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INTRODUCTION

The statistical theory of extreme values well described by
Gumbel [i] has been fruitfully applied in many fields, but only in
recent times has it been suggested in connection with fire insurance
problems. The idea originally stemmed from a consideration of the
ECOMOR reinsurance treaty proposed by Thepaut [2]. Thereafter,
a few papers appeared investigating the usefulness of the theory in
the calculation of an excess of loss premium. Among these, Beard
[3, 4], d'Hooge [5] and Jung [6] have made contributions which are
worth studying. They have considered, however, only the largest
claims during a succession of periods. In this paper, generalized
techniques are presented which enable use to be made of all large
losses that are available for analysis and not merely the largest.
These methods would be particularly useful in situations where
data are available only for large losses.

EXTREME VALUE DISTRIBUTIONS

Suppose there were n losses or claims during a given period.
These observations constitute a sample of size n from a probability
distribution F(Z). If they are arranged in decreasing order of
magnitude let Z(m)n be the wth loss with Z^n the largest. Over a
succession of periods Z(m)n has a distribution with density function

mm

if F(Z) is of the "exponential type" [1]. This type has been chosen to
explain the theory since it includes well known distributions like
gamma, normal and log normal apart from the simple exponential
function. The "reduced" mth largest value ym is defined as

ym = amn(Z (m)n — 0mn) (2)
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where amn and bmn are the solutions of

m
Fn{bmn) = i — — (3)

and

n
amn = " Jn\bm,n) (4)

If the precise structure of F(Z) and hence the density function
f(Z) is known, the parameters amn and bmn can be estimated from
(3) and (4). However, if only the values of Z\m)n over a succession
of periods are available, estimates could be obtained from

— y fn
bmn = Z(m)n- - (5)amn

and

6)

where Z(m)n and amz are the mean and standard error of Z\m)n.
Gumbel [1] has tabulated the mean ym and standard error crm of
yn for m = 1 to 10; I have extended this table up to m — 40 [7].
These limiting or asymptotic values are true only in the case when
the number of periods available for Z( m ) m is large.

The parametric values of the parent distribution F[Z) could be
expected to change over a number of years. Hence it might be
considered desirable to use only a small number of successive values
of /?(m)W. In this case, the following procedure is suggested. If the
number of periods is N, the values ymj (j = 1 A7) of ym are
given by

where umj is obtained from the cumulative frequencies

du
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with the aid of tables of incomplete gamma functions. (The variable
um has a gamma distribution). The mean and standard error of ym

for the sample size N could then be calculated and used in (5) and
(6) for estimating amn and bmn.

If the N values of Z,(m)n are arranged in increasing order of mag-
nitude the ;'th observation Z (m)nf in that arrangement would cor-
respond to the reduced extreme ymj. By fitting the straight line

7 1 ^ m i 1 \

'-(m)nj = Omn + (9)

either graphically or by the method of least squares estimates of the
parameters could be obtained. There are other methods of estimation
eg maximum likelihood, but these are beyond the scope of the
present discussions. Practical results based on extreme value
theory would involve errors due to the particular method adopted
for estimating the parameters. Hence the relative efficiency of dif-
ferent methods is an important statistical problem which needs to
be studied critically.

VARIATION IN SAMPLE SIZE

In the previous section it has been assumed that the extremes
Z(m)n are from samples (periods) with constant sizes n. In the real
world, however, the number of fires or claims would vary from
period to period. Jung [6] suggested that, if the sample sizes differ
but represent "equally exposed" intervals of time, the methods
described for constant n are still applicable but with certain
modification. Following Franckx [8], he introduced the "operational
time" an estimate of which would be given by the average of the
sample sizes. The samples might be deemed to have this average
size.

I have considered a different approach as described in Appendix 1.

