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Characteristics of turbulent core–annular flow
with water-lubricated high viscosity oil
in a horizontal pipe
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Direct numerical simulations are performed to investigate the characteristics of a turbulent
core–annular flow with water-lubricated high viscosity oil in a horizontal pipe. Six
different superficial velocity ratios ( jw/jo = 0.057–0.41) are examined by changing the
water superficial velocity jw for a fixed oil superficial velocity jo. The pressure drops
in the pipe and the shapes of the phase interface agree well with those from previous
experiments. The oil core flow is almost a plug flow, and the gaps between the phase
interface and pipe wall are narrow and wide near the upper and lower surfaces of the
pipe, respectively, due to the buoyancy. Within a narrow gap, water is confined mostly
in a valley region of the wavy phase interface and hardly goes through its crest. On the
other hand, water near the phase interface at a wide gap convects downstream almost at
the core speed and the flow near the wall is similar to that of single-phase wall-bounded
turbulent flow. The annular flow is characterized by three different regimes depending on
the clearance Reynolds number (Rec) based on the core velocity and local gap size: laminar
Couette flow driven by the core for Rec ≤ 600, transitional flow for 600 < Rec < 2500 and
turbulent flow for Rec ≥ 2500. The minimum pressure drop occurs at jw/jo = 0.11 in the
early transition regime. For all jw/jo considered, the negative lift force acting on the core
comes from the pressure force which balances the buoyancy.

Key words: drag reduction, core–annular flow, turbulence simulation

1. Introduction

Heavy oil reserves occupy approximately 70 % of whole oil reserves (Dusseault 2001),
but one of the major challenges with the use of heavy oil is its transport within a pipe
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because of its high viscosity. Among various drag reduction technologies investigated,
water-lubricated transport has been known as an effective tool (Ghosh et al. 2009). This
arrangement is called a core–annular flow because high viscosity oil is encapsulated in
the pipe core region by less viscous water in the annulus. In experiments, core–annular
flows in horizontal and vertical pipes have been considered, and drag reductions by water
in the annulus have been observed in wide ranges of oil properties and flow conditions
(Charles, Govier & Hodgson 1961; Bai, Chen & Joseph 1992; Prada & Bannwart
2001; Sotgia, Tartarini & Stalio 2008) and also validated in real-scale experiments with
several-hundred-metre pipes (Arney et al. 1996; Rodriguez, Bannwart & de Carvalho
2009). The differences in the flow characteristics between the vertical and horizontal pipes
are attributed to different gravitational directions.

For a horizontal pipe, the directions of the main flow and gravity are perpendicular
to each other and heavy oil rises by the buoyancy because the density of heavy oil is
usually lower than that of water (Joseph et al. 1997). The buoyancy force is balanced by
the hydrodynamic (negative) lift force, which prevents the core from touching the wall
and forms an eccentric core in the pipe. This lift force is caused by the pressure force
from water lubrication at low Reynolds number (Ooms et al. 1983) but is dominated by
the inertial effect with increasing Reynolds number (Oliemans et al. 1987; Feng, Huang &
Joseph 1995; Ooms, Pourquie & Poesio 2012).

Many experimental studies have measured the variations of the pressure drop and oil
holdup (εo = Vo/V , where Vo and V are the oil and whole pipe volumes, respectively) with
the superficial velocities of oil and water for core–annular flows in horizontal pipes, and
shown that the core–annular flow is effective in reducing the drag on the pipe wall (Charles
et al. 1961; Oliemans et al. 1987; Arney et al. 1993; Sotgia et al. 2008; Vuong 2009; Shi,
Gourma & Yeung 2017; Tripathi et al. 2017). Vuong (2009; μo = 0.23–1.07 Pa s) and
Shi (2015; μo = 3.3–7.1 Pa s) showed that, when the oil viscosity (μo) is high enough,
the pressure drop and flow pattern are not significantly changed by μo at high Reynolds
numbers. Arney et al. (1993) observed that a core–annular flow with a non-Newtonian
Bingham plastic oil (waxy crude oil/water emulsion: μo = 200–900 Pa s) produces drag
reduction but larger fluctuations in the pressure drop than that of the Newtonian oil
(No. 6 fuel oil: μo = 2.7 Pa s). Based on their own and other experimental data, Arney
et al. (1993) suggested a pressure drop model based on the friction factor of single-phase
pipe flow and an empirical holdup model, which was later modified by considering the
eccentricity and oil fouling effects (Shi et al. 2017). Other pressure drop and oil holdup
models have been suggested from several studies (Oliemans, Pots & Trompe 1986; Brauner
1991; Bai et al. 1992; Bannwart 2001; Kim & Choi 2018).

Only a few studies have investigated the characteristics of turbulent core–annular flow in
a horizontal pipe by experiments owing to the difficulty in flow measurements. Oliemans
et al. (1987) showed that turbulence effects are restricted near the lower surface of the pipe,
and Tripathi et al. (2017) observed a broad-banded spectrum of the phase interface wave.
They demonstrated that large-wavelength interfacial modes dominate at low Reynolds
numbers, while small-wavelength interfacial modes dominate at high Reynolds numbers.
However, the dynamics of the phase interface, and the lift and drag forces on the core
have been rarely investigated for the turbulent core–annular flow in a horizontal pipe.
Thus, the detailed characteristics of turbulent flow and phase interface have been studied
mostly by numerical simulations using interface tracking methods. For laminar flow, a
few numerical simulations have been conducted to find the pressure distribution across
the phase interface between oil and water. For example, Bai, Kelkar & Joseph (1996)
observed for axisymmetric laminar core–annular flows that the pressure difference across
the phase interface between heavy oil and water increases as the gap size between the
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Turbulent core–annular flow in a horizontal pipe

interface and pipe wall decreases, and thus suggested that an eccentric core–annular flow
can be stably maintained because the gap size below the upper pipe wall is smaller (so,
high pressure there) than that above the lower pipe wall (low pressure). This was confirmed
by Ooms et al. (2012) for a laminar core–annular flow in a horizontal pipe using numerical
simulation. They observed that, for a given wavy phase interface shape, the difference in
the water pressures on the upper and lower interfaces increases with increasing eccentricity
of the core and balances the buoyancy except at a very low Reynolds number where the
direction of the lift force is the opposite to the gravitational direction.

For turbulent flow, studies have been limited to numerical simulations with turbulence
models. For example, Shi et al. (2017) showed that the flow statistics change with
turbulence models adopted, and a shear stress transport k − ω turbulence model with
turbulence damping at the phase interface works better than others. Their numerical
results show a 30 % difference in the pressure drop and a 14 % difference in the holdup
from those by experiments. Housz et al. (2017) showed using Launder–Sharma k − ω

turbulence model that the difference in the pressure drops from experiment and numerical
simulation is within 15 %, and their instantaneous amplitude and wavelength of the phase
interface wave reasonably agree with those observed in experiments. So far, to the best
of our knowledge, the only numerical simulation without using a turbulence model (i.e.
direct numerical simulation) for turbulent core–annular flow is that by Kim & Choi
(2018) in which the flow in a vertical pipe was considered. Li et al. (2023) conducted
Reynolds-Averaged Navier–Stokes simulation using the Launder–Sharma low-Reynolds
number k-ε model at the same condition considered by Kim & Choi (2018). Their
simulation observed travelling interfacial waves like those of Kim & Choi (2018), but
provided an 18 % lower friction factor and slightly higher holdup ratio.

