, Near-rings (North-Holland, 1977).

(6) L. W. SMALL, Orders in Artinian Rings, J. Algebra 4 (1966), 13—-41.
DEPARTMENT OF MATHEMATICS
TEESSIDE POLYTECHNIC
MIDDLESBROUGH

CLEVELAND
ENGLAND

https://doi.org/10.1017/50013091500016187 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500016187

