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Falling paper flutters and tumbles through air, whereas a paper airplane glides smoothly
if its leading edge is appropriately weighted. We investigate this transformation from
‘plain paper’ to ‘paper plane’ through experiments, aerodynamic modelling and free
flight simulations of thin plates with differing centre of mass (CoM) locations. Periodic
modes such as fluttering, tumbling and bounding give way to steady gliding and then
downward diving as the CoM is increasingly displaced towards one edge. To explain these
observations, we formulate a quasi-steady aerodynamic model whose force and torque
coefficients are informed by experimental measurements. The dependencies on angle
of attack reflect the transition from attached to separated flow and a dynamic centre of
pressure, effects that prove critical to reproducing the observed motions of paper planes in
air and plates in water. Because the model successfully accounts for unsteady and steady
flight modes, it may be usefully applied to further problems involving actuated motions,
feedback control and interactions with ambient flows.

Key words: flow-structure interactions, swimming/flying

1. Introduction

Swimming and flying animals display an impressive variety of unsteady and steady
motions through fluids, from actively powered undulations and flapping to coasting and
gliding. A piece of paper falling through air undergoes passive flight powered only by
gravity but nonetheless displays a similar breadth of motions such as back-and-forth
fluttering and end-over-end tumbling. Dating to the work of Maxwell (Maxwell 1854),
the flight of paper and thin plates generally has served as an archetypal problem for
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understanding unsteady aerodynamics and flow–structure interactions involved in free
motions through fluids (Tanabe & Kaneko 1994; Belmonte, Eisenberg & Moses 1998;
Mahadevan, Ryu & Samuel 1999; Pesavento & Wang 2004; Jones & Shelley 2005;
Heisinger, Newton & Kanso 2014; Vincent, Shambaugh & Kanso 2016). In recent decades,
studies of such systems have drawn inspiration from the passive flight of plant seeds and
leaves (Pesavento & Wang 2004; Wang, Birch & Dickinson 2004; Andersen, Pesavento
& Wang 2005a,b; Fabre, Assemat & Magnaudet 2011; Huang et al. 2013), fin and wing
movements involved in animal locomotion (Paoletti & Mahadevan 2011; Wang, Goosen &
van Keulen 2016) and related applications (Holmes, Letchford & Lin 2006; Kordi & Kopp
2009). Recent extensions have assessed the roles of flexibility and planform shape (Tam
et al. 2010; Varshney, Chang & Wang 2013; Tam 2015; Vincent et al. 2020b; Vincent, Liu
& Kanso 2020a). Collectively, such studies have led to advances in aero- or hydro-dynamic
modelling in which the instantaneous fluid forces and torques on a structure are expressed
mathematically in terms of its current kinematic state, e.g. orientation and velocity
(Kuznetsov 2015). Such quasi-steady models are necessarily incomplete and approximate
as they do not explicitly account for the state of the surrounding fluid. But when
wake interactions are relatively small, as expected for an object freely falling through
quiescent fluid, these models are valuable for their tractability and significant reduction
in complexity compared with the complete and coupled fluid–solid dynamical equations.

Conventional aerodynamic models developed for the fixed-wing flight of airplanes
can be extended in the quasi-steady sense to describe slowly varying motions during
dynamic flight modes and gentle manoeuvres (Cook 2012; Stengel 2015). But it remains
a challenge to accurately account for highly unsteady motions and extreme aerodynamic
states involving, for example, separated flows and the formation and shedding of vortices.
Work over recent decades on falling paper and thin plates has led to quasi-steady
models that successfully reproduce unsteady flight modes such as fluttering and tumbling
(Pesavento & Wang 2004; Wang et al. 2004; Andersen et al. 2005a,b; Huang et al. 2013).
These models can also provide quantitatively accurate predictions of forces under some
conditions and hence have proven useful when applied to problems in biolocomotion and
elsewhere (Wang et al. 2004; Bergou et al. 2010; Paoletti & Mahadevan 2011; Ristroph
et al. 2011; Wang et al. 2016). However, accurate accounting for aerodynamic torques
has proven more challenging, and models based on added mass effects significantly
overestimate experimentally measured values, as noted in Pesavento & Wang (2004) and
Andersen et al. (2005b). Further, there remain broader classes of aerodynamic conditions
yet to be explored and which may require modifications to the existing models.

Building on the falling paper system and inspired by paper airplanes in particular,
here we explore a rich spectrum of free flight motions achieved by varying the centre
of mass location of thin plates. The work of Huang et al. (2013) has shown that displacing
the centre of mass leads to a variety of flight trajectories, some of which may be
reproduced in quasi-steady models. It is also familiar from making paper planes that a
good glider requires proper weighting of the front, typically achieved by multiple folds
of the leading edge or adding a paper clip (Mander, Dippel & Gossage 1971; Ninomiya
1980; Collins 2004). We verify this intuition by test flying rectangular sheets of paper with
differing degrees of front weighting provided by adding thin metallic tape to one edge.
An unweighted, planar sheet undergoes end-over-end tumbling, as shown in figure 1(a).
These images are overlaid frames from high-speed video, and the general motions are
left to right. Tumbling is also the dominant mode of a flyer formed by adding a small
amount of weight that causes the centre of mass to shift somewhat forward, as shown in
figure 1(b). Side fins formed by folding up the edges, as shown in the inset, help to maintain
in-plane or longitudinal motions. The tape and fins also stiffen the sheet against spanwise
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(a) (b)

(c)

(d)

(e)

Figure 1. Flight motions of paper airplanes with different centre of mass locations. Rectangular sheets of
standard copy paper with span 6 in. = 15 cm and chord � = 2 in. = 5 cm are front weighted by differing
amounts by applying thin copper tape to the leading edge. Images are superposed frames from high-speed
video, and all motions are left to right. (a) Unweighted paper tumbles end over end through air while
progressing left to right and descending under gravity. (b) Tumbling of a paper flyer with centre of mass
location �CM/� = 0.08, as measured relative to the middle of the chord. Inset: the flyer design includes side
fins and tape along the leading edge. (c) Stronger front weighting of �CM/� = 0.14 leads to unsteady motions
such as bounding. (d) Gliding of a paper plane with �CM/� = 0.24. (e) Diving for �CM/� = 0.31. The intervals
between snapshots are respectively 0.03, 0.03, 0.05, 0.03 and 0.02 s, these values chosen to best convey the
motions.

and chordwise bending, respectively, and the supplementary movie (available at https://
doi.org/10.1017/jfm.2022.89) shows that the sheets do not flex appreciably during flight.
Flyers with greater front loading exhibit erratic trajectories involving swoops, climbs, flips
and dives, some of which are captured in figure 1(c). Smooth gliding of the paper airplane,
shown in figure 1(d), results from ‘just right’ weighting, whereas yet greater front loading
produces the steep diving seen in figure 1(e).

What is the aerodynamics underlying this transformation from ‘plain paper’ to ‘paper
plane’? Some aspects of these motivating observations seem well described by classical
aerodynamics, e.g. the torque equilibrium needed for gliding at fixed speed and small angle
of attack may be explained by the thin airfoil theory prediction that the centre of pressure
is located one quarter of the chord length from the leading edge. However, tumbling and
other unsteady modes involve time-varying motions that necessitate a dynamical model.
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Can a single model reproduce all the observed flight modes and thus successfully bridge
unsteady and steady behaviours?

In this work, we pursue a quasi-steady model that is directly informed and validated
by experiments on the free flight of thin plates with systematically displaced centre
of mass locations as well as aerodynamic characterizations of plates in imposed flows.
Our ultimate goal is a ‘flight simulator’ that efficiently and accurately solves for the
free motions of thin bodies subject to motion-induced fluid forces at moderate to high
Reynolds numbers and which reproduces the full spectrum of experimental observations.
We present a quasi-steady model that builds on that of Andersen et al. (2005b) by replacing
torque terms associated with added mass and lift with a term that accounts for the total
aerodynamic force (lift and drag) induced by translational motion and which is directly
informed by experimental measurements. Simulations of the model that include buoyancy
effects and displaced centres of mass successfully reproduce the family of trajectories
seen in experiments, both for paper planes in air and thin plates in water. The variety of
motions explored include end-over-end tumbling for symmetrically weighted paper in air
and back-and-forth fluttering for symmetric plates falling in water, these different base
modes expected based on differences in the ratio of solid-to-fluid inertia (Belmonte et al.
1998; Andersen et al. 2005a). In addition, the experimental systems reveal new modes as
the centre of mass is displaced, and the simulations successfully reproduce such motions
and explain their origin in the aerodynamics of thin plates. These results suggest that the
aerodynamic model and flight simulator are general enough to be further adapted and
applied to other problems related to natural and artificial locomotion through fluids.