As summarized above, the understanding of the flow characteristics in turbulent
core–annular flow with water-lubricated high viscosity oil in a horizontal pipe is still very
limited. Therefore, in the present study, we perform direct numerical simulation of this
flow to investigate the asymmetric flow features inside the pipe and the pressure variation
across the interface between oil and water. The spatiotemporal deformation of the phase
interface is tracked with a level-set method. The details of numerical methods and flow
conditions are given in § 2. In § 3, the axial pressure drop is compared with that of the
experiment (Sotgia et al. 2008), and the characteristics of water flow in the annulus and
high viscosity oil flow in the core are discussed, respectively. The spectral characteristics
and dynamics of the phase interface are examined in §§ 4.1 and 4.2, respectively, followed
by the investigation of near-wall flow dynamics in § 4.3. Finally, a summary is given in
§ 5.

2. Computational details

The numerical method to track the phase interface between two immiscible fluids, high
viscosity oil and water, is essentially the same as that in our previous study on turbulent
core–annular flow in a vertical pipe (Kim & Choi 2018). We use a level-set method to track
the interface (Herrmann 2008; Kim & Moin 2011),

∂φ

∂t
+ uj

∂φ

∂xj
= 0, (2.1)

where xj are the cylindrical coordinates, uj are the corresponding velocity components
and φ is the level-set function which is a signed-distance function from the phase
interface having positive values in water, negative ones in oil and zero at the
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phase interface. Equation (2.1) is solved at grids near the phase interface using
a third-order total variation diminishing Runge–Kutta method in time (Gottlieb &
Shu 1998) and a fifth-order weighted essentially non-oscillatory scheme in space in
conjunction with a local Lax–Friedrichs entropy correction (Jiang & Peng 2000).
A partial-differential-equation-based reinitialization method (Sussman, Smereka & Osher
1994; Peng et al. 1999) and a global mass conservation method (Son 2001; Zhang,
Zou & Greaves 2010) are used to preserve the signed-distance property, |∇φ| = 1, and
compensate the volume loss, respectively. The periodic boundary condition is applied in
the axial and azimuthal directions, and the Neumann boundary condition, ∂φ/∂r = 0, is
used at the pipe wall.

The governing equations for unsteady incompressible two-phase flow are

∂ρui

∂t
+ ∂ρuiuj

∂xj
= −dP

dx
δi1 − ∂p

∂xi
+ ∂

∂xj

{
μ

(
∂ui

∂xj
+ ∂uj

∂xi

)}
− ρgδi3 + σκδni, (2.2)

∂ui

∂xi
= 0, (2.3)

where −dP/dx is the mean pressure gradient to drive a constant mass flow rate in a pipe,
p is the pressure fluctuation, g is the gravitational acceleration, σ is the surface tension
coefficient, κ is the curvature, ni is the surface-normal vector on the phase interface,
δij is the Kronecker delta, i = 1 and 3 for the streamwise (or axial) and vertical (the
opposite direction to that of the gravity) directions, respectively, and δ is the delta function
(non-zero value at the phase interface and zero otherwise). The density and viscosity are
constants for each fluid, but change continuously near the phase interface like

ρ = ρo + (ρw − ρo)ψ, (2.4)

μ = μo + (μw − μo)ψ, (2.5)

where the subscripts w and o denote water and oil, respectively. Here, ψ is the water
volume fraction in a control volume calculated from the linearization of the level-set
function (van der Pijl et al. 2005; Herrmann 2008). Thus, ψ = 0 or 1 for the cells
containing oil or water only, respectively, and 0 < ψ < 1 for the cells containing the
phase interface. The density and viscosity of oil used for present simulations are ρo =
889 kg m−3 and μo = 0.919 Pa s, and those of water are ρw = 998 kg m−3 and μw =
0.001 Pa s, respectively, and the surface tension coefficient is σ = 0.02 N m−1 (Sotgia
et al. 2008). We also confirmed that oil used in the experiment was Newtonian (G. Sotgia,
private communication).

Equations (2.2) and (2.3) are solved using a four-step fractional step method (Choi &
Moin 1994),

ρ̂ûi − ρnun
i

�t
+ 1

2
∂

∂xj

(
ρ̂ûiûj + ρnun

i un
j

)
= −dPn

dx
δi1 − ∂pn

∂xi

+1
2
∂

∂xj

{
μ̂

(
∂ ûi

∂xj
+ ∂ ûj

∂xi

)
+ μn

(
∂un

i
∂xj

+
∂un

j

∂xi

)}
− 1

2

(
ρ̂ + ρn) gδi3 + σκnδnnn

i , (2.6)

ρ̂u∗
i − ρ̂ûi

�t
= ∂pn

∂xi
, (2.7)
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Turbulent core–annular flow in a horizontal pipe
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Figure 1. Schematic diagram of the core–annular flow in a horizontal pipe.

∂

∂xi

(
1
ρ̂

∂pn+1

∂xi

)
= 1
�t
∂u∗

i
∂xi

, (2.8)

ρ̂un+1
i − ρ̂u∗

i
�t

= −∂pn+1

∂xi
, (2.9)

where ρ̂ and μ̂ are the provisional density and viscosity obtained from (2.4), (2.5) and
the continuity equation, ∂ρ/∂t + ∂ρuj/∂xj = 0 (see Kim & Choi (2018) for the detail),
�t is the computational time step size, and the superscript n is the time step index. The
second-order central difference scheme is used for all the spatial derivative terms except
the convection term near the phase interface where an upwind-type mass-flux scheme
is applied (Kim & Moin 2011; Raessi & Pitsch 2012). The Crank–Nicolson method is
applied to the convection and diffusion terms to avoid severe time step restriction. To solve
the resulting system matrix, a Newton iterative method with an approximate factorization
(Choi, Moin & Kim 1993) and an Aitken-type accelerator (Irons & Tuck 1969) are adopted.
The surface tension term is explicitly treated with a continuum surface force approach
(Brackbill, Kothe & Zemach 1992). An iterative constant-coefficient Poisson solver (Kim
& Moin 2011) using a fast Fourier transform is applied to solve the variable-coefficient
pressure Poisson equation (2.8). The details of numerical methods are available in Kim &
Choi (2018).