I have shown that,

ymj + loge ( » »
^(m)rij = 0mn + [10)

amn

approximately, where Z\m)nj pertains to a sample of size tij in the
jth period. The sample size n could refer to the base period or the
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average sample size. As in the case of constant n, the parameters
may be estimated by fitting the linear relationship (10) or from the
equations

and

amn = — J
 l? (I2)

where ^ and cŝ  are the mean and variance of pj [ = logg (njjn)].
The covariance ayp of ymj and £/ could be included in the calculation
though it is theoretically equal to zero

Expression (8) given in Appendix i is exactly true for a parent of
simple exponential form. I have studied the errors in this approxi-
mation numerically for gamma and standard normal distributions
for sample sizes from 450 to 1000 with n = 450. The errors were not
serious for this range. However, it is known that for a normal
distribution, the asymptotic form (1) does not furnish a satisfactory
approximation unless n is extremely large.

LARGE LOSSES IN AN INDUSTRY

Pareto [9, 10] and logarithmic normal [11] are the forms usually
suggested for the parent probability distribution F(Z) of fire loss.
The latter is slightly less "dangerous" than the former [12]. For
physical reasons I would prefer a distribution of the "exponential
type" for the logarithm of loss [13]. Of course, if the loss has a
Pareto distribution its logarithm follows a simple exponential
form.

With the assumption mentioned above, the theoretical results
discussed in the previous sections were applied to large losses that
occurred in the textile industry in the United Kingdom. The data
related to the top 17 losses in the industry during the 21-year
period from 1947 to 1967. With the help of the index numbers for
retail prices the observed losses were corrected for inflation and the
logarithms of corrected losses used in the calculations. The straight
line (10) was fitted in order to take into consideration the increasing
number of fires during the period. The results are reproduced in
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Cols 2 and 3 of the table in Appendix 2. (Fire Research Note No. 910
[7] contains details of the analytical steps). The parametric values
pertain to a sample size of wi = 465 fires in the base year 1947;
these were estimated from the extreme observations only under the
broad assumption that the probability distribution of the logarithm

15
•3

o

84
o

o
11 3

, Largest

Fire frequency
_ _ upper confidence limit
— Modal value

Lower confidence limit

0-5 1 0 1-5
465

Fig. 1

https://doi.org/10.1017/S0515036100006115 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006115


290 EXTREME VALUE THEORY AND FIRE LOSSES

of loss belongs to the exponential family. This assumption appears to
be justified since in all the 17 cases a high correlation was obtained
between the observations Z and the theoretical values y.

Equation (8) in Appendix 1 measures the effect of an increase in
the fire frequency n on the modal large loss bmnj. This line has been
shown in Fig. 1 for the largest, 7th largest and 16th largest losses
in the textile industry. Also shown in this figure are the upper and
lower confidence lines for the extremes obtained by inserting in (10)
the corresponding limits for the reduced extremes. The limits for ym

were obtained directly from their distributions shown in (1). The
probability of exceeding the upper line or falling short of the lower
one for a given (njjni) is 0.025.

The confidence lines represent a control chart based on the cur-
rent trend. The increase in the frequency nj of fires may be partly
due to the inadequacy of fire prevention measures. In addition, if
some or all of the actual large losses corrected for inflation exceeded
the corresponding upper limits it may be concluded that general
changes in fire-fighting and fire protection methods, or in the in-
dustrial processes are taking place to alter the picture for worse. If
the losses are less than the lower limits, then the changes are for the
better.

As in the case of human life, fires have a high rate of "infant
mortality". In 1967, for example, out of a total number of 982 fires
attended by fire brigades in buildings concerned with textile manu-
facture 524 fires were confined to exterior components, appliances
and common service spaces [14]. If these fires are disregarded the
"duration of burning" t of the remaining fires would have a prob-
ability distribution with "increasing failure rate" [15]. Hence Z
(log loss), which is proportional to t as a first approximation, can be
assumed to have a failure rate h(u) increasing exponentially so that

h{u) = e« + (iu (13)

For fires "fought" expression (13) would be expected to be true
except for small values of Z.

