SPECTRAL MAXIMAL PROJECTIONS AND PROJECTION-RELATIVE DECOMPOSABILITY ON BANACH SPACES

GERARD DUBOIS

Institut National des Sciences Appliquées de Lyon, Laboratoire Modélisation Mathématiques de Lyon, Bâtiment Léonard de Vinci, F - 69621 Villeurbanne Cedex e-mail: maths@insa-lyon.fr

(Received 15 July, 2003; accepted 7 January, 2004)

Abstract. We define and study some properties of spectral maximal projections of a bounded operator on a complex Banach space. Then we apply these results to the new concepts of weakly projection-relative decomposable operators and projection-relative decomposable operators in the spirit of the works of C. Foias [6], A. Jafarian [7], I. Erdelyi and R. Lange [5].

2000 Mathematics Subject Classification. 47B40.

1. Introduction. Let *X* be a complex Banach space, B(X) the algebra of all bounded linear operators on *X*, and \mathbb{C} the field of complex numbers. For an operator $T \in B(X)$, $\sigma(T)$ is the spectrum of *T* and $\rho(T) = \sigma(T)^c$ its resolvent. For $\lambda \in \rho(T)$ we shall use the notation $R(\lambda, T) = (\lambda - T)^{-1}$. When *f* is an analytic function defined on an open neighborhood of $\sigma(T)$ we can define the bounded operator f(T) on *X* by

$$f(T) = \frac{1}{2\pi i} \int_{\Gamma} f(\lambda) R(\lambda, T) d\lambda,$$

Γ being an admissible contour surrounding σ(T). Let T ∈ B(X). An *invariant bounded* projection under *T* is a bounded projection *p* on *X* such that *pX* is invariant for *T*. Invariant subspaces *Y* of *X* or invariant bounded projections *p* produce the restrictions $T | Y \text{ or } T_p$ as well as the coinduced operators T^Y or T^p on the quotient spaces X/Y or X/pX. We say that *Y* or *p* are *σ*-invariant under *T* if σ(T | Y) ⊂ σ(T) or $σ(T_p) ⊂ σ(T)$ which implies $σ(T) = σ(T | Y) ∪ σ(T^Y)$ or $σ(T) = σ(T_p) ∪ σ(T^p)$. Moreover *Y* or *p* are said to be *hyperinvariant for T* if *Y* or *pX* is invariant under each R ∈ B(X) that commutes with *T*. T ∈ B(X) is said to have the *single-valued extension property* if for every function f : D → X (*D* open in \mathbb{C}) analytic on *D*, the condition (λ - T)f(λ) ≡ 0on *D* implies f ≡ 0. For such an operator, the *local resolvent set* $ρ_T(x)$ is defined for every x ∈ X and there exists a unique *X*-valued analytic function \tilde{x}_T satisfying the equation $(λ - T)\tilde{x}_T(λ) = x$ on $ρ_T(x)$. Lastly $X_T(F) = \{x ∈ X | σ_T(x) ⊂ F\}$ for a subset *F* of \mathbb{C} .

2. Spectral maximal projections.

DEFINITION 2.1. Given $T \in B(X)$, an invariant bounded projection p for T is called a spectral maximal projection of T if for any invariant bounded projection q under T, the inclusion $\sigma(T_q) \subset \sigma(T_p)$ implies $qX \subset pX$.

GERARD DUBOIS

REMARK 2.2. If Y is a spectral maximal space of $T \in B(X)$ such that Y is complemented in X, then there exists a spectral maximal projection p such that Y = pX. In particular, if X is a Hilbert space, the spectral maximal subspaces are exactly the invariant subspaces Y = pX in which p is a spectral maximal projection of T.

EXAMPLE 2.3. Let *T* be a quasispectral operator of class Γ with a spectral measure E(.) of class Γ , then $X_T(F) = E(F)X$ for all closed $F \subset \mathbb{C}$ [1, Lemma 1]. Hence E(F) is a spectral maximal projection of *T* for each closed $F \subset \mathbb{C}$.