Figure 1 shows the schematic diagram of a core–annular flow in a horizontal pipe.
The gravity direction is perpendicular to the mean flow direction, and thus the oil core
naturally rises by the buoyancy due to its lower density than that of water. The cylindrical
coordinates (x, r, θ) and the corresponding velocity components (u, v,w) are used for
simulation, and the y and z coordinates are used for convenience to represent the lateral
and vertical directions at the pipe cross-section, respectively. We fix the superficial
velocity of oil, jo = qo/πR2 = 0.88 m s−1, and vary the superficial velocity of water
as jw = qw/πR2 = 0.05, 0.075, 0.1, 0.15, 0.22 and 0.36 m s−1, where R(= 0.013 m) is
the pipe radius, and qo and qw are the volume flow rates of oil and water, respectively.
This is one of the experimental conditions in Sotgia et al. (2008), where a core–annular
flow is maintained in the pipe. Note that Sotgia et al. (2008) varied the oil and water
superficial velocities together with the pipe radius and showed various flow regimes
including core–annular and dispersed flows. The numerical method of maintaining
constant superficial velocities of both fluids is given in Appendix A.

Table 1 shows the bulk Reynolds number, Reb = ub(2R)/νw = ( jw + jo)(2R)/νw,
number of grid points, computed friction Reynolds number, Reτ = uτR/νw, and oil
holdup, εo = Vo/V , for six superficial velocity ratios, jw/jo. Here, V is the total
computational volume, Vo is the volume occupied by oil, uτ = √

τ̄w/ρw is the friction

986 A19-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.345


K. Kim and H. Choi

jw/jo Reb Nx × Nr × Nθ Reτ εo

— 24 580 512 × 257 × 512 694 —
0.057 24 130 768 × 59 × 768 753 0.92
0.085 24 780 768 × 105 × 768 715 0.89
0.11 25 430 768 × 129 × 768 707 0.86
0.17 26 730 768 × 145 × 768 723 0.81
0.25 28 540 768 × 169 × 768 770 0.75
0.41 32 170 768 × 209 × 768 872 0.65

Table 1. Superficial velocity ratio, bulk Reynolds number, number of grid points, computed friction
Reynolds number and oil holdup.

velocity, τ̄w is the mean wall shear stress and νw is the kinematic viscosity of water. For
comparison, we also conduct a numerical simulation of water flow at a similar Reynolds
number (Reb = 24 580), whose results agree well with those of Wu & Moin (2008). The
streamwise domain size (Lx) is 2πR except that of single-phase flow simulation (10R),
and periodic boundary conditions are applied in the streamwise (x) and azimuthal (θ )
directions where uniform grids are used. As shown in § 3, large-scale structures in the
core–annular flow are confined by the wavelength of the phase interface, and thus the
streamwise domain size of Lx = 2πR is large enough to contain those structures for the
cases considered. The no-slip boundary condition is used at the wall, and in the radial (r)
direction dense grids are allocated near the wall and interface, but coarse grids are used in
the core region where flow is laminar due to the high viscosity of oil. Grid resolutions in
wall units are�x+ = �xuτ /νw ≈ 6–7,�r+

min ≈ 0.6–0.7 and (R�θ)+ ≈ 6–7. The number
of grid points used for the level-set equation is twice that for the Navier–Stokes equation
in each direction. We simulated flow with one and half times the grid points for the
streamwise and azimuthal directions for the case of jw/jo = 0.17, and the result showed
the changes in the pressure drop and oil holdup less than 4 % and 1 %, respectively. All
the computations are carried out for the non-dimensional time of approximately 250R/jo,
and averaging is conducted over 150R/jo to obtain mean values.

3. Characteristics of the core and annular flows

Figure 2 shows the variation of the mean pressure gradient with the superficial velocity
ratio for a fixed superficial oil velocity ( jo = qo/πR2 = 0.88 m s−1), together with the
experimental result by Sotgia et al. (2008). An excellent agreement between the present
and experimental data is observed for jw/jo ≥ 0.17, but the agreement becomes poorer
at lower jw/jo. This relative disagreement at low jw/jo may be attributed to the fact that
oil frequently sticks to the wall due to a narrow water region (Bai et al. 1992; Arney
et al. 1993), which may change the relative location of the phase interface and thus
the mean pressure drop (note that the present numerical method does not prevent the
formation of oil drops or oil sticking to the wall, but such phenomena do not occur
during the present simulations). A similar discrepancy at low jw/jo was also observed
for turbulent core–annular flow in a vertical pipe (Kim & Choi 2018). With increasing
jw/jo, the mean pressure gradient first decreases, reaches a minimum and then increases,
providing an optimal superficial velocity of water ( jw|opt) for the lowest mean pressure
gradient to transport a given oil flow rate (qo or jo) in a pipe. This has also been observed
in other experiments of core–annular flows in vertical and horizontal pipes (Bai et al.
1992; Prada & Bannwart 2001; Sotgia et al. 2008; Vuong 2009; Housz et al. 2017).
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Turbulent core–annular flow in a horizontal pipe
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Figure 2. Variation of the mean pressure gradient with the superficial velocity ratio: •, present simulation;
◦, experiment by Sotgia et al. (2008).

The optimal superficial velocity ratios obtained from present numerical simulation and
experiment by Sotgia et al. (2008) are slightly different ( jw/jo|opt = 0.11 and 0.085,
respectively), because flow conditions are not exactly same due to non-hydrodynamic
effects such as chemical adhesion (Arney et al. 1996) as described before. When jw/jo
is smaller than the optimal one, the mean pressure gradient increases because of high
wall shear stress from the narrow gap between the phase interface and upper wall (for
jw/jo = 0.057, the minimum gap size is 8 wall units, where 9 and 18 grid points for
the Navier–Stokes and level-set equations are located). On the other hand, when jw/jo
is larger than the optimal one, the pressure gradient increases again because of the
increase in the bulk Reynolds number, Reb = ( jw + jo)(2R)/νw. For large superficial
velocity ratios, the corresponding water flows are similar to single-phase flows (see later
in figure 6c), and thus the mean pressure gradient follows the Blasius friction factor
formula, (−dP/dx)(R/ρwu2

b) ∼ Re−1/4
b , where ub = jw + jo. Since Re−1/4

b little changes
in the range of the Reynolds numbers considered (see table 1), the mean pressure gradient
normalized by j2o increases with increasing jw/jo for jw/jo ≥ 0.17 (figure 2), i.e.

− dP
dx

R
ρwj2o

= −dP
dx

R

ρwu2
b

(
1 + jw

jo

)2

∼
(

1 + jw
jo

)2

. (3.1)

The mean pressure gradient of the core–annular flow normalized by ρw and ub(= jo +
jw) is (−dP/dx)(R/ρwu2

b) = 8Re2
τ /Re2

b (from momentum analysis) ≈ 0.0067 at jw/jo =
0.085 (Reb = 24 780), which is similar to 0.0064 obtained for the single-phase water flow
at Reb = 24 580, and is much lower than (−dP/dx)(R/ρwu2

b) = (16/Reb)(ρo/ρw) ≈ 0.64
for single-phase high-viscosity laminar oil flow (ub = jo = 0.88 m s−1; Reb = 22.13;
normalized by ρw for comparison). This clearly indicates that the core–annular flow
significantly reduces the drag for the heavy-oil delivery.

