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THE COLLINEATION GROUP OF THE
VEBLEN-WEDDERBURN PLANE OF ORDER NINE

FREDERICK W. STEVENSON

1. Introduction. In this paper we prove that the order of the collineation
group of the Veblen-Wedderburn plane of order nine is 311,040. This result
was stated by Hall [3] in 1943 and proved by Pierce [9] in 1964. Hall assumed
that there were 10-8 -6 -4 -2 = 3840 collineations which permute points
on the ideal line L and 81 collineations which leave L pointwise fixed. In 1955
André [1] verified this assumption. When it was realized that a harmonic
homology with axis L had been overlooked, the number of central collineations
with axis L doubled and hence the order of the collineation group became
3840 - 162 = 622,080. This latter figure has been assumed to be correct as
recently as 1965 ([6]).

Here it is proved that there are 1920 collineations which move points on L
and 162 collineations which leave L pointwise fixed, thus giving the figure
311,040. Pierce’s proof of this fact is established from a different viewpoint.

2. The Veblen-Wedderburn plane of order nine. We may represent
the Veblen-Wedderburn plane of order nine as follows:

The points are of three types: [x, v, 1], [1, x, 0], and [0, 1, O] ,where x and y
are elements of the nearfield N = (R, +, ) of order 9.

Similarly, lines are of three types: (m, 1, k), (1,0, k), and (0,0, 1), where
m, k € R. The ideal line L = {0, 0, 1).

Incidenceis defined by: [x, y, 2] € (m, n, k)if andonlyif xm + yn + 2k = 0.

The nearfield NV is the system R of Hall [3, p. 273]. We shall use Hall's
notation here. It should be noted that N satisfies the usual properties of a
finite nearfield and one important additional property:

x? = —1forall x € Rsuch thatx ## 0,1, —1.

We shall denote the plane above by II, the intersection of two lines (m, n, k)
and (m',n', k') by (m,n, k) N\ (m',n’, k'), and the line joining the points
[x, v, 2] and [x', ', 2’] will be denoted by [x, ¥, 2] - [+, &', &'].

3. Collineations on II. We may define a collineation on a projective plane
as a pair of functions (f, F), where f is a one-to-one correspondence from the set
of points onto itself and F is a one-to-one correspondence from the set of lines
onto itself such that p € Lif and onlyif f(p) € F(L) for any point p and line L.
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We describe five types of collineations on II below by stating the corre-
spondences for non-invariant elements:

1) forleyl—>x+s,y+ 415t €R,
Fep(m 1, k) > (m 1,k —sm—1t)
{1,0,k) —> (1,0, k — s);

(2) g: [x: Y 1]__)[_36! -, 1]7
G: (m, 1, k) > (m, 1, —k)
(1,0, k) —> (1,0, —k);

B) ks [x,y, 1] > [xs, ty, 1]: s, ¢t € R, s, t # 0.
[1, x, 0] — [1, s~ ¢, 0],
H, . {m, 1, k) — (s7'mt, 1, kt)
(1,0, k) — (1,0, ks);

(4) ] [x)y» 1] - [x + Yy, —X% + ) 1]

[0,1,0] =1, 1,0]
[1,1,0] = [1, 0, 0]
[1,0,0] —[1, —1, 0]

[1, —1,0] — [0, 1, 0],

J:{m, 1, k) > (m, 1, km + k), m #0, =1,

(1,0,k) > (—1,1,k)

(—=1,1,k) —> (0,1, k)
0,1, k) > (1,1, k)
1,1, k) — (1,0, k);

(B) 75,0 [x,, 2] = o, (%), a5, (¥), @5,:(2)]: s = 0, £1,¢ = 1.

R, (myn, k) — (a5, (m), a; ,(n), as,(k)), wherea, ,; R — Risdefined
asfollows: a;,;: x + ya — (x + sy) + (¢&y)a. These mappings constitute
the six automorphisms on N (see Hughes [5] or André [1]).

For simplicity we shall denote these collineations by f; ,, g, #s.4, j, and 7s 4,
respectively.

It should be noted that the collineations above leave the ideal line fixed.
Hall [3; 4] showed that this must be true for every collineation on II. In fact,
this is a property that the collineations on any plane defined over a nearfield
must share.

It is also true of the five collineations above that each fixes [0, 1, 0] if and
only if it fixes [1, 0, 0]. This too is true for general non-Desarguesian planes
defined over nearfields. Following the notation, definitions, and theorems of
Dembowski [2, pp. 123, 129, 130] we may prove this fact as follows.