EXAMPLE 2.4. Let $T \in B(X)$ and $\sigma(T)$ be totally disconnected. Let δ be a separate part of $\sigma(T)$ and $A_T(\delta) = \frac{1}{2\pi i} \int_{\Gamma} R(\lambda, T) d\lambda$ be the spectral projection corresponding to δ , where Γ is a system of curves situated in $\rho(T)$ and surrounding δ . Then $A_T(\delta)$ is a spectral maximal projection of T, $A_T(\delta)X$ being a spectral maximal space of T. See [3, Proposition 1.3.10].

THEOREM 2.5. Every spectral maximal projection of $T \in B(X)$ is hyperinvariant under T and $\sigma(T) = \sigma(T_p) \cup \sigma(T^p)$.

Proof. Let $R \in B(X)$ commute with T. Then for each $\lambda \in \rho(T)$, $\lambda - R$ is an isomorphism in B(X) commuting with T. We can write $(\lambda - R)pX = qX$ where q is the bounded projection defined by $q = (\lambda - R)p(\lambda - R)^{-1}$. From $T_q = (\lambda - R)T_p(\lambda - R)^{-1}$ it follows that $\sigma(T_q) = \sigma(T_p)$ which implies $qX \subset pX$. Hence $RpX \subset pX$.

THEOREM 2.6. Given $T \in B(X)$, let $f : D \to \mathbb{C}$ be analytic and injective on an open neighborhood D of $\sigma(T)$. A projection p in B(X) is a spectral maximal projection for T if and only if it is a spectral maximal projection for f(T).

Proof. First we prove the 'if' part of the assertion. Let q be an invariant bounded projection for T that satisfies condition $\sigma(T_q) \subset \sigma(T_p) \subset \sigma(T)$ (the last inclusion is a consequence of the hyperinvariant property of p). Now we can write

$$\sigma(f(T)_q) = \sigma(f(T_q))$$

= $f(\sigma(T_q))$
 $\subset f(\sigma(T_p)) = \sigma(f(T_p)) = \sigma(f(T)_p)$

and it follows that $qX \subset pX$.

Conversely, let p be a spectral maximal projection of T and let q be an invariant projection under f(T) such that $\sigma(f(T)_q) \subset \sigma(f(T_p)) \subset \sigma(f(T))$. Then

$$f(\sigma(T_q)) = \sigma(f(T_q))$$

= $\sigma(f(T)_q)$
 $\subset \sigma(f(T)_p) = \sigma(f(T_p)) = f(\sigma(T_p)),$

which leads to the desired conclusion.

DEFINITION 2.7. For $T \in B(X)$, we say that an invariant bounded projection p under T is T-absorbent if, for any $x \in pX$ and all $\lambda \in \sigma(T_p)$, the equation $(\lambda - T)y = x$ has all solutions y in pX.

THEOREM 2.8. Given $T \in B(X)$ and p a spectral maximal projection for T then p is T-absorbent.

Proof. The proof is similar to that of [5, Theorem 3.7] and we shall only sketch it. Let $\lambda \in \sigma(T_p)$, $x \in pX$ and let y be a solution of the equation $(\lambda - T)y = x$. If $y \notin pX$, by putting $Y_0 = pX \oplus \mathbb{C}y$ we see that $Y_0 = p_0X$ with p_0 a bounded projection in B(X) invariant under T and from the inclusion $\sigma(T_{p_0}) \subset \sigma(T_p)$ we should have $p_0X \subset pX$ which is preposterous.

COROLLARY 2.9. Let $T \in B(X)$ have the single-valued extension property. If p is a spectral maximal projection for T, then pX is analytically invariant for T; that is for every function $f: D \to X$ analytic on some open $D \subset \mathbb{C}$, the condition $(\lambda - T)f(\lambda) \in pX$ implies that $f(\lambda) \in pX$.

Proof. This result is well known when Y is an invariant T-absorbing subspace of X and T has the single-valued extension property [5, Theorem 2.26].

3. Weakly projection-relative decomposable operators.

DEFINITION 3.1. $T \in B(X)$ is said to be *weakly projection-relative* (respectively *c*-weakly projection-relative) decomposable if for every open cover $\{G_i\}_{1 \le i \le n}$ of $\sigma(T)$, there is a system of spectral maximal projections $\{p_i\}_{1 \le i \le n}$ of T (respectively commuting with T) which performs the following asymptotic spectral decomposition.