Figure 3 shows the shapes of the instantaneous phase interface for different superficial
velocity ratios, together with snapshots of the phase interface from experiment by
Sotgia et al. (2008). Also shown in figure 3(a– f ) are the contours of the instantaneous
relative velocity to the core velocity in water flow, where ucore = ∫

u dVo/Vo =∫
u dVo/V×(V/Vo) = jo/εo and Vo is the volume occupied by oil. The shapes of the phase
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Flow

(a) (b)

(c) (d )

(e)

(g)

(u – ucore)/ucore
–0.5 0 0.5

(h)

( f )

Figure 3. Shapes of the instantaneous phase interface and contours of the instantaneous relative velocity to the
core velocity for different superficial velocity ratios: (a) jw/jo = 0.057; (b) 0.085; (c) 0.11; (d) 0.17; (e) 0.25;
( f ) 0.41; (g) 0.057; (h) 0.41. Here, (a– f ) are from the present numerical simulation and (g,h) are from the
experiment by Sotgia et al. (2008).

interface qualitatively agree well with the experimental ones considering the differences in
the experimental and simulation set-ups as mentioned above. Due to the buoyancy, the flow
characteristics vary in the azimuthal direction. The lower gap between the phase interface
and pipe wall rapidly increases with increasing superficial velocity ratio, whereas the upper
gap slowly increases (see below). The phase interfaces consist of different streamwise
and azimuthal wavenumber components, and the wavelength and wave amplitude increase
with increasing superficial velocity ratio (or increasing gap size). When the gap is narrow,
the crest of the phase interface almost touches the wall, and no small-scale vortices are
observed there (see later in figure 5a). With increasing jw/jo, the flow in the gap changes
from laminar to turbulent, especially near the lower pipe wall.
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Turbulent core–annular flow in a horizontal pipe
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)/
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Figure 4. Mean radial locations of the phase interface and mean gap sizes along the azimuthal direction for
different superficial velocity ratios: (a) mean radial location, h̃(θ); (b) mean gap size, R − h̃(θ). Here, θ = 0◦
and 180◦ denote the top and bottom locations of the pipe, respectively.

Figure 4(a) shows the mean radial locations of the phase interface in the azimuthal
direction for different superficial velocity ratios,

h̃(θ) = 1
LxT

∫ T

0

∫ Lx

0
h dx dt, (3.2)

where h is the instantaneous radial location of the phase interface, the superscript
.̃ denotes the averaging over the streamwise direction and in time, and T is the
integration time. The averaged value of h̃(θ) over the azimuthal direction is havg/R =√

Vo/V = √
εo, and they are havg/R = 0.96, 0.94, 0.93, 0.90, 0.87 and 0.81 for jw/jo =

0.057, 0.085, 0.11, 0.17, 0.25 and 0.41, respectively. For jw/jo = 0.057, h̃(θ) is nearly
constant in the azimuthal direction due to the small amount of water flow, but, for higher
jw/jo, it has a plateau near the top wall (θ ≈ 0◦) but rapidly decreases near the bottom wall
(θ ≈ 180◦) because the core rises upward by the buoyancy. The gap size between the phase
interface and wall, R − h̃(θ), increases with jw/jo for all azimuthal locations (figure 4b). At
large superficial velocity ratios, the gap size increases almost linearly with the superficial
velocity ratio. This linear growth in the gap size starts to occur at lower superficial velocity
ratio for larger θ .

Figure 5 shows the contours of the instantaneous modified pressure fluctuations, p∗(=
p + ρwgz − p̄∗

wall), and the instantaneous velocity vectors relative to the core velocity for
jw/jo = 0.057 and 0.41, where p̄∗

wall = ∫
( p + ρwgz) dAwall/Awall and Awall is the area of

the pipe wall. Here, we add ρwgz in the modified pressure to remove the hydrostatic effect
in the pressure. For the narrow gap of jw/jo = 0.057, there is a recirculating flow in the
wave valley, and high- and low-pressure fluctuations are observed ahead of and behind
the crest, which is similar to those observed from core–annular flows in vertical pipes
(Bai et al. 1996; Li & Renardy 1999; Kim & Choi 2018). However, for jw/jo = 0.41, the
gap between the interface and lower pipe wall is sufficiently wide and turbulent flow is
observed within an oil-free region near the lower wall. Near the crest, p∗ is high and low
ahead of and behind the crest, respectively. This indicates that the oil flow in the core drags
the water flow. Also, p∗ is overall high and low near the upper and lower surfaces of the
pipe, respectively, and this difference is in balance with the buoyancy (Feng et al. 1995;
Ooms et al. 2012), which is discussed later in § 4.2.
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Figure 5. Contours of the instantaneous modified pressure fluctuations and relative velocity vectors:
(a) jw/jo = 0.057; (b) 0.41. The velocity vectors relative to the core velocity are drawn at every eighth grid
points in the streamwise and radial directions, except for the zoomed view in (a) where they are drawn at every
other grid point.

Figure 6 shows the mean streamwise velocity profiles of water (ũw) and oil (ũo)
normalized by the core velocity ucore and local friction velocity ũτ (θ), respectively, for
jw/jo = 0.057, 0.17 and 0.41, where ũw, ũo and ũτ are obtained as

ũw(r, θ) =

∫ T

0

∫ Lx

0
u(x, r, θ, t)ψ(x, r, θ, t) dx dt∫ T

0

∫ Lx

0
ψ(x, r, θ, t) dx dt

, (3.3)

ũ0(r, θ) =

∫ T

0

∫ Lx

0
u(x, r, θ, t)(1 − ψ(x, r, θ, t)) dx dt∫ T

0

∫ Lx

0
(1 − ψ(x, r, θ, t)) dx dt

, (3.4)

ũτ (θ) =
√
νw

∫ T

0

∫ Lx

0
(−∂u/∂r|wall) dx dt/(LxT). (3.5)

Since the core flow is almost a plug flow, ũo/ucore ≈ 1 but slightly decreases with
increasing r. The annular flow may be considered as a Poiseuille–Couette-type flow driven
by both the mean pressure gradient and the core. For jw/jo = 0.057 (figure 6a), the gap
between the interface and wall is narrow and little varies along the azimuthal direction (see
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Turbulent core–annular flow in a horizontal pipe
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ũ τ
(θ

)
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Figure 6. Profiles of the mean streamwise velocity of water (ũw) and oil (ũo) normalized by (a i,b i,c i) ucore
and (aii, bii, cii) local friction velocity ũτ (θ) , respectively: (a) jw/jo = 0.057; (b) 0.17; (c) 0.41.

figure 4). Thus, ũw at different azimuthal locations are quite similar among themselves and
have linear profiles except near the interface, indicating that the flow in water at this low
superficial velocity ratio is more like Couette flow driven by the core. With increasing
jw/jo, the gap size increases and the water velocity profile approaches the log-law of the
single-phase flow (see the velocity profiles at θ = 180◦ for jw/jo = 0.17 and at θ = 90◦
and 180◦ for jw/jo = 0.41 in figures 6b and 6c, respectively). Note that the oil-free region
at θ = 180◦ becomes wider with increasing jw/jo and the mean velocity profiles there
follow the law of the wall of the single-phase flow.
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Figure 7. Mean characteristics of the core flow: (a) holdup ratio (s), oil holdup (εo), core velocity (ucore/jo)
and annular velocity (uannular/jo); (b) contours of the mean water volume fraction ψ̃ (black solid line) and the
mean location of the phase interface h̃(θ) (red solid line) for jw/jo = 0.41; (c) eccentricity (e) and roundness
(χ). Contour levels of ψ̃ are from 0.05 to 0.95 by increments of 0.1.

