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THE NORMAL SUBGROUP STRUCTURE OF THE
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1. Introduction and notation

The classification of the normal subgroups of the infinite general linear group
GL(Cl, R) has received much attention and has been studied in, for example, (6), (4)
and (2). The main theorem of (6) gives a complete classification of the normal
subgroups of GL(£l, R) when R is a division ring, while the results of (2) require that R
satisfies certain finiteness conditions. The object of this paper is to produce a classifica-
tion, along the lines of that given by Wilson in (7) or by Bass in (3) in the finite
dimensional case, that does not require any finiteness assumptions. However, when R
is Noetherian, the classification given here reduces to that given in (2).

R shall always denote a ring with identity and M shall denote the free R -module
R(n\ for some infinite set ft. Let {ex:Aeft} be the canonical basis of M. For any
two-sided ideal p of R, we shall denote by GL(ft, p) the kernel of the natural group
homomorphism induced by the projection R —* R/p, and by GL'(il, p) the inverse
image of the centre of GL((l, R/p). Suppose A<=ft, /xef l -A and /: A—*R. (We shall
adopt the convention that / extends to a map /: ft -» R by defining f(<o) = 0 whenever
o) e f t - A and we shall use c to denote proper subset inclusion.) Define t(A,f, pi) to be
the R -automorphism of M

r(A, /, pi)ep = ep + ej(p), for all p e ft.

Clearly each t(A, f, pi)e GL((l, R) and since elements of GL(Cl, R) can be regarded as
invertible ftxft column finite matrices we shall call the f(A,/, pi) elementary matrices.
Define E(ft, R) to be the subgroup of GL((l, R) generated by {t(A,f, pi): A eft ,
pi e f t -A, /: A-» R}. For any right ideal p of R we define E(ft, p) to be the normal
closure of {t(A.,f, pi): A eft , pi e f t -A , / :A-»p} in E(ft, R). Arguments similar to
those of (4) show that E(ft, i?) and E(ft, p) are normal subgroups of GL(fi, R). For
any Acf l we identify with each aeR the map a: A—*R with a(A) = a and if A = {A}
we shall abbreviate f(A, a, pi) to f(A, a, pi). We shall define EF(ft, R) to be the
subgroup of GL(il, R) generated by {r(A, a, pi):* A, pi 6 ft, A^pi, aeR}. For any right
ideal p of R, EF(il, p) is defined to be the normal closure of {f(A, a, pi): A, pi e ft, A f pi,
a ep} in EF(ft, R). Denoting the set of natural numbers {1, 2, 3,.. .} by N we see that
EF(N, R) is just the subgroup E(R) of the stable linear group of Bass (3) while, for any
infinite set ft, EF((l, R) was studied by Robertson in (6) when R is a simple ring.

Whenever p is a two-sided ideal of R it is possible to write p as a sum of finitely
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generated right ideals; for example, p= £ xR. Of course, this decomposition may not

be unique, however it is easy to see that whenever p is a two-sided ideal of R and
{ p a : a e A } and {q$: 0 e B } are two families of finitely generated right ideals whose
sums are p then fl E(Cl, pa)= FI E(Cl,c\p). This observation allows us to define a

further normal subgroup as follows. Let p be a two-sided ideal of R and let {pa: a e A}
be a family of finitely generated right ideals of R such that £ pa = p. Define E[Cl, p]

asA

to be the normal subgroup n E(Cl, pa). Our remarks above show that the group
aeA

E[ft, p] is independent of the choice of pa and so E[ft, p] is defined uniquely.
We shall find that each normal subgroup H of GL(fi, R) determines uniquely a

two-sided ideal p of R such that E[ft,p]§HgGL'(ft,p). The analogous result of (2),
which required that R had the maximal condition on right ideals, involved the groups
E(ft, p) and GL'(il, p). It is clear that, for any two-sided ideal p of R, E[ft, p] S E(ft, p)
and that we have equality when p is finitely generated as a right ideal; hence the result
we shall give here generalizes the corresponding result of (2). Notice however that it is
possible to have strict inclusion; for example, if I is a field, if R is the commutative
polynomial ring over ! in countably many indeterminates x1; x 2 , . . . we see that E[Z, p]
is a proper subgroup of E(Z, p) since t(N, f, 0) ^ E[Z, p] where /: Af —» i? is given by
f(n) = Xn and p is the ideal generated by i b x 2 , . . . .