- 1. $\sigma(T_{p_i}) \subset G_i$ for every $1 \leq i \leq n$.
- 2. $X = \sum_{i=1}^{n} p_i X$.

PROPOSITION 3.2. Let T be weakly projection-relative (respectively c-weakly projection-relative) decomposable. If $G \subset \mathbb{C}$ is open and $G \cap \sigma(T) \neq \emptyset$, then there exists a non zero spectral maximal projection p (respectively commuting with T) with the property $\sigma(T_p) \subset G$.

Proof. Let G' be a second open set such that $\{G, G'\}$ is a covering of $\sigma(T), \sigma(T) \not\subset G'$. Then there are p, q spectral maximal projections of T satisfying $\sigma(T_p) \subset G, \sigma(T_q) \subset G'$, $X = \overline{pX + qX}$. Now if p = 0, we should have X = qX in contradiction with the choice of G'.

LEMMA 3.3. If p is a spectral maximal projection of an operator T in B(X) and D is a domain such that there is a nonzero analytic X-valued function f satisfying the equation $(\lambda - T)f(\lambda) = 0$ on D, then $D \cap \sigma(T_p) = \emptyset$ or $D \subset \sigma_{point}(T_p)$, where $\sigma_{point}(T_p)$ is the point spectrum of T_p .

Proof. We shall follow the proof of [5, Lemma 6.3], where the key point is the finite dimensional property of the linear manifold $X_n = \bigvee \{f(\lambda_0), f'(\lambda_0), \dots, f^{(n)}(\lambda_0)\}$ which is complemented in X so that we can associate with X_n a bounded projection p_n invariant under T such that $X_n = p_n X$.

THEOREM 3.4. Every weakly projection-relative decomposable operator has the single valued extension property.

Proof. Let T be weakly projection-relative decomposable and $f: D \to X$ be analytic and satisfy the equation $(\lambda - T)f(\lambda) = 0$ on an open set $D \subset \mathbb{C}$. We may assume that $D \cap \sigma(T) \neq \emptyset$ and D is a domain. By Proposition 3.2, there is a nonzero spectral maximal projection p of T such that $\sigma(T_p) \subset D$. If $f \neq 0$ on D then, by Lemma 3.3, $D \subset \sigma(T_p)$, which gives a contradiction, D being open and not void.

GERARD DUBOIS

THEOREM 3.5. Given $T \in B(X)$, let $f : \mathbb{D} \to \mathbb{C}$ be analytic and injective on an open neighbourhood D of $\sigma(T)$. Then T is weakly projection-relative (respectively c-projection relative) decomposable if and only if f(T) is.

Proof. Let f(T) be weakly projection-relative decomposable and $\{G_i\}_{1 \le i \le n}$ be an open covering of $\sigma(f(T))$. Since $\sigma(T) \subset D$ the sets $G'_i = G_i \cap D$, $1 \leq i \leq n$, also form an open covering of $\sigma(T)$. In addition $\{f(G'_i)\}_{1 \le i \le n}$ is an open covering of $\sigma(f(T))$ and we can find spectral maximal projections p_i of f(T) such that

$$\sigma(f(T)_{p_i}) \subset f(G'_i) \qquad (i = 1, 2, \dots, n), \tag{1}$$

$$X = \sum_{i=1}^{n} p_i X.$$
 (2)

But p_i $(1 \le i \le n)$ are also spectral maximal projections of T by Theorem 2.5 and the inclusion $f(\sigma(T_{p_i})) \subset f(G'_i)$ leads to

$$\sigma(T_{p_i}) \subset G'_i \subset G_i \qquad (1 \le i \le n).$$

Thus T is weakly projection-relative decomposable. Now, if p_i commutes with f(T), then p_i commutes with T too. Conversely, the proof is similar.