THEOREM 3.1. If f is a collineation on 11 such that f fixes [0, 1, 0, then f must
fix [1, 0, 0].
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Proof. Using Dembowski’s notation we have v = [0, 1,0], » = [1, 0, 0],
and o = [0, 0, 1]. Suppose that there exists a collineation f such that

fiu,v—>p,0,

where p 5% u. Now II is (u, v)-transitive, and so it follows that it must be
(p, v)-transitive. Thus, in particular, IT is (%, ov)- and (p, ov)-transitive. It
follows [2,p. 123, theorem 18] that II is (pu, ov)-transitive and since p € uv
we obtain that I is (v, ov)-transitive. But II is also (v, uv)-transitive and so
(by [2, p. 123, theorem 18]) II must be (v, v)-transitive. Thus (by [2, p. 130,
theorem 22 (f)]) N must be semifield. But NV does not satisfy the law of left
distributivity and so we have a contradiction. Therefore such a collineation f
does not exist.

Labeling the points on L as follows: # = [1,0,0],m = [1, 1,0],%z = [1,a, 0],
g =1[1,5,0],7 = [1,¢,0], whereb = 1 + ¢, and ¢ = —1 + a, we may define
a unary operation “—" on L by —u =1{0,1,0], —m = [1, —1,0], —n =
[1, —a,0], —q = [1, —b,0], —r =[1, —¢, 0], and —(—p) = p for p € L.
Then Theorem 3.1 implies the following theorem.

TaeoreM 3.2. If f is a collineation on 11, then f: p — p' of and only if
—p— =7

Proof. If f = hs,, or j, it is easily checked that f: p — p’ if and only if
f: —p — —p’. Thus compositions of h, , and j satisfy this property. Now
suppose that there exists a collineation g’: p — p’ and —p — x # —p’. Then
let h: p — v and h’:p’ — v, where % and &’ are compositions of the mappings
hs,;and j. It is easily seen that such mappings exist. Now %’ o g’ o 1 fixes v
and maps # — k(x) # u. This contradicts Theorem 3.1. Therefore such a
collineation g’ does not exist.

4. The collineation group of II. Since all collineations on II fix line L
we may divide our study into two parts: those collineations which fix L
pointwise and those which do not. We begin by showing that there are exactly
162 central collineations with axis L.

LemMA 4.1. If f is a homology with centre [0,0,1] and axis L and
f: [1,0,1] - [t,0, 1], then f: [x, v, 1] — [tx, ty, 1].

Proof. Since
fi01,0,1]—[¢0,1]
[0,1,0]—10,1,0]

we havef: [1, O, ].] . [0, 1, 0] = <1s 01 '—1> i [ts 0) l] ° [0) 1! O] = (1: 01 —t>'
Also f fixes (¥, 1, 0) for any ¥, and so

(1» 0, "1> N ("y’ 1’0) = [1’ Y 1] - (1: 0, '_t) N (—y: 1, 0) = [t, ty, 1]
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It follows that:
[1,9,1]-[1,0,0] = (0,1, —y) — [t, ty, 1] - [1,0,0] = (0, 1, —ty).
Hence
0,1, =y) N (= (x1y,1,0) =
[x, 9,11 =0, 1, —ty) N (= (x71)y, 1, 0) = [tx, ty, 1].

Notice that this lemma applies to any plane coordinatized by a nearfield.
The next lemma, as it is proved here, applies to the specific nearfield, V.

LemMA 4.2. If f is a homology with centre [0, 0, 1] and axis L and F:[1,0, 1] —
[¢,0, 1], then t = 1.

Proof. Suppose that ¢ % +1. First we notice that because of Lemma 4.1,
Filt b+ 1,1 > (2,60 + 1),1] = [—1, —t + 1, 1].
This last equality follows because 2 = —1 since ¢ # +1 and
tt+1)=—-@¢t+t= -+t =—(—14+¢t =—t+1.

Also f: [0, —1,1] -0, ¢t(¢t — 1), 1] = [0, ¢ 4+ 1,1]. This equality is
established in the same way as the one above.
Thus:

[t +1,11-10,t — 1, 1]=(—¢,1, =t + 1) —>[—1, —¢t 4+ 1,1]-[0, ¢+ 1, 1]
= {t, 1, —t — 1).
The first equality is true since t(—¢) +¢i+1 —¢t+1=1+¢t+1—t+1=0.
The second equality follows similarly. Finally we have
(=4, 1, =t +1)M 0,0,1) = [—¢1,0] > ¢, 1, —t — 1) M (0,0, 1)
= [¢, 1, 0].

But [—¢, 1, 0] must be held fixed by f, and so we have a contradiction. Thus
= 1.

TuroreM 4.3. There are 162 central collineations with axis L. The set of
central collineations is

{fs,o st € R} U {fs,,0g0f, 75,8 € R}

Proof. The proof is straightforward but we shall include it for completeness.

Since an elation with a given axis is uniquely determined by a point off the
axis and its image, there are no elations with axis L other than those of the
form fs ;.
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Similarly, a homology with a given centre and axis is determined by a point
off the axis distinct from the centre and its image. Thus it follows from Lemma
4.2 that the only homologies with centre [0, 0, 1] are the identity and g.
Now collineations of the form f; , 0 g o fs, ;! are easily shown to be homologies
with centre [s, ¢, 1]. Any other homology, k&, with centre [s, ¢, 1], would yield
a homology f; 710k o f,,, with centre [0, 0, 1]. Since this collineation must
be the identity, so must % be the identity. Thus every homology is of the form

fsiogofs it

Now we show that there are 1920 collineations which move points on L.
u, m,n, q,r, ...are as previously defined.