The extreme value parameter amn as defined in (4) denotes the
value of the failure rate function at the characteristic large value
bmn. the yth year i.e.
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Using the 17 pairs of values for the two parameters, values of a.
and (5 were estimated as —4.0825 and 0.3839 respectively for the
year 1967 {rij = 982). Since the density function of Z is

f[Z)=h{Z)e-[h('u)au dz (15)

the transformed variable

(16)
P

has the density function

f{Z)=Ke-*dZ (17)

true for the domain log K ^ \ ^ 00. In view of the fact that Z is
the logarithm of loss x

The expected value of # for a desired range of loss could be cal-
culated from (17) and (18) using tables of incomplete gamma
functions. In the example considered the average loss in the textile
industry in 1967 was estimated as £ 2200 in the range £ 55 to
£ 10,000 (at 1967 values). At present data are not available for in-
dividual losses below £ 10,000. As illustrated in the example, by
analysing the extreme values, it is possible to estimate the total loss
in an industry or in a group of buildings with or without fire
protection measures like sprinklers. Individual totals for different
groups or geographical areas are required for economic studies. The
British Insurance Association publish only national totals for each
month and details of their method of estimation are not known.

PARAMETERS OF THE PARENT DISTRIBUTION

Suppose the parent distribution F(Z) has a location parameter [j.
and a scale parameter a. It is emphasized that y. is not necessarily the
expectation nor a the standard deviation. The problem is to estimate
(x and a from samples of large values from F(Z).

Consider the standardized variable

Z —[x
t = — - (19)
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If n observations of t in a sample are arranged in decreasing order
the wth observation in that arrangement is

Z(m)n — [>•
i(m)n — " ' " 12OJ

(7

If the form of F{Z) is known the distribution G{t) of t is also
known, so that the expectation, variance and covariance of t(m)n
could be calculated by the method described by Ogawa [16]. The
moments of order statistics in small samples from well known
distributions have already been discussed and tabulated [17].

For large n the precise calculations of moments of order statistics
by an exact approach are time-consuming and impracticable. In
this case, the following approximate method based on extreme value
theory may be adopted. If A (m)n and B(m)n are the extreme value
parameters of t(m)n then the reduced variable

Jm = A(m)n(t(m)n—B(m)n) (21)

also has the density function shown in (1) if F{Z) and hence G(t) is
of the exponential type. Since G{t) is a known distribution, for a
given n, the parameters can be calculated from the equations

Gn(B(m)n) = 1 — [mjn) (22)

and

A(m)n = {film) gn (-B(m)ra) (23)

where g{t) [ = G'{t)] is the density function of t. From (21), the
expected value and variance of t(m)n are

L f^>n (24)

and
ff2

V{t(ni)n) = -7-F- = < t (25)

As mentioned earlier ym and a2
m are the expected value and

variance of ym already tabulated for different values of m. I have
proved that the covariance of extremes ym and yi where in > I is
the same as the variance of ym [7].
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Hence

A {m)n ' A (i)n

Now, from (2), (20) and (21)
2

2 amZ
amt — ^2

(27)

Therefore from (25) and (27)

A (m)n = Gttmn

Similarly

Z(m)n — [A

(29)

so that from (24), (28) and (29)

bmn [>•

&(m)n = (3°)
a

In (28) and (30), A(m)n and B(m)n are known quantities while
amn and 6mre can be estimated from the observations Z(m)nj by one
of the methods already discussed. Thus these two equations yield
estimates of \i and er. This method is slightly different from the one
suggested by Jung [6] in the case of the largest value, i.e. m = 1.

However, as pointed out by Jung, it is difficult to draw reliable
conclusions from estimates based on just one extreme, viz the mth..
It is possible to overcome this difficulty by considering a number of
extremes, say, m = 1 to r provided of course such data are available
for analysis. In this case we may proceed as follows:

from (20) and (21)

Z(m)n = H- + ahm)n (31)
amZ = ^-amt (32)
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where ^m)n and a2
mt are given by (24) and (25). Also, from (26),

Cm! \7 7 1 n2 • rr2 [oql

with m > / and ai
mlt given by (26). Then following Lloyd [18] we

could obtain least squares estimates of y. and a by minimizing the
quadratic (matrix) form

{Z — C&Y V-1 {Z — C&) (34)

where

Z =

Z(i)n

Z(r)n

,c =

I t(i)n

I t(r)n

and V is of the form
_ 2

V =

A (i)n

(3) n ' A(r)n

(r)n (r)n A (r)n

It is not necessary here to reproduce the equations giving the
estimates of [z and a and discuss other connected statistical prob-
lems.