4. Projection-relative decomposable spectrum.

DEFINITION 4.1. $T \in B(X)$ is said to have projection-relative (respectively cprojection relative) decomposable spectrum if for every open covering $\{G_i\}_{1 \le i \le n}$ of $\sigma(T)$, there is an asymptotic projection-relative decomposition induced by a system $\{p_i\}_{1 \le i \le n}$ of spectral maximal projections of T (respectively commuting with T) such that

1. $\sigma(T_{p_i}) \subset G_i \quad (1 \le i \le n),$ 2. $Y = \overline{\sum^n n Y}$

2.
$$X = \sum_{i=1}^{n} p_i X$$

3. $\sigma(T) = \bigcup_{i=1}^{n} \sigma(T_{p_i}).$

THEOREM 4.2. Let T be a weakly projection-relative (respectively c-projectionrelative) decomposable operator. The following statements are equivalent.

(i) T has projection-relative (respectively c-projection-relative) decomposable spectrum.

(ii) If $F \subset \sigma(T)$ is closed and $G \supset F$ is open, then there exists a spectral maximal projection p of T (respectively commuting with T) such that $F \subset \sigma(T_p) \subset G$.

(iii) Every system $\{p_i\}_{1 \le i \le n}$ of spectral maximal projections (respectively commuting with T) satisfies $\sigma(T) = \bigcup_{i=1}^{n} \sigma(T_{p_i})$ whenever $X = \overline{\sum_{i=1}^{n} p_i X}$.

Proof. Obviously (iii) implies (i). We shall prove that (i) \Rightarrow (ii). For this, let $F \subset \sigma(T)$ be closed and $G \supset F$ be open. Then $\{G, F^c\}$ is an open covering of $\sigma(T)$ and so there are spectral maximal projections p, q of T satisfying conditions $\sigma(T_p) \subset G, \sigma(T_q) \subset$ $F^c, \sigma(T) = \sigma(T_p) \cup \sigma(T_q)$. Consequently $F \subset \sigma(T_p) \subset G$. It remains to prove that (ii) \Rightarrow (iii). Let $\{p_i\}_{1 \le i \le n}$ be an arbitrary system of spectral maximal projections of T performing the decomposition $X = \overline{\sum_{i=1}^{n} p_i X}$. If $F = \bigcup_{i=1}^{n} \sigma(T_{p_i}) \neq \sigma(T)$ then there

exists a spectral maximal projection q of T such that $F \subset \sigma(T_q) \neq \sigma(T)$. Now we have

$$\sigma(T) = \sigma\left(T / \overline{\sum_{i=1}^{n} p_i X}\right) \subset \bigcup_{i=1}^{n} \sigma(T_{p_i}) \subset \sigma(T_q).$$

It follows that X = qX and $\sigma(T) = \sigma(T_q)$ which is preposterous.

5. Projection-relative quasi decomposable operators.

DEFINITION 5.1. A weakly projection-relative (respectively *c*-projection relative) decomposable operator is said to be *projection-relative* (respectively *c-projection relative*) quasi decomposable if $X_T(F)$ is closed whenever $F \subset \mathbb{C}$ is closed.

THEOREM 5.2. Every projection-relative (respectively c-projection-relative) quasi decomposable operator has projection-relative (respectively c-projection-relative) decomposable spectrum.

Proof. Let $\{G_i\}_{1 \le i \le n}$ be a finite open covering of $\sigma(T)$ and let $\{p_i\}_{1 \le i \le n}$ be a system of spectral maximal projections of T such that $\sigma(T_{p_i}) \subset G_i$ for $1 \le i \le n$ and $X = \sum_{i=1}^{n} p_i X$. If $F = \bigcup_{i=1}^{n} \sigma(T_{p_i})$ is proper in $\sigma(T)$, then $X_T(F)$ is proper in X, but each $p_i X$ is contained in $X_T(F)$, which is preposterous.

THEOREM 5.3. If T is a weakly c-projection-relative decomposable operator, then T is in fact a c-projection-relative quasi decomposable operator.