2. Experiments on the free flight modes of plates in water

Building on our motivating observations of paper airplanes, we next conduct more
controlled and systematic experiments on the role of centre of mass (CoM) location for
thin plates ‘flying’ through water. This system offers several advantages over paper planes.
The flyers are manufactured from plastic that does not flex appreciably during flight, and
their shapes are retained even after repeated crash landings, thus ensuring reproducibility
of the results. The CoM location can also be more controllably set and systematically
varied while keeping the total mass constant. The selected parameters lead to slower flight
motions that are more convenient for video recording and tracking while maintaining
similar Reynolds numbers Re ∼ 103 to 104 as for paper airplanes.

The design and construction of the experimental flyers is detailed in figure 2(a).
A thin planar plate wing of rectangular planform is laser cut from acrylic plastic sheet,
as are two smaller side panels or ‘fins’ into which lead weights are embedded in order
to displace the CoM. The fins also serve as aerodynamic stabilizers that resist lateral
motions and promote planar or longitudinal flight. We construct 17 such flyers that are
identical except for the placement of the paired weights, whose different locations along
the chord direction are indicated in figure 2(b). The plate has span length s = 8.0 in. =
20.3 cm, chord length � = 1.0 in. = 2.54 cm and thickness h = 0.060 in. = 0.15 cm. Each
fin has length 2.5 in. = 6.4 cm (at its longest), width 0.5 in. = 1.27 cm and thickness
0.060 in. = 0.15 cm. Each weight has mass 1 g, and the 17 placements are spaced apart by
1/16 in. = 0.16 cm spanning from the middle of the chord to a length 1.0 in. = 2.54 cm
towards one edge. These dimensions, along with the densities of water (1.00 g cm−3),
acrylic (1.18 g cm−3) and lead (11.34 g cm−3), permit the calculation of relevant quantities
such as total mass and volume and hence weight and buoyant force (all identical) as well
as the CoM location �CM and moment of inertia, which vary across the family of flyers
and which will serve as inputs to simulations.
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Figure 2. Experiments on the free flight of plates through water. (a) A plate wing and two side fins are laser
cut from acrylic plastic, and embedded in the fins are lead weights that serve to displace the CoM. The plate
has span length s, chord � and thickness h. (b) Each of 17 flyers is assembled with the paired weights placed
symmetrically along the fins at one of the indicated locations. (c) Buoyancy B acting at the centre of volume
(CoV) and weight W acting at the CoM lead to a torque balance about the indicated fulcrum or pivot point,
which is defined to be the centre of equilibrium (CoE). (d) Each flyer is released within a large water tank, and
in-plane or longitudinal motions are recorded with a video camera.

Each flyer is released in a large glass tank of water, and its free flight motions are
recorded using a digital video camera, as shown in the schematic of figure 2(d). The tank
has length 48 in. = 122 cm, width 13 in. = 33 cm and height 20 in. = 51 cm and proves to
be sufficiently large to observe the long-time behaviour for most of the flyers. To facilitate
tracking of the in-plane or longitudinal motions of each flyer, we adhere two markers to the
fin nearest the camera and illuminate the front face of the tank with bright lighting. The
flyer is released from rest by sliding down a short ramp that is inclined approximately 20◦
below the horizontal, which yields trajectories through the tank that are sufficiently long
to determine the terminal behaviours. The planar motions are recorded with a Nikon D610
camera filming at 30 frames per second. A custom MATLAB program tracks the markers
and converts these data into position of the CoV (i.e. the mid-chord point) and orientation
of the plate. Example movies showing extracted data overlaid on the recorded motions are
available as supplementary material.

Repeated trials performed for each body reveal reproducible behaviours that vary
systematically across the family of flyers with differing CoM location. The motions
extracted from experimental videos for five representative bodies are shown across the top
of figure 3(a), where the line segments represent the instantaneous location and orientation
of the chord. Arrowheads indicate the direction to which weight is displaced, except for the
symmetric body (red) whose weight is placed at the middle of the chord. The symmetric
flyer undergoes back-and-forth fluttering, a behaviour well documented in previous studies
and consisting of alternating bouts of left- and right-ward gliding swoops punctuated by
hard stalls in which the body reverses direction. When the weight is somewhat displaced
from the middle, we observe progressive fluttering in which the forward gliding bout is
of longer excursion than the backwards, leading to net horizontal motion of the body as it
descends. For yet greater weight displacements, the backwards bout disappears altogether,
resulting in bounding flight involving bouts of forward gliding interrupted by soft stalls.
Further weight displacements eliminate the stalls altogether and produce pure gliding
motion that is very nearly steady. Finally, for extreme front weighting, we observe a
tendency towards diving in which the body descends straight downward with its weighted
edge leading. Independent trials in a deeper tank show edgewise descent is the terminal
state.

These modes provide detailed points of comparison for flight simulations, whose
results shown in figure 3(b) will be discussed in greater detail after the underlying
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Figure 3. Trajectories of plate wings from experiments in water (a) and simulations (b) and across flight
modes attained by varying the (normalized) CoE location �CE/�. Five distinct modes are observed: fluttering
(red), progressive fluttering (orange-yellow), bounding (green), gliding (blue) and diving (purple-magenta).
The plates are shown as arrows whose heads indicate the edge towards which the CoM and CoE have been
displaced, except in the symmetric case of �CE/� = 0 (red). Snapshots are shown at rate of 6 per second in all
cases. The 17 values of �CE/� explored in experiments are indicated by the arrowheads above the CoE colour
bar, with filled symbols corresponding to the 5 trajectories shown above. Simulations cover �CE/� finely, and
hence we indicate with filled arrowheads below the colour bar only the selected values corresponding to the
trajectories below. Dashed lines on the colour bar indicate the critical values of �CE/� separating the modes.

model is explained. The fluid dynamical regime is that of intermediate Reynolds number:
the chord � ≈ 2.5 cm and typical flight speeds U ≈ 5 to 50 cm s−1 yield Reynolds
numbers Re = U�/ν ≈ 103 to 104, where ν = 10−2 cm2 s−1 is the kinematic viscosity
of water.

Towards classifying these modes and comparing different systems, it will prove useful
to define a control parameter related to the CoM displacement but that includes buoyancy
effects and thus can be applied generally for flight through different fluids. We introduce
the CoE, which is defined as the point along the chord about which the torques associated
with weight and buoyancy come into balance under aero- or hydro-static conditions. As
shown in figure 2(c) for a flyer of weight W and total buoyant force B, the CoE distance
from the middle of the plate or the CoV can be calculated to be �CE = �CM|W |/(|W | −
|B|). For dense solids such as paper planes in air, |W | � |B| and �CE ≈ �CM . For our
underwater flyers, however, buoyancy is considerable and the CoE deviates significantly
from the CoM. The values of the CoE location �CE/� relative to the chord explored in
the experiments are indicated by arrowheads above the colour bar in figure 3, with filled
symbols corresponding to the trajectories above. The vertical dashed line segments on
the upper portion of the CoE colour bar indicate the approximate boundaries between the
modes. These experimental observations will serve to validate the model presented in later
sections.
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3. Static torque measurements and aerodynamic characterization

We next pursue an experimental characterization of the fluid dynamical forces and torque
on plates fixed within imposed flows, this information to be used to inform our quasi-steady
model. Particular attention is placed on pitching torque and its dependence on angle of
attack, since added mass torque models tend to over-predict experimental measurements,
as noted in Pesavento & Wang (2004) and Andersen et al. (2005b). Added mass effects
included in previous studies derive from the Kirchhoff equations governing the motion of
an object in potential (inviscid) flow with zero circulation. Viscous flows involve vortex
shedding that redistributes pressure and significantly modifies torques, thus necessitating
new models. Here, we present an approach that allows for the extraction of the relevant
force and torque characteristics from experimental torque measurements about different
points of rotation and for varying angles of attack. This procedure furnishes the total force
associated with fluid dynamic pressure and thus its decomposition into lift and drag. The
total torque can then be expressed as the total force acting at a centre of pressure location
along the chord.