We next give some definitions that will be required in the construction of the ideals p
mentioned above. For any ft x ft matrix X we define the level of X to be the two-sided
ideal J(X) generated by the matrix entries X^, X ^ - Xe(J, for all a, 0 e ft, a ^ 0. For
any subgroup H of GJL(ft, R) we define the level of H to be the two-sided ideal
J(H) = I J(X), (c.f. (7)). We also define the ideal K(H) to be the two-sided ideal

XeH

K(H) = Y.J(X), where the summation is taken over all those X e H n E ( ( l , R ) that
have at least four trivial columns. (The <pth column of X is said to be trivial if and only
if X(ev) = ev.) Since matrices in E(ft, R) differ from the ilxQ, identity matrix in only
finitely many rows we see that K(H) is, in fact, the two-sided ideal of R generated by
the matrix entries Xa$, X ^ - l , for all a,|3efl, a ^ 0 and all XeH(~\E(Cl, R) that
have at least four trivial columns. Clearly K(H)^J(H) and we shall see that when H is
a normal subgroup of GL(il, R) we have equality. We say that a ring R is d-finite if
each two-sided ideal of R is finitely generated as a right ideal. Thus, simple rings and
Noetherian rings are d-finite.

Finally, we remark that we shall use [x, y] to denote the commutator x~1y~1xy and,
for any group G, Z(G) shall denote the centre of G.

2. Statement and discussion of results

We shall prove

Theorem A. Let R be a ring with identity, let ft be an infinite set and let H be a
subgroup of GL(Cl, R) that is normalized by E(ft, R). There exists a unique two-sided
ideal p of R such that
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As we have seen above, whenever R has the maximal condition on right ideals the
groups E[ft, p] and E(ft, p) coincide. It follows that Theorem A extends the classifica-
tion of the normal subgroups of GL(Cl, R) that was given in Theorem 1 of (2). We shall
also prove

Theorem B. For any ring R with identity and any infinite set ft the following
assertions are equivalent.

(i) R is d-finite.
(ii) whenever H is a subgroup of GL(Cl, R) normalized by E(Cl, R) there exists a

unique two-sided ideal p of R such that

This theorem shows that in order to obtain the sandwiching of normal subgroups of
GL(Cl, R) given in (2) or (4) it is necessary for R to be d-finite.

We shall see that the ideal p of Theorems A and B is the level of H. The advantage
of such "sandwiches" is that they depend only upon the level of H, no other knowledge
of H is required. To construct E[ft, J(H)] we restricted our attention to the finitely
generated right ideals of R contained in J(H). Although we know from Theorem B
that we cannot use E(ft, J(H)) to sandwich the normal subgroups H of GL{Cl, R) in
general, we can still ask whether or not H could be sandwiched by groups larger than
E[ft, /(H)] which still depend only on J(H). To see that in some sense E[ft, J(H)] is
best possible consider the following example. Let f be a field and let R be the
commutative polynomial ring over I in countably many indeterminates xu x 2 , . . . ; put
ft = N. For each iS1, let p( be the ideal of R generated by {x2k, x2j-i: keN, l^j^i}
and let qf be the ideal of R generated by {x2k-i» X2i- keN, 1 S / ^ i}. If we let p denote
the ideal of JR generated by all the indeterminates x1; x2,.. • we see that p = \J p; =
U q;; moreover Ei = II E(ft, pf) and E2 = Y\ E(ft, q;) each have level p. The maximality

i i i

of E[ft,p] is demonstrated by noting that ElC\E2 = E[ft,p].

3. Basic lemmas

It is easy to deduce from nothing more than matrix multiplication that the centre of
GL(£l, R) is just the centralizer of EF(£l, R) in GL(Q,, R). This, together with the
observation that E(ft, R) has trivial centre, allows us to deduce

Lemma A. If H is a subgroup of GL(Cl, R) that is normalized by E(ft, R) then the
following assertions are equivalent.

(i) H^Z(GL(Sl,R)).
(ii) [H,E(ft,i?)]=l.
(iii) HnE(ft,i?)=l.

Lemma B. Let H be a subgroup of GL(il, R) that is normalized by EF((l, R). If
AeH then, for all xeR and all p, p e ft, [L^ p, K(H) contains AMx and (A^ - A^x.

Proof. Let jx, p and x be as in the statement of the lemma. We shall show that
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e K(H); the case of (A^^ — App)x is simUar. If A^x = 0 then the result is obvious
so assume that A^xi= 0. Pick Aefl, A f \i, p and pick distinct <pt eH, i = 1 , . . . , 4 such
that <p; =̂ A and A ^ = 0; this is possible since A"1 is column finite. Put t = f(A, x, p). If
[f, A] = 1 then A^x = 0 for all a ^ p; in particular, Awx = 0 contrary to hypothesis. We
deduce that t and A do not commute and hence neither do t and A"1. Moreover,
[t, A ' 1 ] e £ ( a , R)dH and by the choice of the <pf, [t, A~x~\eVi = eVi, i = 1 , . . . , 4. This
shows that for all a,(5eft, a^ /3 , [t, A " 1 ] ^ and [t, A'1^ - i lie in K(H). However,
for all /3^/x, [ t ,A-1] (^=A^xAx3 and [r, A~1]M.M.-1 = A ^ x A ^ and hence K(H)
contains the sum X A ^ x A ^ Ap x; but this sum is just A^x and this observation

completes the proof of the lemma.
We shall also need

Lemma C. Let H be a subgroup of GL(Q,, R) that is normalized by EF(fl,, R) and let
a be a generator of K(H). For all p, creO, pi1 a, H contains t(p, a, a).