Figure 7(a) shows the variations of the mean core-flow characteristics including the
holdup ratio (s = (qo/qw)/(Vo/Vw)), oil holdup (εo = Vo/(Vw + Vo)) and core (ucore) and
annular (uannular) velocities with jw/jo. The holdup ratio is the ratio of the bulk velocity of
oil (core) to that of water (annular) and is greater than 1, because the annular water flow is
heavily influenced by the viscous effect. With increasing jw/jo, the holdup ratio decreases
from 1.50 to 1.29, indicating that the amount of increase in Vw/Vo is smaller than that
in jw/jo(= qw/qo). With increasing jw/jo, the oil holdup εo decreases, and the core and
annular velocities normalized by jo(ucore/jo = 1/εo) increase.

Figure 7(b) shows the contours of the mean water volume fraction ψ̃(r, θ) and
the mean location of the phase interface h̃(θ) for jw/jo = 0.41, where ψ̃(r, θ) =∫ T

0

∫ Lx
0 ψ(x, r, θ, t) dx dt/(LxT). The region of 0 < ψ̃ < 1 is wider near the lower pipe

wall than that near the upper one, which indicates that the amplitude of the phase interface
wave is large and small near the lower and upper pipe walls, respectively. As shown
with h̃(θ), the core is deformed due to the buoyancy and is eccentric to the pipe centre.
Figure 7(c) shows the roundness χ and eccentricity e of the phase interface. The roundness
χ is defined as (the ratio of the volume of the core to that of a circular cylinder having the
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Turbulent core–annular flow in a horizontal pipe

same surface area of the core)

χ = 4π

∫ T

0

∫ Lx

0

∫ 2π

0

1
2

h2 dθ dx dt/(LxT){∫ T

0

∫ Lx

0

∫ 2π

0
h dθ dx dt/(LxT)

}2 , (3.6)

and the eccentricity is e = zcm/(R − havg), where zcm(=
∫ T

0

∫ V
0 z(1 − ψ) dV dt/∫ T

0

∫ V
0 (1 − ψ) dV dt) is the vertical distance from the pipe centre to the centre of mass of

the core, and havg = ∫ 2π

0 h̃(θ) dθ/2π is the overall mean radius of the phase interface. To
calculate the perimeter

∫
h dθ , the trapezoidal rule is used. The roundness of the circle is 1,

but that of the core is less than 1 and decreases with increasing jw/jo. For jw/jo = 0.41, the
interface is most deformed among the cases considered and the roundness is approximately
0.94, which is similar to that of the ellipse whose major and minor axes are 1.5 and 1,
respectively. Instantaneous interface shapes are much more non-circular than the mean
shape shown in figure 7(b). The eccentricity is very small for jw/jo = 0.057, indicating
that the phase interface is nearly circular because oil occupies almost the whole circular
pipe. The eccentricity rapidly increases from jw/jo = 0.057 to 0.085, is nearly constant for
0.085 < jw/jo < 0.25 and then slowly increases with increasing jw/jo, because the core
rises upward.

4. Phase interface and near-wall dynamics

4.1. Wave characteristics of the phase interface
The wave characteristics of the phase interface are investigated by computing the
streamwise wavenumber (kx) and frequency (ω) power spectra of the phase interface
amplitude, ζ(θ)(= h − h̃(θ)). The range of the streamwise wavenumber is 0 ≤ kx ≤
383/R (�kx = 1/R), and the sampling interval is �ts = 0.02R/jo during T = 81.92R/jo
which is divided into 15 overlapping segments with 50 % overlap (0 ≤ ω ≤ 157jo/R with
�ω = 0.6136jo/R; for more details, see Choi & Moin (1990)). The one-dimensional
wavenumber spectrum ϕ(kx, θ) and frequency spectrum ϕ(ω, θ) of the phase interface
amplitude ζ satisfy the following condition:∫ ∞

0
ϕ(kx, θ) dkx =

∫ ∞

0
ϕ(ω, θ) dω = ζ 2

rms(θ), (4.1)

where ζrms(θ) is the root-mean-square fluctuations of the phase interface amplitude.
Figure 8 shows the streamwise wavenumber and frequency spectra of the phase

interface amplitude at θ = 0◦ and 180◦ for jw/jo = 0.057, 0.17 and 0.41. The spectra
are broad-banded, indicating that the motion of the phase interface amplitude has a
turbulent nature. For jw/jo = 0.057, the streamwise wavenumber spectrum is more or less
homogeneous in the azimuthal direction, and high powers appear in low wavenumbers,
kxR ≤ 12 (λ ≥ πR/6), where λ is the corresponding wavelength. With increasing jw/jo,
the power peak moves to lower wavenumbers on the bottom interface (θ = 180◦), whereas
the power on the top interface is relatively insensitive to jw/jo. This is consistent with the
variation of large-scale wavy structures on the bottom interface with jw/jo in figure 3: the
power peak occurs at kxR = 12, 5 and 3 for jw/jo = 0.057, 0.17 and 0.41, respectively,
corresponding to the dominant wavelengths of λ/R = 0.52, 1.26 and 2.09. Note also
that the power at low wavenumbers and frequencies is much larger at θ = 180◦ than at
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Figure 8. Streamwise wavenumber and frequency spectra of the phase interface amplitude at θ = 0◦ and
180◦: (a) jw/jo = 0.057; (b) 0.17; (c) 0.41.
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Figure 9. Two-dimensional spectrum and convection velocity of the phase interface ( jw/jo = 0.17):
(a) contours of Φ(kx, ω); (b) convection velocity at three different azimuthal locations as a function of the
streamwise wavenumber. In (a), contour levels are logarithmically equally spaced.

θ = 0◦ for jw/jo = 0.17 and 0.41. The frequency spectra are very similar to the streamwise
wavenumber spectra, showing the convective nature of the phase interface.