3.1. Experimental torque measurements
The first step involves experiments for measuring the flow-induced torque on plates,
which we carry out using a spring balance system and water tunnel. The apparatus
shown schematically in figure 4(a) has been successfully employed and thoroughly
described in previous studies (Amin et al. 2019; Sanaei et al. 2021). Here, we review
the basic components and operating procedures and provide relevant parameters for our
characterization of plates. Laminar flow is provided by a recirculating water tunnel whose
test section measures 6 in. × 6 in. (15 cm × 15 cm) in cross-section and 17 inches (43 cm)
in length. Each plate is loaded vertically in the test section, and the use of stainless
steel ensures minimal flexing. The plates measure 6 in. × 1 in. × 0.03 in. or, equivalently,
(s = 15 cm) × (� = 2.5 cm) × (h = 0.076 cm) in span, chord and thickness. They nearly
span the height of the tunnel. We consider the family of plates identical except for the
location �p along the chord of the support rod or pivot point, which is the axis of rotation
about which the torques are measured and which we will later associate with �CE in the
context freely flying plates. A two-dimensional schematic defining relevant quantities is
shown in figure 4(b). The support rod extends upward out of the tunnel, where it is held in
low friction, rotary ball bearings. The rod is connected to a coil or torsion spring whose
other end is fixed to a housing (not shown in the figure) that is rigidly attached to the tunnel
lid. Also not shown is a viscous dashpot that strongly suppresses vibrations of the plate
triggered by hydrodynamic fluctuations such as vortex shedding.

When flow is initiated, any torque exerted on the plate causes it to rotate through a
slight angle (< 5◦) and loads the spring. This deflection is amplified for measurement
by reflecting a laser beam off a small mirror mounted on the support rod. A long
path of the beam, achieved compactly with a second mirror, ensures measurably large
excursions of the beam along a long ruler. Calibration using a mass–string–pulley system
yields the conversion of the beam displacement to torque. Here, we report on 9 plates
with different values of the normalized pivot point location �p/� ∈ [0, 0.65], where
�p/� = 0 corresponds to the middle of the chord and �p/� = 0.5 is at the leading edge.
For each plate of a given �p/�, we sweep through angles of attack α while measuring
the beam displacement and thus torque τ at each angle. These data are recast into
the torque coefficient Cτ = τ/(ρU2s�2/2), a non-dimensionalization that removes the
expected dependencies on fluid density ρ, flow speed U and plate dimensions based on
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Figure 4. Experimental characterization of flow-induced torques. (a) Apparatus for measuring pitching torque
on plates in imposed flows. The plate is inserted vertically in the test section of a laminar flow water tunnel,
and a torsion spring balance is used to measure torques. The mounting shaft is secured in low friction ball
bearings (not shown) and connected to a coil spring that loads slightly under flow-induced torque. Slight angular
deflections lead to amplified displacements along a ruler for a laser beam that reflects off a small mirror on
the shaft. Calibration is used to convert beam displacement to torque. (b) Chordwise view of the plate and
definitions of relevant quantities: flow speed U, attack angle α and pitching torque τ for a given pivot point
location �p. Not indicated are the chord � and span s lengths. (c) The measured torque is normalized to form
the torque coefficient Cτ = 2τ/ρU2s�2 across α and �p/�, with tested values of the latter marked on the colour
bar. (d) Plots of the measured torque coefficient Cτ vs �p/� for selected values of α and their best-fit lines.

high-Re pressure forces. We impose flow speeds that decrease from 15 to 7 cm s−1 for
the plates of increasing �p in order to yield convenient beam displacements, these values
yielding Reynolds numbers Re = 2000 to 4000 within the range explored in the free flight
experiments.

The data gathered can be collectively summarized as Cτ (�p/�, α). In figure 4(c), we
display curves Cτ (α) for different values of �p/�. The markers indicate measured values,
and the solid curves are spline fits to be used in the analysis that follows.

3.2. Inferring lift, drag and torque coefficients
We next outline a procedure that uses the torque data to infer the total force coefficient,
its decomposition into lift and drag coefficients and the centre of pressure location, all
of which vary with α. Because of the thin and flat geometry, the torque derives from the
pressure difference p(x) across the plate, whose variation with the chordwise coordinate x
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is not known a priori. Hence the torque is given by

τ(�p, α) =
∫

(x − �p)p(x, α)s dx =
∫

xp(x, α)s dx − �p

∫
p(x, α)s dx

= τ0(α) − �pF(α), (3.1)

where the integrals are over the length of the chord (−�/2 to �/2) and s is the span length.
The two integrals that arise are associated with the torque τ0 about the CoV (middle of the
plate) and the total normal force F on the plate, respectively,

τ0(α) = τ(�p = 0, α) =
∫

xp(x, α)s dx and F(α) =
∫

p(x, α)s dx, (3.2a,b)

these quantities depending on α but not on �p/�. Converting to dimensionless force and
torque coefficients by normalizing by ρU2s�/2 and ρU2s�2/2, respectively, yields

Cτ (�p/�, α) = Cτ0(α) − (�p/�)CF(α). (3.3)

Thus, for a given α, plotting Cτ (�p/�, α) vs �p/� is expected to yield a line whose slope
has magnitude given by the total force coefficient CF(α). This is borne out in figure 4(d),
where we display as markers the data extracted from the spline fits of figure 4(c) for
selected values of α. Note that, whereas in figure 4(c) we take the domains to be �p/� ≥ 0
and α ∈ [0◦, 180◦], in figure 4(d) we allow �p/� ∈ R to be negative and restrict α ∈
[0◦, 90◦], this change being permitted by the symmetries of the plate. The lines are linear
regression fits whose slopes yield the total force coefficient CF(α) = F(α)/(ρU2s�/2)

shown as the solid curve in figure 5(a).
The lift and drag coefficients are then readily extracted as components of the force

perpendicular and parallel to the wind vector, respectively,

CL(α) = CF(α) cos α and CD(α) = CF(α) sin α. (3.4a,b)

The resulting curves are displayed in figure 5(c). Note that these forms represent the lift
and drag components of the force normal to the plate. At high Reynolds numbers and
sufficiently high α, one expects normal or pressure forces to dominate over tangential
forces or skin friction, and so these forms are good approximations to the total lift and
drag. The coefficient curves inferred by our procedure are in qualitative agreement with
direct force measurements conducted for similar but somewhat different plate geometries
and Reynolds numbers (Pelletier & Mueller 2000; Okamoto & Azuma 2011; Shields &
Mohseni 2012).

Finally, the torque is related to the centre of pressure location

�CP(α) =
∫

xp(x, α) dx∫
p(x, α) dx

= τ0(α)

F(α)
= �Cτ0(α)

CF(α)
, (3.5)

whose definition in the first equality is analogous to quantities such as CoM. The value
of �CP indicates the distance from the middle of the plate at which the normal force
effectively acts. Extracting Cτ0(α) from the vertical intercepts of the curves in figure 4(d)
yields the solid curve of figure 5(b) and thus the normalized �CP(α)/� = Cτ0(α)/CF(α)

shown in figure 5(d).
The above procedure can be validated by comparing the experimentally measured

Cτ (�p/�, α) with that inferred via (3.3) with the extracted forms of Cτ0 and CF. The former
data are shown as markers in figure 6(a) and the latter by the curves, and the relevant trends
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Figure 5. The dependence of aerodynamic coefficients on angle of attack α, as extracted from experiments
(solid curves) and their model forms (dashed). (a) The force coefficient CF associated with pressure forces and
thus assumed to act normal to the plate. (b) The torque coefficient Cτ0 about the CoV. (c) The lift CL and drag
CD coefficients formed by decomposing the total force into components perpendicular and parallel to the flow
direction. (d) The centre of pressure location represents the effective site at which the force acts in giving rise
to the CoV torque: �CP/� = Cτ0/CF .

can be seen to be captured well. Here, the colouring indicates �p/� and follows the colour
bar presented in figure 4(c). The extracted CL(α), CD(α) and �CP(α)/� curves constitute
a complete characterization of the aerodynamic forces and pitching torque under static
conditions, and these quantities inform the model presented in subsequent sections.