EXCESS OF LOSS REINSURANCE

Suppose that the claims in a given category of risk could be
regarded as independent random variables with a distribution
function V(x). The net premium per claim for an excess loss cover
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above an amount L is, in accordance with current insurance
practice

P(L) = }{x — L) v{x) dx

= J xv{x) dx — L[ v(x) dx (35)
L L

r d 1

where v(x) = z~ V(x) is the density function. This expression

can also be written as

P[L) = J [1 - V(x)] dx (36)

Suppose the transformed variable Z{ = loge x) has a distribution
function F[Z) and density function/(Z) of the exponential type. It
may also be assumed that Z has a location parameter \i and a scale
parameter a. If the standardized variable t shown in (19) has a known
distribution function G(t) and density function g(t), the values of \L
and a could be estimated from extreme observations by the gene-
ralised method described in the previous section. Since

flog X — a]
V[x) ^ F(log x) ̂  G [ ^ — J (37)

and
dx = <? dZ = ev- + t° mlt (38)

it is easy to verify that

/log L — [x\
P(L) = <Tafi p ~ — - j (39)

where the function

p{k) = ][i~-G[t)]6tadt (40)
k

Expressions (39) and (40) are similar to the results due to Jung
[6] but applicable to the specific case in which the logarithm of the
claim amount x, rather than x, has an exponential type distribution.

For example, consider the Pareto distribution

V{x) = 1 — x~x (1 < x < 00) (41)
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In this case

F{Z) = i — <rte

G{t) =1-e~t (42)

with [x = 0 and a = (i/X). From (40) and (42)

so that for A =

X —:

logL

(43)

in agreement with the result obtained directly from (36) and (41).

In the case of a log normal distribution

- G[t) = ilG(t) = - * = f e-^l* du (44)
1/27C J

Hence

f(k) =

where

After simplification

= (i/a) [6a2/2 Qe(A — «T) - e*°QG(*)] (45)

(log Z- — [i)
For a given k = the values of Ll(Ak — a) and

(7

QG(&) could be obtained from tables of the (standard) normal
probability function. (It must be kept in mind that \x and a are
the mean and standard deviation of Z = log x).
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In order to apply the method mentioned above, G(t) has to be a
known distribution. If the structure of G{t) is not known but can
be assumed to be of the exponential type the following procedure
is feasible. Consider r claims %i (i = i to r) above L in decreasing
order starting with the largest. Let X(m) be the mth claim in that
arrangement with m = i as the largest. It is assumed that Z =
log x has an exponential type parent distribution F(Z). Since the
Z(m) = log^(m) has the probability density function shown in (i)
the expected value of X(m) is given by

Ex(m)= e~mym-me~"m ebm+(ymlaj
m> ( I ) ! J(m—I)!

By integrating (46) it may be seen that

xm = Ex(m) = — (47)

where @m = (i/am). As discussed earlier estimates of am and bm

could be obtained from observations on X(m) during successive
periods.

The aggregate net premium above L is

S(L) = £%<m) — rL (48)

Over a number of periods S(L) has a probability distribution.

The expected value of S(L) is given by

S(L) = HEx(m) — rL
m

= S x(m) — rL (49)

where X(m) is given by (47). It is hoped to study the higher moments
of S(L) later.

DISCUSSION AND CONCLUSIONS

Large losses play a vital role in the economics of fire protection
measures which are designed to prevent a fire from becoming large.
Similarly large clams exercise a critical effect on the performance
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of an insurer whose top risks are not cut away by reinsurance. A
reinsurer on the other hand is worried about the fluctuations in the
portfolio of large risks he accepts. Hence large losses or claims
merit special investigation.