Figure 9(a) shows the contours of the streamwise wavenumber–frequency power
spectrum of the phase interface amplitude, Φ(kx, ω) = ∫ 2π

0 Φ̃(kx, ω, θ) dθ/2π, for
jw/jo = 0.17, where Φ̃(kx, ω, θ) is the two-dimensional power spectrum as a function of
the azimuthal angle. As shown, the streamwise wavenumber–frequency power spectrum
shows a strong convective nature. The convection velocity of the phase interface can be
obtained as (Wills 1971; Choi & Moin 1990)

Ũconv(kx, θ) = −ω(kx, θ)

kx
, (4.2)

where ω(kx, θ) is obtained from

∂Φ̃(kx, ω, θ)

∂ω

∣∣∣∣∣
ω=ω(kx,θ)

= 0. (4.3)
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Turbulent core–annular flow in a horizontal pipe

A quadratic polynomial is used to find ω(kx, θ) in (4.3) (Kang, Moin & Iaccarino 2008).
Figure 9(b) shows the convection velocity normalized by the core velocity as a function
of the streamwise wavenumbers at three different azimuthal angles. The scatters of the
data shown in this figure are due to the limited statistical sample available for locating
the maxima of the spectrum within a set of discrete frequencies and wavenumbers,
and the convection velocities at low wavenumbers are also contaminated by a specific
window function (Hanning window) or the sampling period used (see also Choi &
Moin (1990) and Kim & Choi (2018)). The convection velocity is smaller than the core
velocity, indicating that the core drags the phase interface. At low wavenumbers where the
spectrum has a peak (kxR = 1–10), the convection velocities are lower than those at higher
wavenumbers (Ũconv(kx, θ)/ucore ≈ 0.94–0.98), suggesting that the energy-containing
large-scale structures of the phase interface more strongly interact with the water flow and
resist the core flow more than the small-scale structures do. This characteristic is similar
to that of the core–annular flow in a vertical pipe (Kim & Choi 2018). Note also that the
convection velocity at θ = 0◦ is lower than those at θ = 90◦ and 180◦ due to the viscous
effect at the narrow gap, although the difference is not so large. The overall convection
velocity Uconv of the most energetic wave is obtained from

∂W(U∗)
∂U∗

∣∣∣∣
U∗=Uconv

= 0, (4.4)

where

W(U∗) =
∫
Φ(kx,−U∗kx) dkx. (4.5)

The overall convection velocity increases with increasing jw/jo; i.e. Uconv/ucore ≈
0.94, 0.95 and 0.96 for jw/jo = 0.057, 0.17 and 0.41, respectively. This indicates that most
energetic motions move downstream at a speed slightly lower than the core velocity.

4.2. Dynamics of oil core
The stress on the phase interface is obtained as

σijnj =
{
−pδij + μ

(
∂ui

∂xj
+ ∂uj

∂xi

)}
nj, (4.6)

where the subscripts i = 1, 2 and 3 indicate the axial (x), lateral (y) and vertical (z)
coordinates, respectively (figure 1). The pressure and velocity gradient on the interface
are obtained by a linear interpolation from grid points at the nearest oil region to those
at the phase interface. From the stress boundary condition at the phase interface ( jump
condition), the stress at the phase interface from the core region is the sum of the stress at
the phase interface from the annular region and the surface tension (Brackbill et al. 1992).

Figure 10 shows the contours of the instantaneous stresses on the interface, σzjnj/(ρw −
ρo)gR and σxjnj/ρwu2

τ , and their components for jw/jo = 0.41. Here, the viscous normal
stress is included in the pressure. Note that the stresses σzj and σxj are normalized by the
hydrostatic pressure difference and wall shear stress, respectively, to explain σzj and σxj
in terms of the lift and drag forces, respectively. The stagnation pressure ahead of the
crest generates the wall-repulsive (−r direction) and drag (−x direction) forces (in this
figure, δxjnj are positive and negative on the forward and leeward sides, respectively). The
pressure on the upper interface is higher than that of the lower one (δzjnj are positive and
negative on the upper and lower interfaces, respectively), providing a negative lift (−z
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Figure 10. Contours of the instantaneous stresses acting on the phase interface ( jw/jo = 0.41):
(a) σzjnj/(ρw − ρo)gR; (b) σxjnj/ρwu2
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Figure 11. Variations of the mean lift and drag force coefficients on the core with jw/jo: (a) lift coefficient;
(b) drag coefficient. Here, �, viscous stress; +, pressure; ◦, their sum. In (b), solid circles (•) indicate the
analytic mean drag coefficient on the phase interface.

direction) force on the core which balances its buoyancy force, whereas the contribution
of the viscous shear stress to the lift force is very small (figure 10a). For the drag force
(figure 10b), both the pressure and viscous shear stress are highly positive and negative on
the forward side of the crest, respectively, and thus push the crest in the upstream direction,
whereas low pressure and positive viscous shear stress are generated on the leeward side
of the crest, indicating that the flow separates across the crest.

Figure 11 shows the variations of the mean lift (CL = −F̄z/(ρw − ρo)gVo) and drag
(CD = −F̄x/ρwu2

τAcore) coefficients on the oil core with jw/jo, together with the analytic
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Turbulent core–annular flow in a horizontal pipe
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Figure 12. Clearance Reynolds number and mean wall shear stress: (a) azimuthal variation of the clearance
Reynolds number; (b) mean shear stress versus clearance Reynolds number. The region from laminar to
turbulent transition is grey coloured in (a). The dashed lines in (b) are the relations of the wall shear stress
with the clearance Reynolds number for laminar and turbulent flows, respectively.

solutions of the mean lift and drag coefficients (CL = 1 and CD = √
ε0χ ), where the

instantaneous forces are obtained by integrating the stresses over the phase interface,

Fi =
∫
σijnj dA =

∫ {
−pδij + μ

(
∂ui

∂xj
+ ∂uj

∂xi

)}
nj dA, (4.7)

and Acore is the surface area of the phase interface at the same oil holdup. The analytical
mean drag coefficient of CD = √

εoχ is obtained by combining the momentum balances
on the whole domain and oil core, respectively, and introducing χ = 4πAo/P2, εo =
Vo/V = Ao/πR2 and Acore = PLx, where Ao is the cross-sectional area of the oil core,
and P is the wetted perimeter of the phase interface (see Appendix B for the derivation).
As shown in this figure, the computations of CL and CD on the phase interface using (4.7)
are not very accurate but contain maximum 10 % errors because the surface tension force
is smeared out from the phase interface by using the continuum surface force approach
(Brackbill et al. 1992). As discussed in figure 10(a), the contribution of the pressure to the
lift is dominant and that of the viscous shear is very small (Oliemans et al. 1987; Feng
et al. 1995). For the drag coefficient, both the pressure and viscous shear stress on the
interface are important. For low jw/jo, the contribution of the viscous shear stress is bigger
than that of the pressure owing to the narrow gap between the interface and pipe wall.
With increasing jw/jo, the gap size increases and thus the contribution of the viscous shear
stress on the interface to the drag decreases, while that of the pressure is nearly unchanged,
resulting in the decrease in the drag coefficient.