Proof. Let *F* be a closed set in \mathbb{C} , and *G* any open set containing *F*. Since {*F*^{*c*}, *G*} is an open covering of $\sigma(T)$, there exist p_1 and p_2 spectral maximal projections of *T* such that $\sigma(T_{p_1}) \subset F^c$, $\sigma(T_{p_2}) \subset G$, $X = \overline{p_1 X + p_2 X}$, with p_1, p_2 commuting with *T*. If $x \in X_T(F)$, there exist $x_{1,n} \in p_1 X$, $x_{2,n} \in p_2 X$ such that $x = \lim_{n \to \infty} (x_{1,n} + x_{2,n})$. Now $p_1 T = Tp_1$ and so

$$\sigma_T(p_1x) \subset \sigma_T(x) \cap \sigma(T_{p_1})$$
$$\subset F \cap F^c = \emptyset.$$

This implies that

$$p_1 x = 0 = \lim_{n \to \infty} (p_1 x_{1,n} + p_1 x_{2,n})$$
$$= \lim_{n \to \infty} (x_{1,n} + p_1 x_{2,n})$$

and so

$$x = \lim_{n \to \infty} (x_{1,n} + x_{2,n}) - \lim_{n \to \infty} (x_{1,n} + p_1 x_{2,n})$$

=
$$\lim_{n \to \infty} (x_{2,n} - p_1 x_{2,n}).$$

Since spectral maximal projections are hyperinvariant we have $p_1x_{2,n} \in p_2X$ and $x \in p_2X$. Finally, we obtain

$$X_T(F) \subset p_2 X$$

$$\subset X_T(\sigma(T_{p_2}))$$

$$\subset X_T(G),$$

G being any open set containing F. We have

$$X_T(F) \subset p_2 X$$

$$\subset \bigcap_{F \subset G} X_T(G) = X_T\left(\bigcap_{F \subset G} G\right) = X_T(F).$$

Thus $X_T(F) = p_2 X$ is closed.

6. Projection-relative decomposable operators.

DEFINITION 6.1. $T \in B(X)$ is called *projection-relative* (respectively *c-projection-relative*) *decomposable*, if for every open covering $\{G_i\}_{1 \le i \le n}$ of $\sigma(T)$, there exists a system $\{p_i\}_{1 \le i \le n}$ of spectral maximal projections of *T* (respectively commuting with *T*) yielding the following spectral decomposition.

1.
$$\sigma(T_{p_i}) \subset G_i \quad for \quad 1 \le i \le n.$$

2. $X = \sum_{i=1}^n p_i X.$

REMARK 6.2. Clearly such an operator is projection-relative quasidecomposable and has projection-relative decomposable spectrum.

EXAMPLE 6.3. If X is a Hilbert space, the concepts of projection-relative decomposable operators and decomposable operators are the same.

EXAMPLE 6.4. Let *T* be a compact operator on *X* (or more generally an operator with totally disconnected spectrum). Then *T* is *c*-projection-relative decomposable. To see this, let $\{G_i\}_{1 \le i \le n}$ be a finite open covering of $\sigma(T)$, we can choose open-and-closed subsets δ_i of $\sigma(T)$ such that $\delta_i \subset G_i$ for $1 \le i \le n$ and leading to a system $\{A_T(\delta_i)\}_{1 \le i \le n}$ of spectral maximal projections commuting with *T* and which yields $\sigma(T_{A_T(\delta_i)}) = \delta_i \subset G_i$ for $1 \le i \le n$ and $X = \sum_{i=1}^n A_T(\delta_i) X$.

EXAMPLE 6.5. Quasispectral operators of class Γ on X (in Albrecht's sense [1]) with spectral measure E(.) of class Γ are projection-relative decomposable operators. In order to prove this, let us take a finite open covering $\{G_i\}_{1 \le i \le n}$ of $\sigma(T)$. Then there exists a finite open covering $\{\omega_i\}_{1 \le i \le n}$ of $\sigma(T)$ with $\overline{\omega_i} \subset G_i$ for every $1 \le i \le n$. Put $s_1 = \omega_1$ and $s_i = \omega_i - \bigcup_{j < i} \omega_j$ for $1 \le i \le n$. We obtain a finite disjoint covering $\{s_i\}_{1 \le i \le n}$ of $\sigma(T)$ by Borel sets. The bounded projections $E(\overline{s_i})$ form a system of spectral maximal projections of T such that

$$\sigma(T_{E(\bar{s}_i)}) \subset \bar{s}_i \subset \bar{\omega}_i \subset G_i \quad (1 \le i \le n) \quad \text{and}$$
$$X = E(\sigma(T))X = \sum_{i=1}^n E(s_i)X = \sum_{i=1}^n E(\bar{s}_i)X.$$

EXAMPLE 6.6. Prespectral operators of class Γ on X and hence spectral operators are *c*-projection-relative decomposable operators. This results from the commutativity property of T and E. See [4].