3.3. Static equilibria and their stability
The extracted torque profiles convey important information about the equilibrium
orientations of the plate, which correspond to Cτ = 0, as well as their stability, which
relates to the slope dCτ /dα. The edgewise orientations α = 0◦ and α = 180◦ are equilibria
for all �p/�, as is consistent with the symmetry of these postures. For a plate supported
about its middle, i.e. �p/� = 0 represented by the red curve in figure 6(a), both α = 0◦
and α = 180◦ are unstable in the static sense: dCτ /dα > 0 and thus small perturbations
are expected to grow. In contrast, the broadside-on posture of α = 90◦ is an equilibrium
that is statically stable since dCτ /dα < 0. As �p/� increases, this single stable orientation
moves to lower values of α until �p/� ≈ 0.3 (dark purple curve in figure 6a), beyond which
the stable orientation remains at α = 0◦. Hence, the equilibrium point α = 0◦ transitions
from unstable to stable near �p/� = 0.3.

For a closer inspection of the low-α response, we show a zoomed-in view of Cτ (�p/�, α)

in figure 6(b), which corresponds to the dashed box of (a). Their odd symmetry allows the
curves to be extended to negative α (faded), which helps to show the slopes at α = 0◦.
The equilibrium posture α = 0◦ undergoes a transition from positive to negative slope
and thus from unstable to stable. The zero crossings for α > 0◦ for the green and blue
curves are marked by boxes and correspond to non-trivial equilibria whose negative slopes
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Figure 6. Equilibrium postures and their static stability across different points of rotation. (a) Extracted torque
coefficients (curves) compared with measurements (markers). The colouring indicates the pivot location �p/�

and follows the colour bar of figure 5(c). Equilibrium angles of attack are associated with Cτ = 0 and include
α = 0◦ and α = 180◦ for all �p as well as non-trivial solutions at intermediate α for some curves. (b) Magnified
view of low-α torque response corresponding to the dashed box of (a). The equilibrium orientation α = 0
changes slope as �p increases. The non-trivial equilibria for α > 0 occur at decreasing α for increasing �p,
as shown here for two such solutions (green and blue boxes). (c) Stability derivative dCτ /dα vs �p/� for all
equilibria. Positive values imply static instability, while negative values are stable. The posture α = 180◦ is
always unstable, whereas α = 0◦ transitions from unstable to stable at a critical �p/� ≈ 0.3. The non-trivial
equilibria are mostly stable. (d) Static stability map showing the dependence of equilibrium attack angles on
pivot location. Stable or attracting orientations are shown as solid curves and unstable or repelling postures are
dotted.

indicate stability. Those of particularly low α, an example of which is the blue curve with
�p/� = 0.24, correspond to the gliding mode observed in the flight experiments of figure 3.

The inferences of stability given above can be confirmed by assessing the stability
derivative dCτ /dα across all equilibria, as shown in figure 6(c). Here, the three branches
correspond to α = 0◦, α = 180◦ and the non-trivial equilibria of intermediate α. Noting
again that the sign of the derivative indicates stability with negative being stable, it can
be seen that α = 180◦ is always unstable, while α = 0◦ transitions from unstable to stable
as �p/� increases. (Due to symmetries of the plate, the α = 180◦ curve for �p/� > 0 can
be interpreted as a reflection of the α = 0◦ curve extended to �p/� < 0.) The non-trivial
equilibria that arise for sufficiently small �p/� < 0.3 are mostly stable, with a weakly
unstable solution appearing around �p/� = 0.13.

The locus of all equilibrium points and their stability is summarized in figure 6(d).
Solid and dotted curves represent the stable (attracting) and unstable (repelling) equilibria,
respectively. For each value of �p/�, the arrows convey the expected evolution of α

away from unstable branches and towards stable branches. The trivial equilibrium α = 0◦
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undergoes a change from unstable to stable while 180◦ is always unstable. The curve
shows how the non-trivial equilibria move towards lower values of α as �p/� increases
and eventually reach α = 0◦ near �p/� = 0.3, this being associated with a pitchfork-like
bifurcation in the map. Note that this curve α(�p/�) representing non-trivial equilibria is
simply the inverse of the curve �CP(α)/� shown in figure 5(d), which is explained by the
fact that �p = �CP satisfies the zero torque condition for equilibrium.

The equilibria and their static stability can be related to the flight observations of
figure 3. Edgewise diving (purple and magenta) corresponds to the attractor at α = 0◦
for sufficiently high �p/� > 0.3. Gliding (blue) corresponds to the attractor at small but
non-zero α, which our free flight experiments show to be the mode attained for �p/� ∈
(0.22, 0.29). The bounding mode (green) as well as progressive fluttering (orange and
yellow) and fluttering (red) have attractors at larger values of α, but these statically stable
postures are apparently dynamically unstable in free flight and give rise to oscillatory
motions. The transition from gliding to bounding is reminiscent of a Hopf bifurcation in
which a stable fixed point gives way to limit cycle oscillations.

4. A quasi-steady model framework

Our model describes the free motions of a plate subject to gravitational and aero- or
hydro-dynamic forces at moderate to high Reynolds numbers. The general framework and
nomenclature largely follow those of Andersen et al. (2005b). Our modifications account
for displaced CoM and include revisions to the fluid dynamical force and torque model.
We consider the two-dimensional (2-D) setting of a thin plate of mass m and rectangular
cross-section, with chord length � and thickness h � � defined according to figure 7(a).
The mass is distributed such that the CoM is displaced from the CoV by a distance
�CM ≥ 0. The moment of inertia about the CoM is given by I = 1

12 m(h2 + �2) + m�2
CM

per the parallel axis theorem. This form applies to rotations about the CoM of a plate
of homogeneous density and does not explicitly account for the specific manner (such as
adding weights) by which the displaced CoM is achieved. This issue will be addressed in
more detail in § 6 where we simulate the conditions relevant to the free flight experiments
presented in § 2.

Under aero/hydro-static conditions, the weight W and buoyant force B lead to a CoE
location �CE = �CM|W |/(|W | − |B|), as shown in figure 7(b). This is essentially the
CoM location for dense solids in air (for which |W | � |B|) but deviates significantly
for the underwater flyers of the experiments reported in § 2. The CoE location proves
useful as the reference point against which the point of action of the fluid dynamic forces
should be compared. An ideal plate of solid density ρs in a fluid of density ρf has
�CE = �CMρs/(ρs − ρf ). When simulating our free flight experiments, the more general
formula above will be used to account for the added weights and side fins.

We assume the aero/hydro-dynamics is that of a simple plate moving within a fluid of
density ρf . The aerodynamic force F and the centre of pressure location �CP, as defined
in figure 7(c), vary with the plate motion according to the model described in detail
below. The instantaneous position of the CoM in the fixed or laboratory reference frame is
denoted (x, y), as shown in figure 7(d). The orientation is given by the angle θ measured
relative to gravity, defined such that counterclockwise rotations are positive.

A reference frame (x′, y′) that co-rotates with the plate, as shown in figure 7(d), is
convenient for expressing the equations of motion. The velocity of the CoM vCM = v
has components in the two frames that are related by the transformations vx = vx′ cos θ −
vy′ sin θ and vy = vx′ sin θ + vy′ cos θ . The angular velocity of the plate is ω = θ̇ .
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Figure 7. Definitions of model parameters. (a) A thin plate of chord length �, thickness h � � and CoM
displacement �CM . (b) The CoE location �CE as defined by the balance of weight and the buoyant force.
(c) The aerodynamic force F acts at a distance �CP from the CoV. (d) Kinematic parameters and reference
frames. The laboratory frame (x, y) is fixed and the frame (x′, y′) rotates with the plate. The instantaneous
orientation angle θ is positive as shown. The angle of attack α is measured between the CoV velocity vector
vCV and the x′-axis, with α < 0 as shown. (e) Force diagram. The weight W and buoyant force B are directed
downward and upward, respectively, while lift L is perpendicular to vCV and drag D is anti-parallel.