4.3. Flow transition and near-wall dynamics
Figure 12 shows the azimuthal variation of the clearance Reynolds number Rec(θ)
and the variation of the mean wall shear stress τ̃w(θ) with Rec(θ) for various jw/jo,
where Rec(θ) = ucore(R − h̃avg(θ))/νw. The clearance Reynolds numbers for jw/jo =
0.085, 0.11 and 0.17 are mostly in the transitional region. The normalized mean wall shear
stresses, τ̃w(θ)/ρwu2

core, follow the relations of the laminar flow at low Rec (narrow gap)
and of turbulent flow at high Rec (wide gap), respectively, with a transient behaviour in
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between them. At low Rec, the velocity profile of water flow is almost linear from the wall
to the core (see figure 6a). Assuming a linear velocity profile having ucore at r = h̃avg(θ),
the wall shear stress at low Rec can be approximated as

τ̃w(θ)

ρwu2
core

∼ 1
ρwu2

core

(
μw

ucore

R − h̃avg(θ)

)
= 1

Rec
. (4.8)

As shown in figure 12(b), (4.8) holds for Rec ≤ 600. For jw/jo = 0.057, all Rec are within
this regime. On the other hand, for Rec ≥ 2500, τ̃w(θ) follows the following relation
(similar to the Blasius friction factor formula):

τ̃w(θ)

ρwu2
core

= 0.5

Re1/4
c
. (4.9)

Although the Blasius friction factor formula applies to a turbulent Poiseuille flow, Orlandi,
Bernardini & Pirozzoli (2015) showed that the friction factor of a turbulent Couette flow in
a channel is also proportional to Re−1/4

b . The present result suggests that the friction factor
(normalized by ucore) also decreases with Re−1/4

c . For 600 < Rec < 2500, τ̃w(θ) is in the
transitional region. It is worth reporting that this Reynolds number dependency of the wall
shear stress justifies the use of the pressure drop model by Arney et al. (1993), where their
model was based on laminar and turbulent friction factor formulae for single-phase pipe
flow with a different definition of the Reynolds number.

Figure 12(a) indicates that flow in water is laminar ( jw/jo = 0.057), laminar at 0◦ ≤
θ < 100◦ but transitional at 100◦ � θ ≤ 180◦ ( jw/jo = 0.085), early transitional ( jw/jo =
0.11), fully transitional ( jw/jo = 0.17) and transitional and turbulent ( jw/jo = 0.25 and
0.41). The drag on the pipe wall comes from the integration from θ = 0◦ to 180◦. The case
of jw/jo = 0.11 contains only early transitional flow where the skin friction does not reach
that of fully transitional flow, resulting in lowest drag (figure 2). Note that some laminar
flow region contains higher skin friction than that of early transitional flow (figure 12b),
and thus the drag at jw/jo = 0.057 is larger than those at jw/jo = 0.085 and 0.11.

Figure 13 shows the two-dimensional power spectra of the wall shear stress, Φ̃(kx, ω, θ),
at three different azimuthal angles for jw/jo = 0.17, together with that of single-phase
turbulent pipe flow. At the top of the pipe wall (Rec ≈ 750 at θ = 0◦; figure 13a), the
power spectrum, which is similar to that of the phase interface (figure 9a), indicates that
the wall shear stress is convection dominated with a nearly constant convection velocity
for all streamwise wavenumbers. Since the laminar Couette-type flow is dominant at this
azimuthal location, the convection velocity obtained from (4.2) and (4.3) is slightly smaller
than ucore (Bai 1995; Rodriguez & Bannwart 2006). On the other hand, at the bottom of
the pipe (Rec ≈ 2500 at θ = 180◦; figure 13c), the power spectrum is broad-banded like
that of single-phase flow (figure 13d) but has a steeper slope than that of single-phase flow,
indicating that the flow in the bottom gap is turbulent but the convection velocity of the
wall shear stress is higher than that of single-phase flow. At the side of the pipe (Rec ≈
1260 at θ = 90◦; figure 13b), the power spectrum contains both characteristics shown in
figure 13(a,c). The two-dimensional power spectra of the wall shear stress for jw/jo =
0.057 and 0.41 are shown in figure 14. For jw/jo = 0.057, the clearance Reynolds numbers
are quite small (Rec ≤ 560), and thus the spectra are very similar to that in figure 13(a).
On the other hand, for jw/jo = 0.41,Rec ≥ 1400 and thus the spectra are more like those
in figure 13(b,c). Note that the power spectrum at θ = 0◦ is no longer like that of laminar
Couette flow but like the transitional flow due to the wide gap there.
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Figure 13. Two-dimensional power spectra of the wall shear stress ( jw/jo = 0.17): (a) θ = 0◦; (b) 90◦;
(c) 180◦; (d) single-phase flow. The contour levels are logarithmically equally spaced. A thick white bar in
(a) denotes the slope corresponding to the core velocity.

5. Summary

We numerically investigated the characteristics of the core–annular flow of high viscosity
oil and water in a horizontal pipe for six different superficial velocity ratios of water-to-oil.
The mean pressure gradient in a pipe and instantaneous shape of the phase interface
agreed well with those of the experiment at the same flow conditions. The flow and wave
characteristics of the core–annular flow in a horizontal pipe were different from those in
a vertical pipe (Kim & Choi 2018) because of the buoyancy. Thus, the core rose up due
to the buoyancy and was eccentric to the pipe centre, and the flow characteristics changed
along the azimuthal direction.

The flow inside the core was nearly uniform and laminar, whereas the flow in the
gap changed significantly with the gap size. Especially, the flow in the gap showed two
different characteristics in the annular flow depending on the clearance Reynolds number
Rec based on the core velocity and local gap size. For low Rec, small-scale vortices were
rarely observed and the annular flow was similar to the laminar Couette flow driven by
the core. On the other hand, for high Rec, there existed an oil-free region near the wall
and the flow was very similar to that of single-phase turbulent pipe flow. With increasing
superficial velocity ratio jw/jo, the gap size increased, and its rate of increase was faster
at the bottom wall than that at the top wall. Thus, the transition to turbulence started
from the bottom wall to the top one. The wall shear stress was proportional to Re−1

c

and Re−1/4
c for Rec ≤ 600 and Rec ≥ 2500, respectively. In between these two regions
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Figure 14. Two-dimensional power spectra of the wall shear stress at (a i,b i) (θ = 0◦), (a ii,b ii) (90◦) and
(a iii,b iii) (180◦) of the pipe: (a) jw/jo = 0.057; (b) 0.41. Contour levels are logarithmically equally spaced.

(600 < Rec < 2500), transition to turbulence occurred and a local minimum of the wall
shear stress existed. Since Rec for jw/jo = 0.11 were in this early transition region, the
minimum mean pressure gradient occurred at this jw/jo for a given jo (figure 2).