Large losses fall on the extreme (upper) tail of the probability
distribution of fire loss. The behaviour of this tail is quite distinct
from that of the remaining major portion of the probability curve.
The nature of the tail could be studied by applying statistical
techniques concerned with truncated distributions. But this is
possible only if loss figures are available for all fires. In many
practical situations this is not the case. At the national level, for
example, figures for individual losses are available only for fires
costing £ 10,000 or more in direct damage. In these circumstances
the asymptotic theory of extreme values can prove useful. In this
paper generalized techniques have been presented which enable the
maximum use to be made of extreme observations for practical
purposes.

From physical considerations I conclude that the logarithm of
loss has a probability distribution belonging to the exponential
family. This family includes well known distributions like log
normal, log (simple) exponential, ie Pareto etc. It also includes the
distribution with increasing failure rate for log loss as described in
(13); this assumption would lead to the following distribution for
x ie loss

f{x) = KXfix*-1 c-*** (50)
where

X = - (51)

It may be recognised that (50) is one of the forms of Weibull
density. The assumption of an exponential type parent would
enable one to use the generalized form of Gumbel's Type 1 asymp-
totic distribution for the mth largest order statistics.

For using the asymptotic form the number of fires n in a category
of risk has to be large. For small n the general theory of order
statistics [17] would be applicable, but this would require a know-
ledge of the exact nature of the parent distribution. This is beyond
the scope of this paper.
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I will conclude by agreeing with Jung [6] that the use of extreme
values has to be approached with caution. But extreme value
techniques are useful in situations where only large losses are
available for analysis. Of course better solutions would be possible
from data on all fires or claims.
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APPENDIX I

By definition

Fn(pmn) = 1 — (mjn) (52)

and

(53)

where h(u) is the failure rate function.

Hence

H{bmn) = J h{u)du
0

= log (n/m) (54)

For exponential type parents the critical quotient Q[Z) given by

h{Z)

QW=-f'{Z)lf(Z) (55)

tends to unity for large Z [i]. For large Z the density of probability
f(Z) becomes very small and the same holds for the probability
{1 —F(Z)} of a value exceeding Z. If the variate is unlimited the
derivative/'[Z] also converges to zero. From (55) we may write

(56)

By taking derivatives of h(Z) we may extend (56) to write that,
for large Z

-f'(Z) -f"{Z) -f'"W . .

~ ~W) T W (57)
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From (56), using (57) it can be shown that h'[Z) tends to zero for
large Z. By taking further derivatives it is easy to verify that all
the derivatives of h(Z) tend to zero asymptotically. In fact this
property is implied in the derivation of the asymptotic distribution
of extreme values for exponential type parents.

Let bmnj be the characteristic mth large value in samples of size
fij from F(Z). In the neighbourhood of bmn

H(bmni) - H(bmn)

= \pmnj Omn) H (bmn) i T •" \pmn) r

— \ymn} — umn) n\ymn) T~ _ "• (ymn) ~\
2

= (bmn, — bmn) h(bmn) (58)

Since the derivatives of h(bmn) vanish for extreme values. From

(54), the left-hand side of (58) is equal to log

Hence

1 fij
bmn, = bmn + log — (59)

a,mn n

approximately since h(bmn) = amn-

We have

Zmni = = bmn, -f-

where y is the reduced variable which is independent of the sample
size. From (59) and (60)

ymn, + log ( )
Zmn, = bmn + (61)

""inn

Since amn, is equal to the constant value amn for values of
in the vicinity of bmn.
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APPENDIX 2

Results for the textile industry, UK

Extremes
(ft.)

( 1 )

1
2

3
4
5
6
7
8
9

1 0

1 1

1 2

13

14
15
16

17

"«»!

(2)

2.247
1.785
1.626
I.46O

I-387
I.424
I.239
1.163
1.212

I-O34
o-973
0.925
0.886
0.924
O.937
0.950
1.002

(3)

5-214
4.829
4-534
4-327
4- I I3
3.988
3-749
3-564
3-448
3-259
3-137
2.972
2.832

2-749
2.680
2.583
2-537

The parameter ~bmn^ is based on the logarithms of losses in units of

£ thousands at 1947 values, [m = 465].
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