While the rigid body dynamics is best described in terms of the CoM motion, aerodynamic
terms will involve the CoV velocity vCV , whose primed frame components (vCV

x′ , vCV
y′ ) =

(vx′, vy′ − ω�CM) differ from the CoM velocity (vCM
x′ , vCM

y′ ) = (vx′, vy′) due to rotation.
The planar longitudinal dynamics of the plate is described by three Newton–Euler

equations relating translational and rotational accelerations to forces and torques and
which include the effects of gravity, buoyancy and aerodynamics. A force diagram is
shown in figure 7(e). The fluid dynamical forces are described by a quasi-static model
that may be decomposed into several terms. The equations of motion in the co-rotating
(primed) frame are

mv̇CM
x′ + m11v̇

CV
x′ = mωvCM

y′ + m22ωvCV
y′ + Lx′ + Dx′ − m′g sin θ, (4.1)

mv̇CM
y′ + m22v̇

CV
y′ = −mωvCM

x′ − m11ωvCV
x′ + Ly′ + Dy′ − m′g cos θ, (4.2)

(I + Ia)ω̇ = τT + τR + τB, (4.3)

where all masses, moments, forces and torques should be understood as being per unit
span for this 2-D setting. The rigid body dynamics involves the solid mass m and the CoM
acceleration terms proportional to v̇CM and ωvCM . The latter appear as the first terms
on the right-hand sides of (4.1) and (4.2) and are due to the co-rotating reference frame.
Gravity and buoyancy give rise to the last term in each equation. Fluid dynamical effects
include the added mass force terms with m11 and m22, whose forms follow the derivations
of Sedov (1965) as used in Andersen et al. (2005b). They involve the CoV acceleration
with translational and rotational contributions proportional to v̇CV and ωvCV , respectively.
Additional aerodynamic terms involve lift L, drag D and associated torques τT and τR due
to translation and rotation of the plate.

The system above should be compared with the analogous equations (6.1)–(6.3) in
Andersen et al. (2005b). Our modifications, which are spelled out in detail below, are
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intended to achieve several goals. (i) To extend the force model of Andersen et al.
(2005b) to include asymmetric weighting of �CM > 0. This is done by associating all
fluid dynamical force terms (added mass, lift and drag) with the CoV velocity vCV and
all rigid body dynamical terms with the CoM velocity vCM . (ii) To extend the torque
model to include asymmetric weighting. This introduces a buoyancy torque τB. Further,
the rotational drag-based torque τR, which is called τv in Andersen et al. (2005b), must
be computed about the CoM. (iii) To modify the lift and drag coefficients that will appear
in the L and D terms to more accurately account for attached flow at low α and separated
flow at high α. The following section will provide details of how we specify model force
coefficients that are informed by experiments. (iv) To address the finding in previous
works that the added mass torque significantly over-predicts experimental measurements
(Pesavento & Wang 2004; Andersen et al. 2005b). We remove the added mass torque
and replace it with the term τT that derives from the lift, drag and centre of pressure
during translation. We view the points (i) and (ii) above as essential to satisfying the
basic physics of the new system with displaced CoM, whereas (iii) and (iv) are modelling
choices intended to improve accuracy.

The system of (4.1)–(4.3) together with the coordinate transformations can be
expressed as a system of first-order ordinary differential equations in the state variables
(x, y, θ, vx′, vy′, ω) by eliminating vCV in favour of vCM = v

ẋ = vx′ cos θ − vy′ sin θ, (4.4)

ẏ = vx′ sin θ + vy′ cos θ, (4.5)

θ̇ = ω, (4.6)

(m + m11)v̇x′ = (m + m22)ωvy′ − m22ω
2�CM + Lx′ + Dx′ − m′g sin θ, (4.7)

(m + m22)v̇y′ = −(m + m11)ωvx′ + m22ω̇�CM + Ly′ + Dy′ − m′g cos θ, (4.8)

(I + Ia)ω̇ = τT + τR + τB. (4.9)

The fifth equation (4.8) has ω̇ on the right-hand side, but the sixth equation (4.9) recast
as ω̇ = (τT + τR + τB)/(I + Ia) can be used to arrive at a system with only state variables
on the right. Looking ahead to our simulations, this system can be numerically integrated
in time using, say, MATLAB’s ode45 solver to yield the laboratory frame CoM trajectory
(x, y, θ) as well as any other desired quantities.

Analytical expressions are not available for the added mass coefficients of
rectangular-section plates of finite span, and we assume forms for infinitesimally thin
plates: m11 = 0 and m22 = πρf �

2/4. The added moment of inertia about the CoM is Ia =
Ia(�CM = 0) + m22�

2
CM = πρf �

4[1 + 8(2�CM/�)2]/128, as computed using the thin-plate
approximation and the parallel axis theorem.

The last terms of (4.7) and (4.8) are the primed frame components of buoyancy
reduced weight, where m′ = (ρs − ρf )h� for a solid plate of (homogeneous) density ρs.
The last term in (4.9) is the buoyancy induced torque, τB = −ρf gh��CM cos θ , which is
associated with the CoM being displaced a distance �CM from the CoV. The expressions
for these buoyancy terms are for a simple 2-D plate of cross-sectional area h�. Appropriate
modifications are given in § 6 when simulating the experimental flyers, which have
additional fins and weights.

The remaining terms represent aero- or hydro-dynamic forces and torques that are
induced by translation or rotation of the plate through the fluid and which are modelled by
lift, drag and the associated torques. These terms depend on angle of attack α ∈ [−π, π],
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which is defined to be the angle of the CoV velocity vector vCV relative to the x′ axis
of the plate, as shown in figure 7(d). Hence, tan α = vCV

y′ /vCV
x′ = (vy′ − ω�CM)/vx′ . Lift

and drag have terms associated with translational motions that depend quadratically on the
CoV speed, with lift directed perpendicular to the CoV velocity vector and drag directed
anti-parallel, as shown in figure 7(e). The lift also has a rotational or Magnus-like term
that depends on the product of translational and rotational speeds. The vector forces can
be expressed as

LT = 1
2ρf �CL(α)

√
v2

x′ + (vy′ − ω�CM)2(vy′ − ω�CM, −vx′) (4.10)

LR = −1
2ρf �

2CRω(vy′ − ω�CM, −vx′) (4.11)

L = LT + LR

= 1
2ρf �

[
CL(α)

√
v2

x′ + (vy′ − ω�CM)2 − �CRω

]
(vy′ − ω�CM, −vx′) (4.12)

D = −1
2ρf �CD(α)

√
v2

x′ + (vy′ − ω�CM)2(vx′, vy′ − ω�CM). (4.13)

Here, CD, CL and CR are the order-one drag, translational lift and rotational lift
coefficients. As discussed in detail in the following section, we will assume a constant
CR and functional forms for CD(α) and CL(α) that are good matches to our experimental
measurements of the flow-induced torque.

The torque term τT of the sixth dynamical equation represents the effect of translational
lift and drag acting at a centre of pressure location �CP(α) that may in general be different
from �CM , as shown in figure 7(c). Only the components of these forces along y′ contribute

τT = (LTy′ + Dy′)(�CP − �CM)

= −1
2ρf �

√
v2

x′ + (vy′ − ω�CM)2
[
CLvx′ + CD(vy′ − ω�CM)

]
(�CP − �CM), (4.14)

where the dependence of CL, CD and �CP on α have been suppressed. The functional form
for the centre of pressure location �CP(α) is specified in the following section.

The torque term τR in the third dynamical equation is intended to capture the
aerodynamic resistance to rotations. Following the dissipative torque approximation of
Andersen et al. (2005b), we calculate an expression for this term by considering a plate
under steady rotation about the CoM and without translation, where the drag is integrated
along the chord in a blade-element sense

τR = − 1
128

ρf �
4Cπ/2

D ω|ω|
[(

2�CM

�
+ 1

)4

±
(

2�CM

�
− 1

)4
]

. (4.15)

The appearance of Cπ/2
D = CD(α = π/2) reflects the fact that pure rotation involves only

broadside-on motion of each segment along the chord. The plus sign applies for 2�CM/� ≤
1, i.e. when the CoM lies within the plate, and the negative sign applies for 2�CM/� > 1,
i.e. when the CoM lies beyond the edge, as is the case for the most front-weighted plates
explored in the experiments of figure 3. With this term specified, the sixth equation (4.9)
in the dynamical system is complete.
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Figure 8. Diagram of lift L and drag D for varying angle of attack α. If the aerodynamic forces and their
location are specified in the range α ∈ [0, π/2] (b), the symmetries of a plate allow these characteristics to be
determined for all α ∈ [−π, π].