Proof. We shall consider the case a = XaP, for some a, f3 e fi, a j= |3, and some
X e H n E(n, R) that has at least four trivial columns; the case a = Xaa — 1 is similar.
Let A index the non-zero entries of the ath row of X and define f:A—»R by
/(A) = X^i \i\fa and /(a) = Xaa - 1 . There exists <peil, <pfa,p,a such that X(ev) =
e,,. Put r = f(a, 1, <p). Then fx = [t,X] = f(A,/, <p) and t^eH by hypothesis. Further
similar conjugations now show that H contains t(p, /(0), cr) and this completes the
proof of the lemma since /(/3) = xa0.

Corollary A. If H is a subgroup of GL(Ct, R) that is normalized by EF(fi, R) then H
contains EF(Q,, J(H)).

Proof. Lemma C shows that H contains ((A, a, /x) for all A, fi e il, A i= ft and all
generators a of K(H), while Lemma B shows that K(H) = J(H), since we already know
that K(H)^J(H). It follows that H contains {t(A, y, /x): A, /x € fl, A f /x, y eJ(H)} and
hence E F ( n , / ( H ) ) g H since H is normalized by EF(fl, R).

We complete this section with

Lemma D. If H is a subgroup of GL(il, R) that is normalized by E(il, R) and if H
contains EF(ft, q), for some two-sided ideal q of R, then H contains E(ft, p), for any
finitely generated right ideal p of R contained in q.

Proof. It will be sufficient to show that H contains any generator t(A, /, /x) of
E(il, p) since H is normalized by J3(ft, R). Since p is finitely generated we can write
p = XjR + . . . + XSJR, for Xf e p, i = 1 , . . . , s. The result now follows from the proof of the
Lemma of (2) since, by hypothesis, H contains t(A, X(, fx), for all A, (iefl, A^ ft,

4. The proof of the theorems

We begin with the proof of Theorem A. Let H be a subgroup of GL(fl, R) that is
normalized by E(Cl, R). If H is central then J(H) = 0, since central matrices are of the
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form rl, where r is a central unit of R, and we see that E(fl ,0)^HSGL'((l ,0) . We
may thus suppose that H is not central. Corollary A shows that H contains
EF(ft, J(H)) and hence Lemma D shows that E(fl, p )^H, for every finitely generated
right ideal p of JR contained in J(H). It follows immediately that E[Sl, /(H)] = H. We
remark that J(H) f 0, for if not J(HnE(Cl, R)) = 0 and so HC\E(£l, R) = l; hence, by
Lemma A, H is central contrary to hypothesis. Let denote images under the
homomorphism induced by the projection i? —»• R/J(H). We see that J(H) = 0 and that
HDE(fl,J?) = l. It follows from Lemma A that H is central and we deduce that
E[n,J(H)]gHgGL'(f l , / (H)) . Thus, we may take p = J(H) in the statement of the
theorem; the uniqueness of p follows by noting that p is maximal with respect to the
first inclusion and minimal with respect to the second. This completes the proof of
Theorem A.

That (i) implies (ii) in Theorem B is immediate from Theorem A since, whenever R
is d-finite, we have seen that E[Cl, p] = JS(ft, p), for any two-sided ideal p of R. It
remains to prove that (ii) implies (i). For any Xe GL(il, R), X^ 1, we shall say that X
has finite p-support if there exists a proper two-sided ideal p of R and a finitely
generated right ideal q of R contained in p such that all the entries of X—1 lie in q.
Since all XeGL(Cl,R) are column finite, it follows that whenever q is a finitely
generated right ideal contained in a proper two-sided ideal p of R every XeE(il, q),
Xf 1, has finite p-support. Suppose that (ii) holds yet R is not d-finite. There exists a
proper two-sided ideal p of R which is not finitely generated as a right ideal. Moreover,
there exists a collection {OJ : i e N} of elements of p that is not contained in any finitely
generated right ideal of R that is contained in p. Let p, denote the right ideal of R that
is generated by {a;: 1S i S;} and put H = U J3(fl, p,); then H is a normal subgroup of

, R), every non-trivial element of which has finite p-support. By (ii) there exists a
unique two-sided ideal n of R such that E(fi, n) ^ H and clearly pf = n, for all i e JV.

Thus EJn, (J pi JgfT. Let ft0 be a countable proper subset of fi and /: fi0-»{<*;: i

be a bijection. Pick wef l -Qo and define t = t(fto»/» «>)• Then teH yet, by the choice of
the Oj, t does not have finite p-support. This contradiction completes the proof of
Theorem B.
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