The lift and drag forces acting on the core were analysed. The stagnation pressure in the
forward side of the crest generated the wall-repulsive force which was higher near the top
wall than near the bottom one, which balanced the buoyancy. The drag coefficient from the
viscous shear stress was high at low jw/jo due to high wall shear stress in the narrow gap
and decreased with increasing jw/jo, but that from the pressure was more or less similar
for jw/jo considered.
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The wavelength and amplitude of the phase interface were small for a narrow gap and
large for a wide gap, respectively. The high power in the streamwise wavenumber spectra
occurred near the bottom wall, and the corresponding peak wavenumbers decreased with
increasing jw/jo. The frequency spectra were very similar to those of the streamwise
wavenumber ones due to the convective nature of the phase interface, and the overall
convection velocity was slightly smaller than the core velocity. The power spectra of the
wall shear stress also showed two flow characteristics, laminar Couette and turbulent pipe
flows, depending on the clearance Reynolds number.
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Appendix A. Numerical method for maintaining a constant mass flow rate

In practice, oil and water are separately supplied to the pipe core and annulus, respectively,
with their mass flow rates controlled (Arney et al. 1996; Rodriguez et al. 2009). However,
due to the periodic boundary condition in the streamwise direction taken in the present
numerical simulation, it is impossible to simulate the core–annular flow by maintaining
both mass flow rates and volumes of two fluids (see also Kouris & Tsamopoulos (2001)).
Since the mean pressure gradient cannot balance both drags on oil (at the phase interface)
and water (at the phase interface and wall) simultaneously, a net force changes the mass
flow rates. In the present study, the change in the mass flow rates is compensated with the
momentum flux across the phase interface by adjusting the phase interface. This procedure
changes the volumes of fluids during the transient time period, but the changes of volumes
are very small later during computation.

The present numerical method is similar to that of maintaining a constant mass flow rate
for a single-phase flow (You, Choi & Yoo 2000). A temporally discretized equation of the
streamwise momentum equation (2.2) before applying the fractional step method is

ρ̂un+1 − ρnun

�t
+ 1

2
∂

∂xj

(
ρ̂un+1un+1

j + ρnunun
j

)
= −dPn+1

dx
− ∂pn+1

∂x

+ 1
2
∂

∂xj

{
μ̂

(
∂un+1

∂xj
+
∂un+1

j

∂x

)
+ μn

(
∂un

∂xj
+
∂un

j

∂x

)}
+ σκnδnnn

1. (A1)

Substituting (A1) into (2.6) and integrating the resulting equation over the whole
computational domain, the mean pressure gradient at the next time step becomes

−
(

dPn+1

dx
− dPn

dx

)
V =

∫ (
ρ̂un+1 − ρ̂û

�t

)
dV. (A2)

When we require the sum of the mass flow rates not to be changed in time,
∫
ρ̂un+1 dV =

(ṁn+1
o + ṁn+1

w )Lx = (ṁo|t=0 + ṁw|t=0)Lx, and thus (A2) becomes

−
(

dPn+1

dx
− dPn

dx

)
V = 1

�t

{
(ṁo|t=0 + ṁw|t=0) Lx −

∫
ρ̂û dV

}
, (A3)
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where ṁn+1
o (= ρoun+1

b,o Vn+1
o /Lx) and ṁn+1

w (= ρwun+1
b,w Vn+1

w /Lx) are the mass flow rates
of oil and water at the(n + 1)th time step, and ub,o and ub,w are the oil and water bulk
velocities, respectively. At t = 0, we provide the analytic velocity profile of a laminar
core–annular flow having a cylindrically shaped phase interface (Bai et al. 1992), and
adjust the maximum streamwise velocity and radial location of the phase interface to match
the given mass flow rates of oil and water.

With the mean pressure gradient obtained from (A3), the total mass flow rate is
maintained during simulation; i.e. ṁn+1

o + ṁn+1
w = ṁo|t=0 + ṁw|t=0. To maintain the

mass flow rate of each fluid, we additionally fix the ratio of water-to-oil mass flow rates,
ṁn+1

w /ṁn+1
o = ṁw|t=0/ṁo|t=0, which gives

Vn+1
w

Vn+1
o

= ub,w|t=0/ub,o|t=0

un+1
b,w /u

n+1
b,o

Vw|t=0

Vo|t=0
, (A4)

where un+1
b,o = ûb,o and un+1

b,w = ûb,w are easily shown by adding (2.7) and (2.9) and
integrating the velocities over the oil and water regions, respectively. With two conditions,
ṁn+1

o + ṁn+1
w = ṁo|t=0 + ṁw|t=0 and ṁn+1

w /ṁn+1
o = ṁw|t=0/ṁo|t=0, we obtain ṁn+1

o =
ṁo|t=0 and ṁn+1

w = ṁw|t=0 within numerical accuracy. To relocate the phase interface to
satisfy the volume ratio in (A4), we use an algorithm for the global mass conservation for
the level-set method (Son 2001; Zhang et al. 2010),

∂φ

∂τv
= φ√

φ2 + |∇φ|2�2
G

Vn+1
o − Vo|t=0

Vo|t=0
, (A5)

where τv is the pseudotime for the volume correction iteration. Since the stress and the
pressure change smoothly near the phase interface in the present study, a small change in
the location of the phase interface has a negligible effect on the real dynamics, and the
flow can reach a fully developed state by maintaining the mass flow rates of both fluids.

Figure 15 shows the time histories of the superficial velocities of oil and water and the oil
volume for jw/jo = 0.11 using the present numerical method. The oil and water superficial
velocities and oil volume change in time, but their magnitudes of the fluctuations are
negligible.

Appendix B. Analytic mean drag coefficient on the oil core

Consider a two-dimensional core annular flow where oil is encapsulated in the pipe core
by water in the annulus (figure 16). The momentum balances on oil and water and oil only
in the axial direction, respectively, provide

ΣFo+w = −D + ( po +�po)Ao + ( pw +�pw)Aw − poAo − pwAw = 0, (B1)

ΣFo = −Di + ( po +�po)Ao − poAo = 0, (B2)

where D and Di are the forces on the pipe wall and phase interface in the axial direction,
po and pw are the oil and water mean pressures, Ao and Aw are the oil and water
cross-sectional areas, respectively, and Lx is the pipe length. Here,�po = �pw = �p, and
Ao + Aw = πR2. Then, from (B1) and (B2), Di = DAo/πR2. Introducing D = τ̄w2πRLx,
τ̄w = ρwu2

τ , εo = Vo/V = Ao/(πR2), Acore = PLx and χ = 4πAo/P2 provide the mean
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Figure 15. Time histories of the superficial velocities and oil volume ( jw/jo = 0.11): (a) superficial velocities
of oil (black solid line) and water (black dashed line); (b) oil volume. Here, V̄o is the time average of oil volume
at the fully developed state.

Lx

Oil

Water

Ao

po+�po po

pw+�pw pw
Aw

D

Di

Pipe

Interface

Figure 16. Schematic diagram of momentum balances on oil and water and oil only.

drag coefficient on the oil core as

CD ≡ Di

ρwu2
τAcore

= √
εoχ, (B3)

where Acore and P are the surface area and wetted perimeter of the phase interface,
respectively. Note that this analytical solution is valid when the phase interface does not
vary along the axial direction.
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