5. Aerodynamic coefficients and parameters in the model

We next specify the angle-of-attack dependence of the aerodynamic force coefficients
and parameter values employed in the model. The general strategy taken here is
semi-theoretical and semi-empirical, i.e. we employ formulas informed by theory wherever
possible but with prefactors and other parameter values informed by experiments. We
also wish to account for differing characteristics for laminar or attached flow vs stalled or
separated flow.

As noted in Andersen et al. (2005b), the functional form of the rotational lift term in
the system of (4.11) follows that calculated by Munk (1925) for a pitching plate at zero
angle of attack, in which case the coefficient value is shown to be CR = π. We follow the
assumption of Andersen et al. (2005b) that the general form holds for all α, and we employ
the value CR = 1.1 that was empirically determined to apply well to thin plates.

The translational coefficients CL(α) and CD(α) as well as the centre of pressure location
�CP(α) are all assumed to depend on α. Because we are concerned with rectangular
plates that are symmetric both up–down and front–back, it is sufficient to specify these
parameters over the range α ∈ [0, π/2]. As shown in figure 8, if lift, drag and the point
of action of these forces is specified for α ∈ [0, π/2], then one can invoke symmetries to
construct the force diagrams over the entire range α ∈ [−π, π].

Taking up the case of translational lift, the laminar flow condition expected at low
angles of attack α is described by the classical Kutta–Joukowski theory for thin airfoils
that predicts a lift coefficient proportional to sin α, as has been confirmed experimentally
for symmetric foils (Anderson 2010). For stalled conditions at higher α, the free streamline
theory for fully separated flow predicts that the net aerodynamic force is directed normal
to a plate (Wu 1955; Lamb 1993; Sefat & Fernandes 2011), implying that lift varies in
proportion to sin 2α. This form is also consistent with previous results from experiments
and numerical simulations (Wang et al. 2004; Sefat & Fernandes 2011). Our model
smoothly combines these behaviours, yielding the form

C̃L(α) = f̃ (α) · C1
L sin α + [1 − f̃ (α)] · C2

L sin 2α α ∈ [0, π/2] (5.1)
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Figure 9. Plots of aerodynamic coefficients vs angle of attack α used in the model. (a) The selection function
f (α) used to specify the laminar and stall regimes, where it takes on values near one and zero, respectively.
(b) The translational lift coefficient C̃L over the nominal range α ∈ [0, π/2] (heavier portion of curve) and
extended to CL over α ∈ [−π, π] (entire solid curve). Also shown as dashed curves are the forms appropriate
to the laminar and stall regimes. (c) The translational drag coefficient CD. (d) The centre of pressure location
�CP/� relative to the chord length of the plate.

f̃ (α) = 1 − tanh[(α − α0)/δ]
2

α ∈ [0, π/2]. (5.2)

Here, the tilde symbol over the functions is used to indicate their limited domain
α ∈ [0, π/2]. The parameter values C1

L = 5.2 and C2
L = 0.95 are chosen to yield good

agreement with the measurements of figure 5(c) for the lift on plates fixed in imposed
flows. The former value is fairly close to the prefactor of 2π ≈ 6.3 predicted by
Kutta–Joukowski theory for thin airfoils at low angles of attack (Anderson 2010). The
purpose of the function f̃ (α), which is plotted in figure 9(a) for α ∈ [0, π/2] as the heavier
portion of the curve, is to select either the laminar or separated (stalled) regime, where
α0 = 14◦ is the critical angle of attack at stall and δ = 6◦ determines the smoothness of the
transition. These values are selected to yield acceptable agreement with our experimental
measurements. Smaller δ yields a more abrupt transition and larger δ a gradual one,
and we find that the simulation results to be presented are qualitatively similar for
moderate changes in this parameter. The resulting translational lift coefficient C̃L(α) for
α ∈ [0, π/2] is plotted as the heavy portion of the curve in figure 9(b), where the forms
appropriate for laminar and stalled conditions are included as the two dashed curves. We
also reproduce this form in figure 5(c) as the blue dashed curve, where it can be seen to
compare well with the form extracted from the experimental measurements (solid curve).

It can be shown that the lift coefficient C̃L(α) must have odd symmetry about both α = 0
and α = π/2, leading to the extended curve displayed in figure 9(b) for the entire range
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α ∈ [−π, π] and the following formulas:

CL(α) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C̃L(π − |α|) α ∈ [−π, −π/2]

−C̃L(|α|) α ∈ [−π/2, 0]

C̃L(α) α ∈ [0, π/2]

−C̃L(π − α) α ∈ [π/2, π].

(5.3)

These results can be checked by comparing the signs of the components of lift LT ∝
CL(α)(vCV

y′ , −vCV
x′ ) with those inferred from the diagrams of figure 8. The selection

function f̃ (α) itself need not be separately extended in this prescription, but the complete
curve of figure 9(a) shows the natural form of f (α) for α ∈ [−π, π] arrived at by even
reflections.

Drag can be treated in an analogous way. For the laminar flow regime at low attack
angles, we assume two drag terms, one of which is constant independent of α and can be
interpreted as a simple model of skin friction. (Note that this force is not directed normal
to the plate and as such would not be inferred by our experimental procedure that assumes
all forces are derived from pressure.) To reproduce the quadratic-like form of CD at low α

in figure 5(c), we include a second term that is proportional to sin2 α. This can be viewed
as a fit to the experimental drag curve of figure 5(c) that captures the nonlinear rise for low
α, an effect seen in previous measurements and attributed to the increase in frontal area
and form drag for increasing α (Sunada, Sakaguchi & Kawachi 1997). For the stalled flow
regime, the finding in previous studies (Wu 1955; Lamb 1993; Wang et al. 2004; Sefat &
Fernandes 2011) that the total force is approximately normal to the plate implies that drag
is proportional to sin2 α. Hence we assume the form

C̃D(α) = f̃ (α) · (C0
D + C1

D sin2 α) + [1 − f̃ (α)] · Cπ/2
D sin2 α α ∈ [0, π/2], (5.4)

where f̃ (α) is the selection function as given in (5.2). The value C0
D = 0.1 is taken from

the experiments of Andersen et al. (2005b), and the values of C1
D = 5.0 and Cπ/2

D = 1.9
are selected to match features of the experimentally determined drag curve. The drag
coefficient is plotted in figure 9(c), where the heavy curve marks the nominal range of
α ∈ [0, π/2]. It is reproduced in figure 5(c) as the dashed red curve, where it can be seen
to compare well with experiments (red solid curve) for all but the lowest α. The origin of
this discrepancy for low α is that the experimental CD inferred from torque measurements
reflects only pressure forces that are normal to the plate and not tangential forces, which
are associated with skin friction and C0

D in the model. The entire solid curve for CD(α)

over α ∈ [−π, π] is arrived at by imposing even symmetry about both α = π/2 and α = 0

CD(α) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C̃D(π − |α|) α ∈ [−π, −π/2]

C̃D(|α|) α ∈ [−π/2, 0]

C̃D(α) α ∈ [0, π/2]

C̃D(π − α) α ∈ [π/2, π].

(5.5)

These extensions are confirmed by inspecting the signs of the components of drag D ∝
−CD(α)(vCV

x′ , vCV
y′ ) and comparing with those inferred from the diagrams of figure 8.

Finally, we must specify �CP(α). For small α, Kutta–Joukowski theory for thin airfoils
predicts that the centre of lift is a constant independent of α and is located at a point one
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quarter of the chord length ahead of the CoV (Anderson 2010). We thus include a constant
term as well as one that quadratically decreases with α, the latter yielding a better fit
to our experimental measurements and which may reflect the pressure redistribution due
to flow reattachment on the upper surface of the plate at low α (Smith, Pisetta & Viola
2021). At larger α for which fully separated flow can be expected, free streamline theory
predicts that the centre of pressure moves towards the middle of the plate as α → π/2 and
does so approximately linearly (Wu 1955; Lamb 1993; Sefat & Fernandes 2011). These
dependencies yield

�̃CP(α)/� = f̃ (α) · (C0
CP − C1

CPα2) + [1 − f̃ (α)] · C2
CP

[
1 − α/(π/2)

]
α ∈ [0, π/2].