THEOREM 4.4. If a collineation f on II fixes =p for p = m,n,q,r, then
Jfixes £u (i.e., u and v).

Proof. Suppose that f: [1, x, 0] — [1, x, 0], x = =1, 4a, &b, %¢, and also

f: u—9v. Now f: [0,0, 1] = [s, ¢, 1] for some s, &. Thus, letting & = f;, ;7 1of,
we have h: 0 — 0,p — pfor p = m, n, q, r and u — v. Let y be a fixed non-zero
element of R. Now

h: <1; 01 0> = [07 1) O] * [01 07 1] - [17 01 0] * [Oy 0, 1] = <0y 1: O>,

and so we have &: [0, y, 1] — [x(y), 0, 1]. We shall denote x(y) by x. Notice
that x # 0. Now #4: (0,1, —y) =1[1,0,0]-[0,y,1]—[0,1,0] - [x,0,1] =
(1,0, —x). Also h: {t,1,0) — (¢, 1,0) because % holds fixed [0, 0, 1] and
[1, 1, 0]. Thus
[x,y,1] = ©, 1, "'y>m <_”x_1y’ 1:0>'_) <1r 0, —x>m (—x71,1,0) =[x, 9, 1];
hence [x, y, 1] is held fixed by &.

Letz € Rsuch thatz # 0,yx~L. Now (—z,1,xz2 — y) = [x,y, 1] - [1, 2, 0] is
held fixed; hence

0,y —xz,1] = (—2, L,xz2—y)M ({1,0,0) > (—z,1,x2 — y) M (0, 1,0)

= [(xz — )z, 0, 1].

By the argument above, % fixes [(xz — )27,y — xz, 1]. We shall denote this

point by p..
Let L, = (z(xz — y)"z, 1, —y) = [0, 9, 1] - .. Now

L,Nuv = (1, —z(xz — y)~xz, 0]

and this is a fixed point since —z(xz — y)~'xz # 0. Hence L, is ‘a fixed line
since it contains two fixed points (0 and the one above). Since

h: [0,9,1] — [x, 0, 1],

it follows that [x, 0, 1] € L,. However, this is not necessarily the case as the
following example shows: suppose that y 5 =1 and let z = x~!; then
L,= {(x"'(1 — )41, —y). Now if [x, 0, 1] € L,, we would have

xx (1=t —y=>0-yTt—y=0-1)—y=—-1=0,
a contradiction. Thus % and, therefore, f do not exist.
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THEOREM 4.5. There exists a collineation f on T which maps v — p for any
P € uv.

Proof. We may map v—m by j and v —» —v by j% Also we may map
m— p = [1,x,0] by ki forany x = 1, a, +b, =c. Thus with compositions
of the mappings j and % 4, we may map v — p for any p € wuv.

THEOREM 4.6. There exists a collineation f on 11, such that f fixes u and v and
f:m —p for any p # u, v.

Proof. As mentioned in Theorem 4.5,
hig:m—[1,x,0] for x = 1, +a, &b, +c.
Also By, u, v — u, v,

THEOREM 4.7. There exists a collineation f on 11 such that f fixes u, v, m, —m,
and f: w— p for p # u, v, £m.

Proof. It may be easily observed that £, p, 71,1, and %, , hold # and m fixed and
Ropet— —0, 71100 — @ r1a®im — 7R a0r11:0— —¢q, hgqOr11%:m — —7.
The identity maps n — #.

THEOREM 4.8. There exists a collineation f on 11 such that f fixes u, v, *=m, +n
and f: ¢ — p, where p = g, L.

Proof. Notice that 7y 1, #4,4, and %y, hold # and m fixed. Now
To—1: M — —N, —N —N,q—> —7,;

hence hyp 0 7911 — n, ¢ = . Also hg. n — n, ¢ > —q, and so
haoOhyporo_1: m—n,q— —r. The identity maps ¢ — g.

TuroreM 4.9. There extst 1920 collineations which permute points on uv.

Proof. There exist 10 collineations which map # — p where p € uv; 8
collineations which fix 4=« and map m — p, p # =u; 6 collineations which
fix 4u, +£m, and map # —p, p # Fu, £m; and 4 collineations which
fix 4=u, =m, =7 and map ¢ — p where p = Z=q, £7. If f fixes du, £m, =+n,
and =g, it follows easily from Theorem 4.4 that f fixes 4-7 and hence is the
identity. Thus there are 10 -8 -6 - 4 in all.

We conclude by noting that the order of the group G of collineations on II
is 162 - 1920 = 311,040. This follows because the set of central collineations
with axis L is a normal subgroup of G.
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