THEOREM 6.7. Let $T \in B(X)$ and $f : D \to X$ be an analytic injective function on an open neighborhood D of $\sigma(T)$. Then f(T) is projection-relative (c-projection-relative) decomposable if and only if T is.

Proof. This is similar to that of Theorem 3.5.

PROPOSITION 6.8. Let T be projection-relative decomposable and p be a spectral maximal projection of T. Then we have $\sigma(T^p) = \overline{\sigma(T) - \sigma(T_p)}$.

Proof. Suppose that there is $\lambda \in \sigma(T^p) - \overline{\sigma(T) - \sigma(T_p)}$. Then we can find an open covering $\{G_1 \cup G_2\}$ of $\sigma(T)$ such that

$$\lambda \notin G_1 \supset \sigma(T - \sigma(T_p)),$$

$$G_2 \cap \overline{\sigma(T) - \sigma(T_p)} = \emptyset.$$

Let $\{p_1, p_2\}$ be the spectral maximal projections of T corresponding to this covering of $\sigma(T)$. From the inclusion $\sigma(T_{p_2}) \subset G_2 \cap \sigma(T) \subset \sigma(T_p)$ we have $p_2X \subset pX$. Now let $\dot{x} \in X/pX$ such that $(\lambda - T^p)\dot{x} = 0$. If $x \in \dot{x}$ and $x_1 \in p_1X$, $x_2 \in p_2X$ satisfy $x = x_1 + x_2$, one obtains $(\lambda - T)x_1 = (\lambda - T)x - (\lambda - T)x_2 \in pX \cap p_1X$, a subspace of X invariant under $(\lambda - T_{p_1})^{-1}$ (which exists because $\sigma(T_{p_1}) \subset G_1$ and $\lambda \notin G_1$). It follows that $x_1 = (\lambda - T_{p_1})^{-1}(\lambda - T)x_1 \in p_1X \cap pX$ and $\dot{x} = \dot{x}_1 + \dot{x}_2 = 0$. Hence $\lambda - T^p$ is one to one. Now if we take $\dot{y} \in X | pX$ and $y = y_1 + y_2 \in \dot{y}$, $y_1 \in p_1X$, $y_2 \in p_2X$ we can find $x_1 \in p_1X$ such that $(\lambda - T_{p_1})x_1 = y_1$ (remember that $\lambda \notin G_1$). Consequently one obtains $\dot{y} = \dot{y}_1 = (\lambda - T_{p_1})x_1 = (\lambda - T)x_1 = (\lambda - T^p)\dot{x}_1$ which means that $(\lambda - T^p) \text{ maps } X/pX$ onto X/pX so that $\lambda \notin \sigma(T^p)$ which is preposterous. The opposite inclusion follows from the hyperinvariant property of p.

REFERENCES

1. E. Albrecht, On some classes of generalized spectral operators, *Arch. Math. (Basel)* **30** (1978), 297–303.

2. C. Apostol, Spectral decompositions and functional calculus, *Rev. Roum. Math. Pures Appl.* 13 (1968), 1481–1528.

3. I. Colojoara and C. Foias, *Theory of generalized spectral operators* (Gordon and Breach, 1968).

4. H. R. Dowson, Spectral theory of linear operators (Academic Press, 1978).

5. I. Erdelyi and R. Lange, *Spectral decompositions on Banach spaces*, Lecture Notes in Mathematics No. 623 (Springer-Verlag, 1977).

6. C. Foias, Spectral maximal spaces and decomposable operators in Banach spaces, *Arch. Math.* 14 (1963), 341–349.

7. A. Jafarian, Weak and quasi-decomposable operators, *Rev. Roum. Math. Pures Appl.* 22 (1977), 195–212.

8. K. Tanahashi and T. Yoshino, A characterization of spectral operators on Hilbert spaces, *Proc. Amer. Math. Soc.* 90 (1984), 567–570.