(5.6)

The coefficient values of C0
CP = 0.3, C1

CP = 3.5 and C2
CP = 0.2 yield good

correspondence with the experimental measurements, as seen by comparing the dashed
(model) and solid (experiment) curves in figure 5(c). This form is also plotted in
figure 9(d), where the heavy curve marks the nominal range of α ∈ [0, π/2]. The
symmetry considerations of figure 8 indicate that �CP(α) must be odd symmetric about
α = π/2 and even symmetric about α = 0

�CP(α) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�̃CP(π − |α|) α ∈ [−π, −π/2]

�̃CP(|α|) α ∈ [−π/2, 0]

�̃CP(α) α ∈ [0, π/2]

−�̃CP(π − α) α ∈ [π/2, π].

(5.7)

This extended form is confirmed by inspecting the sign of the translational torque τT =
(LTy′ + Dy′)(�CP − �CM) and comparing with the diagrams of figure 8.

6. Flight simulator, its results and comparison with experiments

Here, we present a flight simulator that numerically solves for motions of a thin plate
subject to the model forces, and we assess the simulation outputs in comparison with
experiments. We also return to the motivating problem of paper airplanes as a further test
of the model for different parameter values.

6.1. Flight simulator and qualitative comparison with experiments
The equations (4.4)–(4.9) are a system of coupled, nonlinear ordinary differential
equations that may be solved numerically using standard schemes. We develop a ‘flight
simulator’ code that numerically integrates the equations in time using the built-in solver
ode45 in MATLAB. The simulator yields the laboratory frame CoM motions through
time as specified by (x, y, θ) as well as any other desired quantities such as plate-frame
variables, forces and other aerodynamic quantities of interest.

When simulating the conditions and geometries relevant to the experimental flyers, some
3-D quantities must be converted to their 2-D or per-unit-span forms. The solid mass and
moment of inertia are input as m = m2D = m3D/s and I = I2D = I3D/s, respectively. Here,
m3D and I3D are computed from the known geometry and densities. Similarly, the buoyant
force and torque involve a plate cross-sectional area (hl in the above formulations) that
is input as V3D/s: m′ = m − ρf V3D/s and τB = −ρf g(V3D/s)�CM cos θ , where V3D is the
total volume of the experimental flyer as computed from its geometry. The key variable of
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the CoM location is computed from the specified position of the added weight, and in this
way the effect of CoE location on flight motions is systematically explored.

Representative trajectories from simulations are shown in the lower half of figure 3,
where they can be compared with the experimental results above. Supplementary movies
also show representative outputs from the simulations. Notably, the simulations reproduce
the five flight modes of (symmetric) fluttering, progressive fluttering, bounding, gliding
and diving, which occur sequentially for increasing CoE location �CE/�. Not all aspects
of the various motions are accurately reproduced, for example the fluttering excursions
are of larger amplitude in simulations while the bounding bouts are shorter in extent and
duration than those of experiments. However, the values of �CE/� demarcating transitions
between modes are in approximate agreement. The colour bar of figure 3 indicates these
boundaries with dashed vertical lines on its upper and lower portions for experiments and
simulations, respectively. While the simulations can be run at arbitrarily fine increments in
�CE/�, the experiments are limited to the values marked with triangles above the bar and
the boundaries can only be determined up to this resolution. Given this, the experiments
and simulations can be seen to be qualitatively consistent across the mode diagram. The
only quantitative discrepancy arises for the bounding–gliding boundary, which is seen to
occur at a somewhat larger �CE/� in simulations.

Further explorations in simulations show that these terminal modes are robust across
different initial conditions. That is, releasing the plate at different attack angles and
velocities produces the same long-time motions. For biased motions such as gliding, the
initial conditions dictate whether the eventual state is leftwards or rightwards. These results
indicate that the observed modes are stable attractors of the flight dynamics.

6.2. Quantitative comparisons of experiments and simulations
A more in-depth look into the motions is useful for quantitatively comparing the
experiment and simulation results and for clarifying the distinctions between the flight
modes. In figure 10 we show time series data for the laboratory frame CoV speed vCV (cyan
curves) and angle of attack α (magenta) across all five modes and for experiments (left)
and simulations (right). The five selected cases correspond to those whose trajectories are
plotted in figure 3 and whose values of �CE/� are marked by the filled triangles above and
below the colour bar. Fluttering is characterized by back-and-forth bouts of equal duration
and extent. This manifests as pulses of vCV punctuated by hard rebounds from values
near zero as well as abrupt switches in α between values near 0◦ and −180◦. Progressive
fluttering is similar but the forward bout is of greater speed and duration than the backward.
The disappearance of the backwards motion in the bounding mode shows up as smooth
rebounds in vCV at low values and more gentle changes in α during soft stalls. In contrast
to these periodic modes, gliding and diving represent steady modes in which terminal
values of the speed and posture are attained. Gliding is marked by α /= 0 in steady state,
while diving eventually attains α = 0. (The negative value α < 0 for gliding relates to the
definition of α as the angle of velocity vector relative to the plate.) These steady modes
can be observed over limited times in experiments because of the finite size of the tank.

The data of figure 10 show fair quantitative agreement for all modes but bounding,
whose bouts are of shorter period in the simulations than the experiments. Also, the pulses
in angle of attack are of somewhat smaller magnitude in simulations. While the source of
these discrepancies is not clear, it should be noted that bounding is distinguished from all
other modes in that the plate spends appreciable time at attack angles α ≈ 10–20◦ that are
between the laminar and stalled flow regimes. Such a transitional dynamics is expected
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Figure 10. Time series data for five flight modes and comparison of plate experiments in water (a) and
corresponding simulations (b). Each plot shows the CoV speed vCV in cyan and the angle of attack α in
magenta and the data correspond to the first 5 s of the trajectories shown in figure 3. Symmetric reversals of
motion during fluttering (top row) show up as pulses in vCV and abrupt steps in α. Progressive fluttering shows
a similar dynamics but with the forward and reverse phases having different speed and duration. The purely
forward motion during bounding is marked by the smoother rebounds in vCV and repeated recoveries of α

following soft stalls. Gliding is marked by nearly constant vCV and α /= 0, while diving has constant vCV at
α = 0.

to involve unsteady effects such as flow separation and vortex shedding that may be less
accurately accounted for by a quasi-steady model.

The flight simulator affords other opportunities for comparison with experiments, and
here we assess the observed flight modes with regard to their effectiveness at transforming
descent under gravity into progressive horizontal motion. As shown in the inset of
figure 11, we define the glide ratio G as the horizontal distance travelled per unit vertical
fall. This quantity is evaluated through the mean slope of the trajectory at late times
in the plate-in-water experiments (data points) and corresponding simulations (curve),
where the colour coding of �CE/� follows the bar of figure 3. Error bars represent the
standard deviations over repeated experimental trials. The simulations generally reproduce
the trends seen in experiments, for which the higher values of G for diving (purple and
magenta) should be viewed as a consequence of the finite depth of the tank that precludes
the observation of the true steady state for these modes. Most importantly, there is a
distinct peak in both experiments and simulations that corresponds to gliding being the
optimal mode of horizontal transport. This optimum occurs near the quarter-chord point
�CE/� = 0.25, and the maximal glide ratios are between 3 and 4.

6.3. Simulations reproduce the motions of paper airplanes
As a final application, we return to our original motivation for this work and consider the
model of §§ 4 and 5 with input solid and fluid parameters relevant to the flight of paper
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Figure 11. Glide ratio from plate-in-water experiments (markers) and corresponding simulations (curve)
across flyers of differing CoE locations. The glide ratio represents forward progress per unit distance of fall
during the later stages of flight in which the a terminal behaviour is displayed. The colour coding matches the
colour bar for �CE/� used in previous plots. Gliding (blue tones) tends to maximize G.

planes through air. To facilitate comparison with the experiments of figure 1, we input
solid parameters corresponding to standard copy paper of chord length � = 2 in. = 5.1 cm,
span 6 in. = 15 cm, the bare paper itself having mass 0.59 g and with different amount
of weight added to the leading edge in order to change �CE/�. The fluid density ρf =
1.2 × 10−3 g cm−3 corresponds to air. Representative trajectories are shown in figure 12
for different values of the CoE, which is very nearly the CoM for this system. Comparison
with the recorded trajectories of figure 1 shows good qualitative agreement. Namely,
tumbling (red) is observed for the symmetric flyer, moderate front weighting yields modes
involving flips, tumbles and dives (orange and green) and yet greater loading leads to
gliding (blue) and then diving (purple). Representative modes are also animated in the
supplementary movies. These results indicate that the model and flight simulator are
versatile enough to be usefully applied across the widely varying parameter values needed
to account for motions through different fluids.

Compared with our experiments on underwater flyers and the associated simulations,
these trajectories display differences that can be generally attributed to the greater inertia
of the solid relative to the surrounding fluid. For example, tumbling is observed to be the
base mode (�CE = 0) for the paper airplane system whereas fluttering occurs for plastic
plates in water. These observations are consistent with previous studies that show tumbling
arises when the solid moment of inertia is large compared with the surrounding fluid,
as expected for paper-in-air, whereas fluttering arises for more moderate values of the
solid-to-fluid moment ratio (Belmonte et al. 1998; Andersen et al. 2005a; Hu & Wang
2014; Kuznetsov 2015; Lau, Huang & Xu 2018). Further, the gliding mode has a long
transient before reaching steady state, which is consistent with the relatively high mass
and moment of inertia of the flyer.

7. Discussion and conclusions

This study explores thin plates with different centres of mass and falling under gravity
as a simple flight system that allows for the systematic exploration of a rich variety of
unsteady and steady motions within fluids. Our experiments on free motions through water
show that the periodic modes of fluttering, progressive fluttering and bounding give way
to steady gliding and diving as the CoM location is moved incrementally away from the
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Figure 12. Simulations with parameters relevant to paper airplanes, where the trajectories are coloured
according to the map of figure 3. Representative trajectories are shown for �CE/� = 0, 0.08, 0.14, 0.24 and
0.31. The simulated motions correspond qualitatively well to the experimental observations of paper airplanes
shown in figure 1.

middle and towards an edge. Using a new technique for extracting lift, drag and centre
of pressure location from measurements of torque about different rotation points, we use
water tunnel data to directly inform a quasi-steady model of the fluid forces experienced
during motion. The model is the basis of a ‘flight simulator’ code that numerically solves
the equations of motion and which is shown to reproduce the flight behaviours both
for plates in water and paper planes in air. The simulator successfully accounts for all
observations at a qualitative level and also shows reasonable quantitative agreement with
experiments. As such, we anticipate this framework can be further adapted and applied
to understanding other problems involving motion and locomotion through fluids, such
as active control towards accomplishing a specified flight objective or the interaction of
bodies with winds or background flows that may vary in space and time.

Our results pertain to limited ranges of the parameters that characterize planar passive
flight through a fluid. In addition to the centre of equilibrium �CE/� that is the focus of
this study, the other dimensionless parameters include the Reynolds number, the ratio of
solid-to-fluid moments of inertia and the plate thickness-to-chord ratio (Andersen et al.
2005a,b). The paper-in-air and plastic-in-water systems studied here explore Re ≈ 103

to 104 and low thickness-to-chord ratios, h/� = 0.002 for the former and 0.06 for the
latter. The dimensionless moments of inertia I∗ = 32I/πρf �

4 are quite different for the
two systems, respectively I∗ ≈ 2 and 0.2, and the model and simulations are shown to
successfully account for the resulting differences in flight modes. Thus, our findings should
be viewed as representative of the quasi-2-D flight of long, thin plates at moderately
high Re. A direct extension of our study might systematically vary I∗ within the model
and characterize the resulting behaviours. Exploring appreciably different values of Re
and the thickness ratio h/� would require experimental force and torque characterizations
under such conditions. Non-rectangular planform shapes might be treated within the model
using a blade-element formulation, as has been applied to tumbling motions of symmetric
shapes (Vincent et al. 2020a). Asymmetric shapes, such as the parallelograms considered
in Varshney et al. (2013), and the consequent three-dimensional motions would require
significant reformulation of the model.

The quasi-steady model presented here builds on that of Andersen et al. (2005b)
by making several key modifications. First, we generalize the formulation to account
for arbitrary CoM locations. A buoyancy torque is added, and the moment of inertia
is appropriately modified. Force terms deriving from the rigid body dynamics are
distinguished from fluid forces by expressing the former in terms CoM velocity and
the latter in terms of CoV velocity. Second, the lift and drag laws are formulated to
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account for attached, laminar flow at low angles of attack α and stalled or separated
flow at high angles. The forms correspond well with thin airfoil theory for low α and
with separated flow theory for high α, while the values of the coefficients or prefactors
are informed by the experimental measurements presented here. Third, the torque model
is revised by eliminating added mass contributions in favour of those due to the total
aerodynamic force acting at a dynamic centre of pressure location. This modification
seems to adequately address the issue raised by Pesavento & Wang (2004) and Andersen
et al. (2005b) that an added mass model tends to overestimate torques. Indeed, in
results not included here, we have directly extended the model given in Andersen et al.
(2005b) to account for the displaced CoM but retained all other assumptions. Similar
modes are found but only for significantly larger values of �CE. For example, gliding is
observed for �CE/� ∈ [0.62, 0.77], values larger than the experimentally observed range
of approximately [0.22, 0.29] and so far forward as to be off of the physical plate. This is
consistent with the large pitch-up torque predicted by added mass models (Pesavento &
Wang 2004; Andersen et al. 2005b).

Our results can also be compared with the work of Huang et al. (2013), which also
considered experiments, quasi-steady modelling, and simulations on the passive flight of
thin plates with displaced centres of mass. This study reported experimental trajectories
equivalent to what we call symmetric fluttering, progressive fluttering, and diving as the
CoM is increasingly displaced. There is no mention of bounding and gliding flight, which
may reflect the fact that only a few values of CoM location are explored. Their work also
formulates a model based on that of Andersen et al. (2005b) but which differs from ours
in several ways, including: (i) the added mass terms are expressed in terms of the CoM
velocity rather than the CoV velocity; (ii) the rotational torque from drag is determined
by rotation about the CoV rather than the CoM; (iii) the lift and drag coefficients have
simplified dependencies on attack angle that do not explicitly account for attached and
separated flow regimes; (iv) the added mass torque term is included, whereas as we replace
this with a torque term deriving from lift, drag, and the dynamic centre of pressure. The
model of Huang et al. (2013) is shown to correspond qualitatively well for symmetric and
progressive fluttering but does not account for the diving mode observed in experiments.
Based on our investigations, we suspect that the torque model may be responsible for this
difference.

A main result is that a simple planar plate with appropriate CoM, or more generally
CoE, can glide stably. While equilibrium or torque balance is expected when the CoE and
the centre of pressure match, the stability of gliding is more subtle. Thin airfoil theory
predicts neutral static stability about the quarter-chord point (Anderson 2010), which is
the theoretical location of the centre of pressure for small angles of attack. Our torque
measurements, on the other hand, reveal a family of statically stable equilibrium postures
for small but non-zero α and �CE/� ≈ 0.25 (figure 6). Static stability for the specific case
of �CE/� = 0.25 has been reported in previous measurements of the pitching moment
about the quarter-chord point for thin plates at somewhat higher Re (Pelletier & Mueller
2000; Okamoto & Azuma 2011; Shields & Mohseni 2012). We are not aware of any
previous study that demonstrates the dynamic or free flight gliding stability of plates,
which is observed here both in experiments and simulations to occur for a range of �CE/�

near one quarter. This stability can be understood from the form of the centre of pressure
curve �CP(α), whose negative slope for the relevant angles of attack implies restoring
torques in response to perturbations in posture.

These findings indicate that appropriately placing the CoM is a minimal
strategy for stabilizing gliding flight that does not require tails or other additional
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aerodynamic surfaces. The associated stabilization mechanism seems to be the basic
explanation for why ‘just right’ front weighting transforms the tumbling of plain paper
into gliding of a paper plane. This simplicity also suggests that this strategy may arise
in primitive forms of biological flight. Examples may be winged plant seeds, some of
which stably glide thanks to the seed itself serving as the payload that displaces the
CoM (Augspurger 1986; Azuma & Okuno 1987). Interestingly, flying seeds of the gourd
Alsomitra macrocarpa were shown to have centres of mass near the quarter-chord point
and glide ratios of 3 to 4 (Azuma & Okuno 1987), consistent with the optimal gliding
reported here. Perhaps such a minimal stabilization scheme would be useful in small-scale
flight applications (Kim et al. 2021).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.89.
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